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ABSTRACT  

Objectives  

To evaluate the performance of the nnU-Net open-source deep learning framework for automatic 

multi-task segmentation of craniomaxillofacial (CMF) structures in CT scans obtained for computer-

assisted orthognathic surgery.  

Methods 

Four hundred and fifty-three consecutive patients having undergone high-resolution CT scans before 

orthognathic surgery were randomly distributed among a training/validation cohort (n = 300) and a 

testing cohort (n = 153). The ground truth segmentations were generated by 2 operators following an 

industry-certified procedure for use in computer-assisted surgical planning and personalized implant 

manufacturing. Model performance was assessed by comparing model predictions with ground truth 

segmentations. Examination of 45 CT scans by an industry expert provided additional evaluation. The 

model’s generalizability was tested on a publicly available dataset of 10 CT scans with ground truth 

segmentations of the mandible. 

Results 

In the test cohort, mean volumetric Dice Similarity Coefficient (vDSC) & surface Dice Similarity 

Coefficient at 1mm (sDSC) were 0.96 & 0.97 for the upper skull, 0.94 & 0.98 for the mandible, 0.95 & 

0.99 for the upper teeth, 0.94 & 0.99 for the lower teeth and 0.82 & 0.98 for the mandibular canal. 

Industry expert segmentation approval rates were 93% for the mandible, 89% for the mandibular 

canal, 82% for the upper skull, 69% for the upper teeth and 58% for the lower teeth.  

Conclusion 

While additional efforts are required for the segmentation of dental apices, our results demonstrated 

the model’s reliability in terms of fully automatic segmentation of preoperative orthognathic CT scans. 
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Key points: 

- The nnU-Net deep learning framework can be trained out-of-the-box to provide robust fully 

automatic multi-task segmentation of CT scans performed for computer-assisted orthognathic 

surgery planning. 

- The clinical viability of the trained nnU-Net model is shown on a challenging test dataset of 153 CT 

scans randomly selected from clinical practice, showing metallic artifacts and diverse anatomical 

deformities. 

- Commonly used biomedical segmentation evaluation metrics (volumetric and surface Dice 

Similarity Coefficient) do not always match industry expert evaluation in the case of more 

demanding clinical applications. 

 

Abbreviations: 

- CBCT: Cone Beam CT 

- CMF: Craniomaxillofacial 

- FOV: Field of view 

- sDSC: Surface Dice Similarity Coefficient at 1mm 

- vDSC: Volumetric Dice Similarity Coefficient 

 
Introduction 

Orthognathic surgery addresses congenital and acquired conditions of the facial skeleton by 

repositioning the jaws into a functional relationship in subjects presenting dentofacial deformities. It 

has been reported that up to 5% of the USA and UK populations could require orthognathic surgery 

[1]. Surgical correction of craniomaxillofacial (CMF) deformities requires defining a specific surgical 

treatment plan for every single patient [2]. In recent years, several teams have shown the reliability of 

computerized methods to analyze dentofacial deformities or to elaborate surgical treatment plans [2, 

3]. Virtual planning is usually performed using a CT scan or cone-beam CT (CBCT) scan of the patient’s 

head [3]. The first step in the planning pipeline involves the extraction of structures of interest from 

the CT data by semantic segmentation. The choice of (CB)CT scan resolution, field of view (FOV) and 

anatomical structures to be segmented depend on what the planning is intended for. For the purpose 

of surgical guides or personalized implant manufacturing, the orthognathic surgery planning is based 
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on high-resolution CT scans (with voxel size around 0.5*0.5*0.5mm3) with full-head FOV (around 

250mm). The following anatomical structures need to be segmented: upper skull and mandible, 

including the mandibular canals, upper and lower teeth (crowns and roots). Proper segmentation and 

delineation of these structures is known to be challenging due to factors such as large interindividual 

morphological variations, tight connections between the structures, lack of contrast in joints and teeth 

apices, frequent presence of artifacts (orthodontic materials, fixation implants, dental fillings or 

crowns) [4, 5].  

 

Semi-automatic algorithms may be used to make segmentation less time-consuming [6]. Some of these 

methods provide high segmentation accuracy, yet are not fully automatic and therefore still require 

time-consuming manipulations by trained operators. In recent years, segmentations of medical images 

using deep learning algorithms have outperformed previously used algorithms. Deep learning 

algorithms might indeed be able to perform fully automatic segmentations [7]. Several authors have 

developed specific deep learning-based models for automatic segmentation of the upper skull, 

mandibular bone, teeth or mandibular canal [5, 8–18]. Most of these approaches relied on a U-Net 

convolutional architecture [19], and yielded promising results, with reported volumetric Dice Similarity 

Coefficient (vDSC) between 90% and 95%. However, some limitations restrict their clinical applicability. 

None of them specified whether the dataset used for training and testing the algorithm included 

routine clinical cases, nor how the scans were selected. When the evaluation of the model on a hold-

out test dataset was provided, the number of test scans was always less than 30. Moreover, none of 

the algorithms in the studies were used to segment all the structures of interest for computer-assisted 

planning of orthognathic surgery and personalized implant manufacturing, and only one work 

segmented bone and teeth separately [18]. This calls into question the reproducibility and 

generalizability of previously published results, which are crucial factors for clinical validity [7, 20]. 

 

Recently, the nnU-Net framework was proposed as an out-of-the-box tool which automatically 

configures itself in order to perform deep learning-based biomedical image segmentation [21]. This 

tool is publicly available and was shown to surpass most existing models on 23 public datasets used in 

international biomedical segmentation competitions. nnU-Net could be helpful for direct clinical 

applications, as it is open source and does not necessarily require expert knowledge to obtain 

competitive results. To our knowledge, the performance of this tool has not yet been evaluated for 

the segmentation of craniofacial hard tissue in a clinical context. 
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In this work, our main objective was to evaluate the performance of the nnU-Net framework for 

automatic segmentation of CMF structures in routine CT scans performed for computer-assisted 

orthognathic surgery.  

 

Materials and methods 

Patient selection 

Data were selected from a retrospective cohort of all consecutive patients having undergone 

orthognathic surgery in a single maxillofacial surgery department between January 2017 and 

December 2019. Patients referred to this center presented a wide variety of dentofacial deformities, 

came from various socioeconomic backgrounds and were ethnically diverse. Patients were considered 

for inclusion whatever dental deformity they presented, with no minimum age. Exclusion criteria were 

refusal to participate in the research (all patients were contacted by mail) and lack of industry-certified 

CT scan segmentations (see next paragraph: “Ground truth segmentation process”). Of the 

473 subjects who underwent orthognathic surgery within the study timeframe, 4 refused to 

participate and 16 lacked industry-certified CT scan segmentations. 453 subjects (453 CT scans) were 

eventually included in our dataset (Fig. 1). Mean in-plane pixel size of the CT scans was 0.45*0.45mm2 

and their mean slice thickness was 0.34mm. Most CT scans (n = 417) were obtained using a GE 

Healthcare Discovery (GEHC) CT750HD scanner with a tube current of 50mA, an exposure time of 730s 

and a tube voltage of 100kV. Scans were randomly distributed among a train/validation set (n = 300) 

and test set (n = 153). CT scans characteristics and CT machines are detailed in Table 1. This study was 

ethically approved by an Institutional Review Board. 

 

 

Figure 1. Data flow of the patient selection, training and evaluation process. 
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Ground truth segmentation process 

All CT scans had been segmented prior to our study during patient treatment. Ground truth 

segmentations were used for diagnosis, computer-aided surgical planning and manufacturing of 3D-

printed personalized surgical guides and fixation implants according to a certified internal procedure 

(Materialise). This industry procedure is confidential and cannot be fully described here. It implies 

semi-automatic segmentations, manually refined by a first operator [Step 1] before slice-by-slice 

verification for validation by a senior operator [Step 2] focusing mainly on the regions of interest: 

external surface of the bones, teeth and mandibular canals. Steps 1 & 2 are repeated until the 

segmentations are approved and certified for clinical use. This process results in 5 segmentation 

masks: (1) upper skull, (2) mandible, (3) upper teeth, (4) lower teeth and (5) both mandibular canals.  

 

Public mandible test dataset 

In order to assess the generalizability of our trained model, we tested it on a public dataset of 10 high-

resolution CT scans from clinical practice [22]. These scans had the particularity of presenting complete 

mandibular bone structures entirely devoid of teeth. Ground truth manual segmentations of the 

mandible by two experts (A and B) were provided, which differed from our segmentations in that they 

were filled. Table 1 provides more details about this dataset. To the best of our knowledge, this is the 

only publicly available dataset of high-resolution Head CT scans with ground truth segmentation of 

one of the structures of interest for orthognathic surgery planning. 

Table 1. CT scan characteristics and CT machines in the train/validation, test and public mandible test datasets. 

 Train/Validation  Test  Public Mandible Test [22] 

Number of CT scans 300 153 10 

Mean in-plane pixel size (mm2) 0.44 * 0.44 0.45 * 0.45 0.45 * 0.45 

Mean slice thickness (mm) 0.33 0.34 0.6 

Number of scans by CT Machine    

       GEHC Discovery CT750 HD 284 144  

       GEHC Optima CT540 or CT660 7 5  

       Siemens Sensation 64   10 

       Other CT Machine1 9 4  

GEHC: GE Healthcare. 1GEHC Revolution CT, Philips Ingenuity Core, Siemens SOMATOM Definition AS, Toshiba Aquilion Prime SP 

 

nnU-Net framework 

The nnU-Net deep learning framework was used as an out-of-the-box tool, following instructions given 

by Isensee et al. [21]. Our raw train/validation dataset was used to automatically configure 

preprocessing, network architecture, training and post-processing pipelines. No modifications were 

made in setting the nnU-Net hyperparameters and data augmentation strategy. The training of 3D full 

resolution U-Net was performed on our train/validation set according to a 5-fold cross-validation 
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strategy. After the end of the training pipeline, cross-validation result analysis showed that the model 

incorrectly labeled a few voxels as teeth in some scans displaying no upper and/or lower teeth. As a 

result, we implemented additional post-processing for teeth masks, consisting in removing all 

components smaller than an empirically-determined threshold. Finally, inference was performed on 

our test dataset as well as on the public mandible dataset (Fig. 1). More details on the implementation 

of the deep learning framework are provided in Supplementary Information. 

 

Evaluation metrics 

Quantitative evaluation of the model performance was performed on our test set by comparing 

ground truth masks with predictions for each of the 5 segmentation masks. We followed best practice 

in evaluating model results, using both volume-based and surface-based metrics. Our main volume-

based metric was the commonly used vDSC. Our main surface-based metric was surface DSC at 1mm 

(sDSC). Compared with classical metrics such as vDSC, sDSC, which was introduced recently, has been 

shown to be more strongly correlated with the amount of time needed to correct a segmentation for 

clinical use [7]. We set our acceptable tolerance of sDSC at 1mm, as was done in recent international 

challenges in biomedical imaging. As in previous studies, an sDSC score of 95% was chosen as threshold 

value to consider variations between two segmentations as clinically non-significant. Additional 

quantitative metrics were computed after the common biomedical segmentation evaluations: Jaccard 

Coefficient, Volumetric Similarity, Average Surface Distance and Hausdorff distance. 

 

Industry expert evaluation procedure 

A random sample of our predicted masks for 45 subjects from our test dataset was sent to industry 

experts (Materialise) to be evaluated according to the 2-step validation process described above. The 

experts were blinded to our results and did not know that these segmentations were automatic, as 

they were evaluated among the flow of “classical” segmentations. Each segmentation mask was 

labeled “validated for clinical use” or “not validated for clinical use”. 

 

Statistical analysis 

Continuous variables are presented as mean ± standard deviation and categorical variables are 

expressed as numbers and percentages. vDSC and sDSC results are presented as percentages (%). The 

Wilcoxon test was used to compare vDSC and sDSC in scans obtained with GEHC CT750HD and scans 

obtained with other machines; p-values < 0.05 were considered significant. All data were analysed with 

Python (v.3.7) and RStudio software (v.1.3). 
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Results 

Patient characteristics 

In our database, patient mean age was 27 ± 11 years (minimum age 14, maximum age 66). The patients 

presented diverse anatomical deformities. 237 subjects (52.3%) exhibited skeletal class II (prognathic 

maxilla and/or retrognathic mandible), 163 subjects (36.0%) exhibited skeletal class III (retrognathic 

maxilla and/or prognathic mandible) and 165 subjects (36.4%) displayed asymmetry (clear asymmetry 

of the maxilla and/or the mandible evaluated on the 3D models). 89.6% of the CT scans (n = 406) 

showed metallic artefacts, in the form of orthodontic materials for 354 subjects (77.9%), metallic 

dental fillings or crowns for 193 subjects (42.6%) and fixation implants from previous orthognathic 

surgeries for 30 subjects (6.6%). Some subjects had no upper teeth (n = 4), no lower teeth (n = 1) or no 

teeth at all (n = 2). The public mandible test dataset included senior patients (63 ± 9 years) with no 

teeth at all. Table 2 summarizes patient characteristics in our datasets.  

Table 2. Descriptive characteristics of the patients in the train/validation, test and public mandible test datasets. 

Characteristic Train/Validation (n = 300)  Test (n = 153) Public Mandible Test [22] (n = 10) 

Age, mean ± SD, years 27 ± 11 26 ± 9 63 ± 9 

Gender, no. (%)    

      Female 178 (59.3) 83 (54.2) 5 (50.0) 

      Male 122 (40.7) 70 (45.8) 5 (50.0) 

Skeletal deformity, no. (%)    

     Class I 35 (11.7) 18 (11.8) Xe 

     Class IIa 154 (51.3) 83 (54.2) Xe 

     Class IIIb 111 (37.0) 52 (34.0) Xe 

     Asymmetryc 112 (37.3) 53 (34.6) 1 (10.0) 

     Syndromic deformity 8 (2.7) 8  (5.2) Xf 

Absence of teeth, no. (%)    

     No upper teeth 4 (1.3)   

     No lower teeth 1 (0.3)   

     No teeth at all 1 (0.3) 1 (0.7) 10 (100) 

Metal artifacts, no. (%)    

     Orthodontic materials 232 (77.3) 122 (79.7)  

     Metallic dental filling/crown 126 (42.0) 67 (43.8)  

     Fixation implantsd 17 (5.7) 13 (8.5)  

     No metallic artifact 35 (11.7) 12 (7.8) 10 (100) 

aPrognathic maxilla and/or retrognathic mandible. bRetrognathic maxilla and/or prognathic mandible. cClear asymmetry of the maxilla 

and/or the mandible evaluated on the 3D models. dFixation implants from a previous surgery. e Skeletal classification cannot be provided 

due to missing teeth and lack of information about the mandible’s vertical position during CT scan acquisition. fNo information provided 

with the database. SD, Standard Deviation. 

 

Model performance 

Quantitative evaluation on our test dataset 
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The mean results of vDSC and sDSC for each segmentation label of our test set are shown in Table 3, 

while Figure 2 shows the distribution of the results. The mean vDSC for all masks was 92.24 ± 6.19%. 

Without the mandibular canal results, the mean vDSC was 94.90 ± 0.91%. The mean sDSC for all masks 

was 98.03 ± 2.48%. Out of the 153 scans, 148 presented a mean sDSC for all masks which cleared the 

95% limit for clinical significance. There were no statistically significant differences in both vDSC and 

sDSC when comparing scans obtained with GEHC CT750HD and scans obtained with other machines. 

Additional quantitative evaluation (Jaccard Coefficient, Volumetric Similarity, Average Surface 

Distance and Hausdorff distance) results for cross-validation and test datasets are provided in 

Supplementary Materials. 

Table 3. Mean vDSC and sDSC results on our test dataset (n = 153). 

Metric, mean ± SD [%] Upper Skull Mandible Upper teeth Lower Teeth Mandibular canal Total 

vDSC 96.22 ± 1.43 94.19 ± 1.62 94.83 ± 1.81 94.38 ± 2.32 81.59 ± 5.79 92.24 ± 6.19 

sDSC 96.92 ± 3.08 97.92 ± 1.22 98.87 ± 1.18 98.53 ± 2.00 97.9 ± 3.51 98.03 ± 2.48 

 

 
Figure 2. Left side: 3D model reconstructed from predicted segmentation masks (Upper Skull and Mandible with transparent 
overlay). Right side: distribution of vDSC and sDSC results in our test dataset (153 CT scans), for each segmentation mask (no 
result below 50%). 

 

Four subjects representative of our test dataset and of the anatomic diversity of the database were 

chosen to illustrate our results (Fig. 3, Fig. 4, Supplementary videoclips 1 to 4). The most notable 

segmentation error made by the model on these subjects was the incorrect labeling of an upper 

deciduous tooth as a lower tooth in a patient suffering from craniofacial syndrome with several 

impacted teeth (Fig. 3b, Fig. 4b and Supplementary videoclip 2). 
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Figure 3. Four representative cases (a to d) showing sagittal slices of original data, ground truth segmentations, nnU-Net 
network-predicted segmentations and quantitative evaluation results. Red, upper skull; green, mandible; blue, upper teeth; 
yellow, lower teeth; cyan, mandibular canal. 

 

 
Figure 4. 3D surface models of segmentation results for 4 subjects representative of the anatomical diversity and of the 
challenges arising from our test dataset: (a) prognathic and asymmetric mandible; (b) craniofacial syndrome, with included 
and missing teeth; (c) retrognathic mandible; (d) no teeth and maxillary fixation implants from previous surgery (not 
segmented by the network). 
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Expert evaluation on our test dataset 

The results of the industry expert validation process are shown in Table 4. Validation rates were about 

90% for mandible and mandibular canals, 80% for upper skull and 60% for teeth. In total, 19 (42.2%) 

CT scans had all their segmentation masks validated. When excluding dental masks, 34 (75.6%) CT 

scans had their segmentation masks validated. Three CT scans out of the 45 (6.7%) did not show any 

metallic artefact, and had their 5 segmentation masks validated by industry experts. Comments 

appended to non-validated cases for bones mentioned small holes on the bony surface or under-

segmentation of the anterior nasal spine. Reasons for rejection of mandibular canal masks were the 

inclusion of a few outlier voxels or the omission of an auxiliary canal during segmentation. As to teeth, 

reasons for non-validation were under- or over-segmentation of a few voxels of the apex (Fig. 5).  

Table 4. Results of industry expert evaluation on 45 random CT scans from our test set. 

Result, no. (%) Upper Skull Mandible Upper teeth Lower Teeth Mandibular canal Total Total without 
teeth masks 

Validated 37 (82.2) 42 (93.3) 31 (68.9) 26 (57.8) 40 (88.9) 19 (42.2) 34 (75.6) 
Not validated 8 (17.8) 3 (6.7) 14 (31.1) 19 (42.2) 5 (11.1) 26 (57.8) 11 (24.4) 

 

 
Figure 5. Representative lower teeth mask which was not validated by industry expert. Red line: predicted mask contour. 
Blue line: ground truth mask contour. 

 

Quantitative evaluation on public mandible dataset 

vDSC and sDSC results of the inference on the public mandible dataset are provided in Table 5. Most 

of the model’s errors were located in the anterior part of the mandible, where the edentulous patients’ 

alveolar bone was atrophic and extremely thin (Fig. 6). One scan (mandible #10), performed on a 

subject with an endotracheal tube, produced low-quality results. Additional quantitative evaluation 

results for this dataset are presented in Supplementary Table 3. 
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Table 5. vDSC and sDSC results on public mandible dataset. 

Metric, mean [%] Operator 
ground truth 

Mandible number 
1 2 3 4 5 6 7 8 9 10 

vDSC A 91.72 85.12 89.29 89.38 92.16 90.74 92.15 88.71 92.66 61.19 
B 91.47 84.68 89.80 89.11 92.03 91.29 92.77 88.23 92.57 61.46 

sDSC A 97.10 92.96 95.62 90.56 98.03 94.12 97.29 90.84 99.10 63.86 
B 97.08 92.32 96.36 89.52 97.75 94.81 98.01 90.02 99.03 64.04 

 

 

Figure 6. 3D surface models of ground truth and automatic segmentation for mandible #2 of public mandible test dataset: 
black wireframe, ground truth (operator A); solid green, automatic segmentation result. (a) right lateral view; (b) upper 
view. 

 

Training and automatic segmentation times 

Training time for one fold on one GPU was about 48 hours (1,000 epochs). The trained model provided 

automatic segmentation of 1 CT scan in approximately 10 minutes. 

 

Discussion 

The main goal of this study was to evaluate the performance of the nnU-Net framework for semantic 

segmentation of CMF CT scans obtained for the planning of orthognathic surgeries. We chose this deep 

learning framework because it is open source and well-maintained, and has the ability to automatically 

configure itself without manual intervention. It has delivered state-of-the art segmentation results on 

a large diversity of biomedical datasets, surpassing most highly-specialized algorithms [21]. Our 

quantitative results demonstrated the model’s relevance for CT scan segmentation, with 97% of our 

test dataset showing a mean sDSC above 95%. However, this study also illustrated the challenges 

arising from the evaluation of deep learning-based algorithms in the case of demanding, specific 

clinical applications which forbid blind trust in quantitative metrics [7, 23]. For example, our sDSC 

results for upper skull masks showed a relatively large dispersion, which is not reflected, however, in 

expert evaluation results. Indeed, discrepancies between ground truth and prediction masks were 

mainly found in small bony structures located inside the skull, which are not relevant for most clinical 

applications (Fig. 3d). Conversely, the number of non-validated teeth segmentation masks cannot be 
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directly correlated to quantitative results, most masks obtaining excellent vDSC and sDSC results 

(>95%). No teeth labels were rejected based on segmentation errors localized at crown level, despite 

the difficulty in delineating the upper and lower teeth when they are in contact or show metallic 

artifacts [9, 17]. Instead, they were rejected because of a few mislabeled voxels located in zones (root 

apices) clinically relevant for personalized implant manufacturing. However, many other clinical 

applications, such as computer-assisted diagnosis or planning not involving personalized implant 

manufacturing, would not require such precision in the segmentation of dental apices. Finally, the 

clinical value of sDSC metrics in the context of small object segmentation was demonstrated by our 

mandibular canal segmentation results, for which vDSC did not seem like an appropriate metric [7, 23]. 

 

This study, which followed best practice guidelines [20], is the first to train and test a deep learning 

segmentation model on such a large number of high-resolution CMF CT scans. Our results are 

comparable or superior to those of previously published studies, despite the more challenging task we 

faced: all previous results were based on smaller test datasets (between 0 and 30 scans) and fewer 

segmentation masks [5, 8–18]. No previous work had included a cohort of consecutive patients, and 

only one previous publication had clearly stated that its database included patients with syndromic 

conditions [16]. Our results for the segmentation of scans from patients with marked syndromic 

deformities show the versatility of the model (Fig. 3b), and are comparable to those of Wang et al. 

who recently reported on a deep learning-based model for multi-task segmentation of bone and teeth 

separately [18]. However, the latter study lacked a hold-out test dataset, included only scans devoid 

of metal artifacts and did not differentiate between maxillary and mandibular structures. Our results 

for the segmentation of mandibular canals (vDSC of 81.59% ± 5.79%, sDSC of 97.9% ± 3.51%) are 

significantly superior to those reported by Jaskari et al. (vDSC of 57%) and Kwak et al. (average Jaccard 

coefficient of canal and background of 57.72%) [10, 11]. However, most existing studies used CBCTs, 

which are more difficult to segment than CT scans [16]. In addition, the absence of a public dataset of 

full high-resolution CMF (CB)CT scans with ground truth segmentations prevents direct comparison of 

our trained nnU-Net model with previously described ones.  

 

This research has several limitations. It is a single-center study, and thus cannot assess the reliability 

of the results in other cohorts. Generalization of our results to other CT machines or deformities was 

partially evaluated on 10 public CT scans obtained using a different CT machine and presenting very 

different anatomies from those in our training dataset. No subjects from our training database had 

such edentulous mandibles or endotracheal tube. Setting aside mandible #10 on the basis of 

endotracheal tube interference, our vDSC results nonetheless outperformed semi-automatic open 

source segmentation algorithms tested on the same dataset [6]. This suggests that the trained nnU-



 13 

Net model presented in this study could be used in other settings and for other clinical applications in 

the fields of CMF or dentistry requiring high-resolution CT scans, although proper multicenter and 

prospective evaluations are still needed. In order to assess the efficacy of this trained nnU-Net model 

in clinical practice, we plan on evaluating its use prospectively for orthognathic surgery planning and 

personalized implant manufacturing. As our deep learning model was trained with a target size of 

0.31*0.45*0.45mm3, it is not expected to provide competitive results on CT scans with much lower 

resolutions (resolutions around 2.5*1*1mm3 used in other clinical contexts [7], for example). Our study 

focused on CT scans because it is the imaging modality we use for computer-assisted planning of 

orthognathic surgery at this time. In future works we plan to fine-tune this model in order to evaluate 

its performance with CBCT scans, another widespread and challenging imaging modality. Finally, we 

will attempt to use our segmentation results for automatic localization of anatomic landmarks, in order 

to provide cephalometric measurements for clinical diagnosis and treatment planning [12, 16, 17, 24]. 

 

To conclude, this study showed that nnU-Net could be used out-of-the-box (along with a simple post-

processing volume filter) to provide robust segmentation of routine preoperative CMF CT scans. While 

the successful segmentation of dental apices will require additional efforts, quantitative results and 

industry expert evaluation demonstrated the clinical validity of our trained model for the segmentation 

phase of computer-assisted orthognathic surgery planning. Our results suggest that the nnU-Net 

framework could be trained from scratch easily, using databases from other departments, to answer 

the specific needs of many clinical setting. 
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Methodology:  
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Figure and table legends 

Figure 1. Data flow of the patient selection, training and evaluation process. 

 

Figure 2. Left side: 3D model reconstructed from predicted segmentation masks (Upper Skull and 

Mandible with transparent overlay). Right side: distribution of vDSC and sDSC results in our test 

dataset (153 CT scans), for each segmentation mask (no result below 50%). 

 

Figure 3. Four representative cases (a to d) showing sagittal slices of original data, ground truth 

segmentations, nnU-Net network-predicted segmentations and quantitative evaluation results. Red, 

upper skull; green, mandible; blue, upper teeth; yellow, lower teeth; cyan, mandibular canal. 

Figure 4. 3D surface models of segmentation results for 4 subjects representative of the anatomical 

diversity and of the challenges arising from our test dataset: (a) prognathic and asymmetric mandible; 

(b) craniofacial syndrome, with included and missing teeth; (c) retrognathic mandible; (d) no teeth and 

maxillary fixation implants from previous surgery (not segmented by the network). 

Figure 5. Representative lower teeth mask which was not validated by industry expert. Red line: 

predicted mask contour. Blue line: ground truth mask contour. 

Figure 6. 3D surface models of ground truth and automatic segmentation for mandible #2 of public 

mandible test dataset: black wireframe, ground truth (operator A); solid green, automatic 

segmentation result. (a) right lateral view; (b) upper view. 

Table 1. CT scan characteristics and CT machines in the train/validation, test and public mandible test 

datasets. 

Table 2. Descriptive characteristics of the patients in the train/validation, test and public mandible test 

datasets. 

Table 3. Mean vDSC and sDSC results on our test dataset (n = 153). 

Table 4. Results of industry expert evaluation on 45 random CT scans from our test set. 

Table 5. vDSC and sDSC results on public mandible dataset. 

 

 


