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ABSTRACT

This article presents a theoretical, numerical and experimental study of resonant struc-
tures undergoing very large amplitude vibrations. The purpose of this work is to validate
a model for the damping due to the action of the air on a structure’s single-mode
response in the steady-state. Experiments are performed on cantilever beams and beam
assemblies of various sizes, from centimetric to micrometric, under harmonic base
excitation. Dimensionless linear and nonlinear modal damping coefficients are simul-
taneously identified by means of frequency-domain identification techniques. These
measurements demonstrate the pertinence of the presented model.

1. Introduction

When a flexible structure is subjected to large amplitude vibrations, numerous nonlinear phenomena take place. The
vast literature on geometric nonlinearities helps to understand the peculiar effects (such as coexisting possibly stable and
unstable solutions, bifurcations, strong exchanges of energy between vibration modes and chaotic responses, see (Nayfeh
and Mook, 1979; Thomas et al., 2007; Touzé et al., 2011; Cadot et al., 2016)), through the use of various models. However,
most of the available studies include linear only damping models, whereas nonlinear damping effects, associated with
large amplitude vibrations, are often observed experimentally and have been - relatively - overlooked. In this context,
this work presents the theoretical background and identification procedure of a nonlinear modal damping model adapted
to thin structures undergoing very large amplitude vibrations.

The recrudescence of studies on nonlinear damping stresses the interest in this topic, regarding structures of all sizes.
In the field of micro/nano-electro-mechanical systems (M/NEMS), nonlinear damping effects have been observed for
some time (Younis, 2010; Eichler et al., 2011), with only a handful of studies delving into modelling the experimental
observations (e.g. Zaitsev et al. (2012)). In the case of macro-scale structures, the dependence of the damping on the
amplitude has been previously reported in the literature for plates and shells (see e.g. the experiments reported in Alijani
et al. (2016), Amabili et al. (2016) and Figs. 14, 15, 16 of Thomas et al. (2007) in which a model with a linear viscous
damping becomes inaccurate at large amplitude). In a recent series of studies, this effect is attributed to the joint
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contribution of viscoelasticity and geometrical nonlinearities, addressed both theoretically and experimentally in the case
of plate and shells in Balasubramanian et al. (2018), Amabili (2018a,b, 2019).

On the other side of the size spectrum for man-made structures, a few studies in the field of civil engineering illustrate
that including the aerodynamic damping in the design of high-rise buildings is critical (Zhang et al., 2019). Structures for
which a nonlinear damping model could be valuable (but has not yet been studied) are micro and nano aerial vehicles
(M/NAV). As the size of the system decreases, the ratio of the surface forces over body forces increases (Rhoads et al.,
2008); air interaction has to be accounted for, thus justifying the need for a nonlinear damping model for air-induced
damping in micro scale structures.

The motivation for this work is the design of a structure for which vibrations are desired: we aim to make a NAV
take-off. This nano drone is described hereunder. It differentiates itself from the other NAVs with two main features. The
first is the use of microfabrication techniques (Bontemps et al., 2013), that produce a fully flexible polymer structure
(SU-8 for the frame and Parylene-C for the membrane). Its second characteristic is the lift generation mechanism, which
does not rely on passive wing rotation, but on the combination of two vibration modes, a bending one and a twisting
one, excited in phase quadrature by a harmonic point forcing (Faux et al., 2018). The peculiar wing trajectory thus created
replicates the dipteras’ wing motion (Fry et al.,, 2003) and generates lift. Therefore, this nano drone is making use of an
entirely flexible structure to activate the wings vibration, which justifies the novel denomination “vibrating-wing nano
air vehicle” [VWNAV] (Doan et al., 2016). The current prototypes achieve substantial vibrations amplitudes - around 30°
of peak-to-peak flapping angle - and generate a lift equivalent to the drone’s weight before the saturation of the actuator.
Aiming at increasing this flapping amplitude, a refinement of our existing design model and a deeper understanding of
the damping effects of the surrounding fluid are needed. This article addresses these points by considering structures with
a gradual complexity, from simple cantilever beams of various sizes to VWNAV wing prototypes.

Damping is the manifestation of the effects of various phenomena dissipating energy within an oscillating system: in-
ternal dissipation within the material (thermoelastic and viscoelastic damping (Chaigne and Lambourg, 2001; Schmid and
Hierold, 2008; Amabili, 2019)), fluid-structure interaction (squeeze-film (Hosaka et al., 1995), air flow damping (Hosaka
and Itao, 1999; Nouira et al., 2007), and acoustic radiation (Chaigne and Lambourg, 2001)), or imperfect boundary
conditions (such as clamping loss (Hao et al., 2003; Chouvion et al., 2012) or friction in joints (Dion et al., 2013)). Due to its
many possible sources, including damping in a model is not straightforward and many models include linear modal terms
which coefficients are experimentally estimated. This uncoupled modal model is theoretically justified if the damping is
low, for linear (low amplitude) vibrations (see e.g. Géradin and Rixen (1994)). In the case of the tested structures of this
article, we assume that for small amplitude vibrations those assumptions are valid and that a linear damping term embeds
all the above physical sources of damping. This is further justified by the weakly viscoelastic behaviour of the materials
of the tested structures (high-yield steel and SU-8, which has a loss modulus about 40 times smaller than the storage
modulus at the frequency and temperature ranges of interest (Schmid and Hierold, 2008; Le Rouzic et al., 2009)). For
larger amplitude of vibrations, we identified that the interaction with the surrounding fluid, which leads to quadratic
nonlinear terms in the equations, is a predominant damping effect. Other nonlinear damping sources, such as viscoelastic
effects combined with geometrical nonlinearities can also have an effect, but at a higher (cubic) order. This article mainly
addresses the use and the effect of a quadratic damping term due to the interaction of the structure vibrations with the
air flow, and verify experimentally that it is predominant for the tested structures.

Many models for air interaction exist, with varying degrees of complexity. A basic approach is to consider that the
force applied to the structure by the fluid can be separated into two components: (i) a conservative added mass term,
proportional to an acceleration term (which effect is mainly to decrease the natural frequency), and (ii) a drag damping
term, depending on the velocity (Keulegan and Carpenter, 1958). The underlying hypothesis for this “structural” approach
is to consider a steady (or quasi-steady) flow for the surrounding fluid. When this hypothesis is not verified, more
advanced approaches are required. Indeed, as unsteady flows produce complex phenomena (such as the Wagner effect or
the Magnus effect, related to respectively the delayed stall and the rotational circulation — two lift generating mechanisms
for insects during the flapping cycle (Dickinson et al., 1999)), the corresponding fluid loads are very diverse (Bidkar et al.,
2009). In this approach, the vast majority of the models requires a numerical solver for the Navier-Stokes equations (Aureli
and Porfiri, 2010; Phan et al., 2013). The analytical models proposed in Ansari et al. (2006), Pedersen and Zbikowski (2006)
are noteworthy as they provide analytical aerodynamic models accounting for quasi-steady and unsteady flows (in the
context of the development of a MAV). The simulations perform well on the experimental data from (Sane and Dickinson,
2001), but the model applies to rigid plates.

A general expression of fluid-induced damping is in the form: c|v"~!(t)|v(t), with ¢ a scalar and v the velocity of the
structure with respect to the surrounding media. The case n = 1 is the linear - or Stokes - model and n = 0 can be
related to dry friction (Géradin and Rixen, 1994). The most usual model for the aerodynamic drag is n = 2 (Anderson
et al., 1996; Malatkar and Nayfeh, 2003; Egorov et al., 2018). The case n = 3 (equivalent to cv?) can also be found
in the literature to model the damping due to air on a structure (Gottlieb and Habib, 2012; Zaitsev et al,, 2012). It
originates in investigations on ship roll damping equivalents (see (Haddara, 1973; Dalzell, 1976; Bikdash et al., 1993)),
as the case n = 2 is mathematically strenuous to use when the structure’s dynamic response involves more than one
mode (which is the case for the random excitation of waves on a ship). Although independent of fluid-induced damping,
the study (Elliott et al., 2015) provides a detailed analytical and numerical study on the general c,|v™!(t)|v(t) model. It
proposes several examples in the literature and formulates an equivalent damping obtained by retaining the fundamental
term in a harmonic balance analysis.



The topic of identification of nonlinear systems is vast and covers many applications (Kerschen et al., 2006), but there
are few techniques to identify nonlinear damping in the steady state, and even fewer techniques use the frequency domain
Doughty et al. (2002). Model-based frequency-domain identification techniques are mostly due to Pr. Nayfeh’s team work.
For cantilever beams, one can refer to (Nayfeh, 1985) and especially (Krauss and Nayfeh, 1999; Malatkar and Nayfeh, 2003),
applied to single-mode responses of weakly nonlinear structures. The model includes nonlinear damping in the form of
cv|v|, and measurements are made on third and fourth modes of a macroscopic steel beam. In Malatkar and Nayfeh
(2003), the parametric identification consists in a frequency response curve-fitting, whereas in Krauss and Nayfeh (1999),
the technique is based on curve-fitting fixed points of the system. These studies are of utmost importance since they
present a model that distinguishes the linear and quadratic modal damping coefficients, and take into account geometric
nonlinearities that arise when the amplitude of motion is large.

The geometric nonlinearities of a cantilever beam have been studied analytically in the seminal article (Crespo da
Silva and Glynn, 1978). It establishes the equations of motion of bending (about two principal axes) and torsion of an
inextensional beam through an expansion in Taylor series truncated at order 3. From there, (Pai and Nayfeh, 1990)
demonstrated that the first mode presents a slightly hardening behaviour, which was confirmed later on in several
publications. This hardening behaviour manifests itself by a shift of the frequency response towards the high frequencies as
the amplitude increases. Yet, the critical review (Sabater and Rhoads, 2017) apprises of the possible errors that third-order
geometric nonlinearity approximation can engender on parametric system identification techniques using perturbation
methods in resonant micro/nano systems. In particular, for a linearly damped microresonator, fifth-order simulations
show that the normalised amplitude at resonance decreases as the forcing amplitude increases, which would be caused
by the geometric nonlinearities.

The core contributions of this work are the determination of a nonlinear damping model for the effect of air-induced
damping in the steady-state vibration of cantilever structures and the presentation of a novel identification technique.
This paper is organised as follows. Section 2 presents the linear beam model, which serves to identify key parameters
in obtaining large amplitude vibration, as well as the nonlinear beam model including the geometric nonlinearities. The
second section presents the nonlinear damping model, inspired from (Krauss and Nayfeh, 1999; Malatkar and Nayfeh,
2003), comparing it in Section 3.3 to other nonlinear damping models in use, and validating its parametric identification
in Section 3.4. Next, Section 4 presents the materials and methods used for the experimental identification. The Section 5
presents the experimental results and discusses the identified damping coefficients and the procedure.

2. Theory

In this section, we consider a cantilever beam because analytical models, either for linear and geometrically nonlinear
vibrations, are at hand and very realistic. Our purpose is to introduce all our methodology and highlight all parameters
relevant to obtain very large amplitudes of vibration. We first recall the linear model of the beam, which is then enriched
with nonlinear terms accounting for geometric nonlinearities before adding nonlinear damping terms in the next section.

We consider a straight cantilever beam of length L with a uniform cross-section of area S and second moment of area
I, made of a homogeneous and isotropic elastic material of density p and Young’s modulus E. We restrict our attention to
transverse vibrations in one direction only. The considered models are based on the classical Euler-Bernoulli kinematics,
for which each cross-section is rigid and remains orthogonal to the neutral line. The transverse displacement of the
cross-section at abscissa x and time t is written w(x, t).

2.1. Linear beam model
In this section, we first consider the classical linear model for the cantilever beam. In this case, w(x, t) verifies the
following equation:
Elw"”” + pSw = p, (1)

where p is the load per unit length and ¢ = 0 e /dx and ¢ = 3 e /dt. It is then convenient to rewrite Eq. (1) in a
dimensionless form. For that, we decide to set the length of the beam L as the characteristic length, leading to the following
dimensionless quantities denoted by overbars:
_ pl® -t t [H
o= p=P and f=o = | (2)
L EI to L2\ pS
Introducing Eqs. (2) into Eq. (1) yields:
II)W/ 4 ﬂ) — f’v (3)
where, when applied to dimensionless quantities, o' = ds/0x and o= de/0t.
The natural modes of the beam (wy, @(x)) are solutions of the eigenvalue problem:

" —wid =0. (4)



with the following boundary conditions in the case of the cantilever beam:
®(0)=0; ®'(0)=0; @®"(1)=0; @"(1)=0. (5)
The mode shapes are written as follows:

cos By + cosh By

_ 1 _ _
Di(x) = 3 (cosh(ﬂ;< X) — cos (B x) + sin B+ sinh fie

(sin (B x) — Sinh(ﬂk??))) . (6)

and the dimensionless natural frequencies are wy, = ,B,f, where Sy is the kth solution of cos B¢ cosh B¢ + 1 = 0. The first 4
values are:

B1=1.8751, B, =4.6941, B3 =7.8548, B4 = 10.996. (7)
Besides, the normalisation of the mode shapes in Eq. (6) leads to |®y(1)| = 1, f01 cp,f()?)d)? = 1/4, Yk € N*. Using the time
constant to of Eq. (2), the kth. dimensioned frequency, in [Hz], verifies:

O Bt | E Bi
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2ty 27l pS 4fn L

where the last equation is valid in the case of a rectangular cross section of thickness h.
We expand the transverse displacement of the beam on the natural modes basis:

+00
B, 1) =) PuR)Gi(D). 9)

Substituting Eq. (9) into Eq. (3) and using the orthogonality properties of the modes leads to the following equations, for
all k e N*:

G + 280l + wpge = Q, (10)

where & is a linear modal damping factor added a posteriori and with

2.2. Obtaining large amplitude vibrations

We address in this section the parameters of the considered thin structures that limit their maximum amplitude
in vibration. This point is relevant in the case of our VWNAYV, for which we want to increase as much as possible the
vibrations amplitude in operating conditions. It is also of interest when designing a specific experimental test of vibrations
of thin structures in very large amplitude, to estimate the limits under which one has to stay in order to avoid damaging or
breaking the tested specimen. To obtain simple criteria, we focus on the linear model introduced in the previous section.
Even if a cantilever beam is considered, the obtained results can be extended to more complex structures, provided they
are thin, such as the beam assemblies of our VWNAV considered in the experimental Section 4, 5 of the present article
and fully described in Faux et al. (2019).

2.2.1. Maximum resonant amplitude criterion

Considering a beam of rectangular cross section (width b and thickness h), excited by a sine point forcing of
dimensioned amplitude F, (in [N]) at abscissa X,, and assuming a single-mode response for the displacement in Eq. (9),
Eq. (10) leads to the expression of the modal coordinate amplitude at resonance (§2 & wy) and thus to the tip displacement
of the beam (at x = 1) as a function of the applied force:

2
enas __SOUD L 1L g g, (12)
L B[ dAx)dx b E &
\—/—‘\/-’\f‘\/-"/—’
Modal Geo. Mat. Damp. Forcing

where the expression of p in Eq. (2) has been used.

Eq. (12) presents five independent terms originating from different types of contributions: the modal properties (that
are inherent to the shape of the structure itself regardless of the dimensions), the geometric parameters (length and
geometry of the cross-section), the material’s properties, the damping ratio and the forcing itself. Moreover, even if the
present equations are valid for a single cantilever beam, if the material is homogeneous, all interpretation can be easily
extended to beam assemblies subjected to a point forcing (e.g. the VWNAV with its electromagnetic actuator (Faux et al.,
2019)).



Table 1
Comparison of different materials with maximum amplitude criteria.

E [GPa] 3 o. [MPa] Resonant criterion Eq. (12) Yield criterion Eq. (13)
S235 steel 210 0.1% 235 1 1
Aluminium 70 0.1% 110-300* 3 1.4-3.8
High yield steel 175¢ 0.1%+ 850-1200* 1.2 4.34-6.13
Silicon 170% 0.1-1%3 170-1700* 0.12-1.23 0.89-8.9
SU-8 4.88+ 1%+ 50-80* 5.22 9.16-14.6

t-noted values are extracted from measurements detailed in Sections 4-5 assuming a perfect clamp boundary condition. -noted values are extracted
from (Naeli and Brand, 2009). *-noted yield strength values are estimated from manufacturers data sheets.

As a consequence, in order to maximise the tip (maximum) displacement of the structure at resonance, one can act
on several of these contributions. First is the design of the geometry: the more slender the geometry is, the higher the
vibrations amplitude is (L >> h, b). The second lever is the choice of an appropriate material: it should be flexible (E low)
but its intrinsic material damping should be low as well, to reduce & as much as possible. The damping ratio & also
includes the effects of imperfect boundary conditions and air interaction; one has thus to limit the clamping losses by
designing proper boundary conditions, the air losses being the subject of the remaining of this paper. The last lever is to
maximise the forcing and select a forcing point X, where the amplitude is high. In addition, one can remark that the index
k of the mode has also an influence, gathered in the value of 8 (for the beam, &;(1) and fo1 05,3()?) dx are independent of
k), that increases with the value of k (see Egs. (7)). Consequently, for a given geometry, material, and damping ratio, the
lower the mode is, the higher its amplitude at resonance is.

2.2.2. Yield limit criterion

When considering large amplitude vibrations, one should verify that the maximum stress in the beam domain o is
lower than the yield strength of the material o, to avoid a non-reversible change of shape due to plasticity. Basic strength
of material theory, based on the Euler-Bernoulli kinematics used in the model, gives ¢ = —Mh/(2I), with the bending
moment M = Elw”. Substituting into these equations the displacement from Eq. (9) on which is used the single-mode
approximation, one can write the maximum displacement of a beam before yield:

Wiyied _ 2P(1) L o

= - 13
L max(®;) h E (13)
X
Modal Geo. Mat.

Similar contributions to those identified in the previous criterion (Eq. (12)) can be highlighted here: the structure should
be as slender (L >> h) as possible, which concurs with the resonant criterion (although width b is no longer determinant),
and the dimensionless ratio o./E should be as high as possible for the selected material.

2.2.3. Material selection remarks

The two criteria introduced in the preceding sections stress the importance of the geometric design as well as the choice
of the material. To illustrate the pertinence of choosing an appropriate material, we selected four different materials. The
first material is a widely used S235 steel, which is chosen as the reference with base index 1. Then, aluminium, that has a
smaller Young’s modulus and a comparable yield limit, is considered. In addition, a high yield steel is also considered, to
assess the benefit of choosing an enhanced material (on the second criterion in particular). As most MEMS are fabricated
using silicon, it is interesting to see its potential compared to steel. Finally, the SU-8 - an epoxy-based photoresist polymer
commonly used in MEMS - was selected since the elastic structure of our VWNAV is made of this material. It was initially
chosen because SU-8 and real insects wing veins show close mechanical properties (Bao et al., 2011).

The materials are compared using the two criteria and results are compiled in Table 1. The different values of the
resonant criterion show that high yield steel and silicon are not particularly better suited for large amplitude vibrations
than structural steel. For the yield criterion, as one could expect, using high yield steel enhances the performance and
selecting a high yield silicon can be useful as well. Aluminium is a suitable choice that yields satisfactory results for both
the resonant and the yield criteria. Overall, SU8 is a material that will enhance the large amplitude vibrations of a flexible
structure as it is a better material than all the other classical materials in the comparison.

2.3. Nonlinear beam model: geometric nonlinearities

In the above sections, a linear model for the cantilever beam has been considered, valid for small displacements only.
If the transverse displacement is increased, one has to consider geometrical nonlinearities. In the case of restrained ends
in the axial direction, the geometrical nonlinearities come from an axial/bending coupling and a von Karman model
is enough, necessary if w(x, t) is of the order of magnitude of the thickness h of the beam. In the present case of a
cantilever beam, one has to consider higher-order models that take into account the effects of large rotations of the



cross-section, necessary for higher transverse amplitude if w(x, t) is of the order of magnitude of the length L of the
beam (see e.g. Lacarbonara and Yabuno (2006), Thomas et al. (2016)). The dimensionless variables of Egs. (2) have been
chosen accordingly. We use here a so-called geometrically exact equation of motion of an inextensible cantilever beam
in transverse motion, valid with no restriction on the rotation amplitude of the cross-sections of the beam (Thomas et al.,
2016):

" X /

oSt + El——— — pS tanO/ iidx) =p (14)
(cos@Y i

with u the axial displacement, 6 the rotation of the cross-section and other notations previously defined. Using the

inextensionality constraints (1 4+ u')> + (w’)*> = 1 and tan6 = w’/(1 + v'), and expanding Eq. (14) in Taylor series

truncated at order three in w, leads to:

ps X 82 X /
Elw" + pSib + El(w'w" + w?w™) + > |:w// Yol (/ w/zdx> dx] =p, (15)
L 0
which is the well-known model of a cantilever beam in nonlinear vibrations, first introduced in Crespo da Silva and Glynn
(1978).

We consider the case of a base excitation. One can decompose the total displacement of a cross-section of the structure
w(x, t) as:

w(x, t) = we(t) + wy(x, £), (16)

where we(t) is the base displacement and w,(x, t) is the relative displacement of the cross-section with respect to its base.
Substituting Eq. (16) into Eq. (15) gives:

,pS X 52 X 4
Elw!” + pSib, + El(w.w/* + w?w!") + > |:w; / Yol (/ wﬁzdx> dxj| = —pSie. (17)
L 0
Note that Eq. (17) is similar to Eq. (15) with p = —pSt.. For a harmonic base excitation, it is possible to write the
prescribed acceleration
We = Y, COS (27fet), (18)

with y, and f, the amplitude and frequency of excitation. Using the dimensionless form presented in Egs. (2), Eq. (17)
becomes:
!/

. 1 * g2 X A\ _
! + wy + (w,w? + wPw) + 2 [a);/ Pl </ w;zdx> dx] = —, cos (£21), (19)
1 0
where
_ t2 pSL3 2rnf, 2mf, |El
= —_ = —_, .Q = = R 20
Ye = Ve L Ye i o 2 oS (20)

One can see that this is the linear equation of motion Eq. (3) appended with 2 nonlinear terms stemming from the
geometrical nonlinearities. Then, expanding w,(X, t) onto the natural modes basis as in Eq. (9), substituting this equation
into Eq. (19) and using the orthogonality properties of the modes, one obtains the following set of equations for the modal
coordinates, for all k € N* :

+00 400 +00
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3. Nonlinear damping
3.1. Quadratic damping model

The nonlinear beam model introduced in the previous section is conservative. To take into account damping effects,
we choose in this article to introduce damping terms directly in the modal oscillators Eq. (21). The main interest of using
a modal damping model is that it can be easily experimentally identified, as it will be shown in the following. Since the
identification procedure is based on a single resonance, we assume that it is possible to consider a single-mode response,



valid for harmonic excitation, modes well separated in frequency and no internal resonances; consequently, Eqs. (21) are
restricted to the kth. oscillator only.

As in Section 2.1, we first add a linear modal damping of factor &. We then add a supplementary quadratic modal
damping term viqi|gx| (with |e| the absolute value of e), with coefficient vy, equivalent to a modal force proportional to
the square of the velocity and always opposite to its direction. It stems from an aeroelastic drag term, restricted to a single
mode and thus neglecting the possible couplings with the others (see Appendix A). Even if higher order damping terms
can be considered (see Section 3.3), we restrict ourselves to the quadratic case since it will be shown in Section 5 that this
model is sufficient for the highly flexible structures considered in this article. Finally, omitting the k subscripts/superscripts
for clarity purpose, Eq. (21) becomes:

i + 26 woq + valql + wjq + I'q> + M(dq* + 4°q) = —7eR cos (21), (23)

1 1 X
r =8/ d2P"dx I =4/ (/ cb/z(;‘()d;‘c)
0 0 0

that can be calculated from Eqs. (22) with successive integration by parts (see for example (Arafat, 1999)) and because
fol rb,f()?) dx = 1/4 with the mode shape definition in Eq. (6). In Eq. (23), the v parameter is modal, it may depend on the

cross-section’s width and the fluid mass density (Bidkar et al., 2009; Egorov et al., 2018).
The method of multiple scales (Nayfeh and Mook, 1979) [MS], limited to the first order, leads to a pure sine solution:

where

2 1

dx, R =4/ @(x)dx, (24)
0

q(t) = acos (L2t — ¢). (25)

The development of calculations covering this case and the one presented in Section 3.3 is given in Appendix B. It shows
that a and ¢ can be determined in the steady state with the system:

R
Ewoa + Nwya® S sin ¢
31— 2020) R (26)
ao — (7%(13: VL CcoS 4)’
8&)() 2w

where n = 4v/37 and 0 = £2 — w,, the detuning parameter for a primary resonance. By eliminating ¢ between the two
equations in Eq. (26), one can obtain the frequency response of the system near resonance (Malatkar and Nayfeh, 2003):

(B —201) , | \/(%RV

2 —wy= — k(& +na)’. (27)

8w 40

With this model, valid only in the vicinity of a resonance, one can notice that the effects of geometric nonlinearities
- appearing in the first term with coefficients I" and IT - and the damping - appearing in the second (square root) term —
are independent. At the resonance point, the forcing energy and the damping loss offset each other, the term with the
square root is zero and the first term gives the evolution of the frequency at resonance with respect to the amplitude a
of the motion, which is here a quadratic relation. Then, the square root term in Eq. (27) includes an equivalent damping
term:

§eq = & +na. (28)

Naturally, & is a dimensionless damping factor and thus its numerical value has a general meaning, independent of the
structure and the mode considered. On the contrary, the quadratic term na is linear in the modal amplitude a of the
motion. It thus depends on the mode shape scaling and more generally on the vibration amplitude scaling. For &4 to be
as general as &, the scaling must be defined accordingly. Referring to Egs. (2), (9) and (25), the transverse displacement
w(x, t) and a are scaled with the characteristic length L of the structure, which leads to:

1 Wmax ~ Wmax (29)

Pmax L :S—FHT’
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where wpax is the amplitude of the transverse motion of the structure where the deformed shape is maximum and
Dnax = Maxi |P(x)| is the corresponding value of the latter. The above equation shows that n depends on the mode shape
scaling whereas 7) = 1/®max does not. In this article, to confer a general meaning to the quadratic damping coefficient,
we choose to use 7 (or 5 if the mode shapes are scaled such that @, = 1, which is the case for the mode shapes of
Eq. (6)). As a consequence, the physical meaning of the quadratic damping coefficient 7 can be inferred as the equivalent
modal damping factor when the maximum amplitude of vibration wpax of the structure is equal to the characteristic
length L. Coefficient n = 4v/3m has the same physical meaning, but is less general since it depends on the mode shape
normalisation, as explained above.



3.2. Identification methods

Eq. (27) leads to two methods to identify the damping coefficients & and 7 from the frequency domain: a classical half-
power bandwidth identification of the equivalent damping, and a model-based identification technique, that is similar to
what is proposed in Krauss and Nayfeh (1999).

3.2.1. Method 1 (M1): half-power bandwidth

In the case of a linear damping model, for small values of the damping factor & and well separated resonances, one
can use the half-power bandwidth Aw to identify & since & >~ Aw/(2wq). Consequently, one can extend this method
to estimate the equivalent damping factor &4 for increasing values of the vibration amplitude, as long as the resonance
frequency does not change much with the amplitude. For this, we measure the resonant response of the structure at a
point of abscissa X, for several input accelerations, and we estimate w.s, which is the amplitude, at resonance, of the
displacement w(X,, t). Then, with Eq. (9), Wres = Winax® (Xm)/ Pmax and for each resonance, &eq Can be written:

D (Xm)
¢1TI3X

On the plot of &4 as a function of wy, the intercept and the slope give respectively the linear and quadratic modal
damping coefficients (&, ). This method will henceforth be referred to as “M1".

Besides, one can notice that the present identification method is independent of any structural model for the structure,
since Eqs. (30) depend only on the characteristic length L of the structure and the relative amplitude of the deformed shape
&(x) between the point where it is maximum and measurement point x,,. In practice, one estimates & and ¢y, with a linear
fit of the experimental points &.q = f(wres) and deduces 7 with L and a measurement of the mode shape.

Eeq =&+ Cowres, and =1L Co. (30)

3.2.2. Method 2 (M2a, M2b): amplitude at resonance
At resonance, the forcing energy and the damping loss offset each other. In other words, the term under the square
root in Eq. (27) vanishes, which gives an analytical relation between the amplitude at resonance as, the forcing amplitude
and the damping:
YeR
2a)(2)

= ‘i:ares + T)afes, (31)

that leads to a single meaningful root (positive and strictly decreasing in & and n):

£\ | mR &
Qres = 59 + v 2 9" (32)
2n 2nwf 27

From Eq. (31), it is trivial to observe that for a linear modal damping model, the amplitude at resonance increases linearly
with the forcing amplitude, whereas Eq. (32) demonstrates that when the quadratic damping coefficient is a non-zero
value, the amplitude at resonance increases only with the square root of the forcing amplitude. In its dimensional form,
Eq. (31) can be written:

Ye = C1Wmax + Czwrznax, (33)

with y, the prescribed base acceleration (see Eq. (18)), wmax defined in the previous section and with c¢; and ¢, two
coefficients that can be extracted from measurements. By identifying Eq. (31) with Eq. (33) and using Egs. (2), (8) and
(20), one obtains:

¢ _ ROGn) R (En), P (%)
82 82’ Pmax

with fi the natural frequency of the considered mode of the structure (measured at low amplitude). One can notice that
because R®(x,) (see Eq. (22)) does not depend on the mode shape normalisation, the same property logically holds for
(&, ). As a consequence, one has two alternatives for the identification.

First, if a structural model is known for the structure, one can calculate @(x,) and R from Egs. (6) and Eq. (22)
respectively. This leads to a model-based identification technique, which is henceforth referred to as “M2a”, for which one
has to measure the amplitude of the structure at a given point x,,,, at resonance, for several values of the input acceleration
.. Then, c¢; and ¢, are identified by a quadratic fit of the experimental points y, = f(wyes) and Eq. (34) gives the value of
(&, )

Second, if no structural model is available, estimating @ (x,) and R experimentally is not straightforward. To overcome
this difficulty, it is possible to first estimate & with a very low amplitude measurement (through method M1 for instance)
and then use it to estimate 7 using the identified ¢; and c;:
%) L CD(Xm)&_.

=
C1 ¢max

¢c1, and 7=

Ca, (34)

(35)




As in method M1, all quantities (c1, ¢2, L, @(Xm,)/Pmax) can be estimated through simple experiments. This method will
be referred to as “M2b” from now on.

3.3. Higher order damping models

A number of nonlinear damping models exist in the literature, as presented in the introduction. To investigate their
effects on the dynamics with relation to the quadratic model introduced in the previous section, two additional damping
models are considered here. For this, Eq. (23) becomes:

G+ 28 wod + w5q + 114ld] + v2¢° + v3¢*q + I'q® + I1(4§q* + §°q) = F cos (21). (36)

It corresponds to the oscillator equation studied in the previous section, Eq. (23), with a generic dimensionless forcing F
and two additional nonlinear damping terms, v,¢> and v3Gq®. The former is introduced in Gottlieb and Habib (2012) in
addition to the linear damping and aerodynamic drag damping to model the effect of air on a forced spherical pendulum.
The latter models the viscoelasticity effects for plates in Amabili (2018a). The forced response of the system in the steady
state can be obtained with the method of multiple scales (cf. Appendix B) from:

(3I —2a%00) F? 4y, 3wevy 13 2
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in which the equivalent damping term is now:

feq = & +ma+ (m + n3)a’ (38)

with 1 = 4v,/(37); 12 = 3wev,/8 and 13 = v3/(8wp).

One can notice that Eq. (37) can also be applied to a nonlinear mode of a non-symmetric structure with quadratic
nonlinearities, such as a laminated plate or a shell with geometrical nonlinearities. In this case, IT = 0 and the sign of I
gives the hardening/softening behaviour of the considered nonlinear mode. There is no need for an additional quadratic
term in Eq. (36) since a normal form reduction, restricted to only one invariant nonlinear mode (Touzé et al., 2004; Denis
et al,, 2018)), shows that a single cubic term embeds the effects of all the non-resonant quadratic terms of the classical
modal expansion.

As compared to the drag-like damping term associated to 74, linear in a, the two additional damping terms linked to
(n2, n3) are one order higher, quadratic in a. Moreover, it appears that for a given structure, it seems difficult to distinguish
the contributions in terms of damping of v, or vs, since their effects are additive and appear at the same order. In the
present study, those two additional higher order damping terms will not be considered since the experimental results
(Figs. 5(c), 7(c), 8(c), 9(c,e)) show that the equivalent damping is well described by a linear function of a, with obviously
no quadratic dependency. Consequently, the most pertinent damping term to include is v{|q|q for the tested structures
of this article.

3.4. Numerical validation of the identification methods

In this section, we test the validity of the identification methods proposed in Section 3.2. A linear oscillator and a
Duffing oscillator - both appended with an aerodynamic drag damping term and both harmonically forced - are used
to assess the methods’ validity when applied to the numerical simulations of these oscillators. The former could model
roughly the first mode of a cantilever beam as it is only slightly hardening. The latter is a simple model of more pronounced
geometric nonlinearities effects. The reference numerical simulations are performed using the MANIlab software (Cochelin
et al.,, 2007; Lazarus and Thomas, 2010; Guillot et al.,, 2019), which combines periodic solution continuation with the
harmonic balance method. More details have been postponed in Appendix C.

3.4.1. Linear oscillator with aerodynamic drag damping
The first oscillator tested is:

4+ 2G4+ q+vq|q| = F cos (£21). (39)

The oscillator’s nondimensional natural frequency has been set to 1; it would have been possible to reduce this equation
to only 2 independent variables - (&£, F) or (&, n) - by rescaling Eq. (39) in amplitude. This would have led to universal
results, however, in order to simulate the beams tested experimentally, we chose to keep this formulation with these
three coefficients. Indeed, since the damping depends on the vibration amplitude, the simulated frequency responses
have (dimensionless) amplitudes in the range similar to that obtained experimentally, thanks to the tuning of the forcing
amplitude.

To estimate the accuracy of our identification methods, we work on the simulated frequency responses of Eq. (39),
plotted in dots (and captioned “MANIlab”) in Fig. 1(a) with the implemented values for the coefficients (§,7) =
(0.001,0.01), through v = 3m7/4. The phase of the frequency responses is plotted in the graph of Appendix D. We
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Fig. 2. Validation of the second identification method, with geometric nonlinearities. (a) Simulated frequency responses with I"=-1, superimposed
with the frequency responses reconstructed with the damping coefficients identified using M2a or directly the implemented coefficients (£=0.001,
7=0.01), (b) Comparison of the &4 obtained with M2 and the implemented values, (c) [llustration of M2 (crosses), with the forcing calculated with
Eq. (31) and the implemented damping coefficients (circles).

use these frequency responses to test successively M1, M2a and M2b. First, following M1, we estimate &.q using the half-
power bandwidth method and plot it with yellow squares in Fig. 1(b), as a function of the amplitude at resonance ;.



This plot also shows with red circles the different values of &, computed with the implemented values (&, 7). Following
Eq. (30), a linear fit gives (£, 7) = (1.08 1073, 1.22 1072) estimated by the M1 method. Whereas the value of £ is well
recovered, the value of 7 is slightly overestimated, which is qualitatively observed in Fig. 1(b) since the slopes of the
two lines are different. Then, we also tested M2a and M2b by plotting F as a function of as (Fig. 1(c)) and estimating
(£,9)=(1.051073,0.99 1072) and (&, /) = (1.08 1073, 1.02 10~2) respectively, with a quadratic fit (Egs. (33), (34) and
(35)). In this latter case, the identifications are much more precise.

Once these coefficients are obtained, one can reconstruct the frequency responses for the five different dimensionless
forcing amplitudes (differentiated by colours) on Fig. 1(a). We use 2 different models for the reconstruction: a linear model
(“Lin”) for which we plot the modulus of the following complex function 1/(1 — 22 4 2i£eq82), with &eq = & + 7)dres, and
the MS model of Eq. (27). In both cases, the values of (&, 7;) are those estimated with M1 and M2a. All resulting curves are
plotted in Fig. 1(a). The frequency responses using the M1-coefficients underestimate the amplitude at resonance (dotted
and dashed lines), which is logical since the damping is overestimated, Fig. 1(b). Furthermore a linear model using M2a-
coefficients does not correlate exactly for high amplitude vibrations (solid lines) contrary to the multiple scales solution,
that seems to fit quite well the numerical solution in the frequency range considered (dash-dotted lines).

Overall, this numerical analysis shows that the resonant amplitude-based method seems to be suited for the identifi-
cation of our systems, and the multiple scales model is a good reconstruction method.

3.4.2. Duffing oscillator with aerodynamic drag damping

The structures of interest do not exhibit a significant nonlinear behaviour due to geometric nonlinearities when excited
on their first mode (Section 5). On other modes or structures with more pronounced geometrical nonlinearities, jump
phenomena are observed in the frequency responses, which prevent the application of the half-power bandwidth method,
thus making the damping identification more complex. It is possible to apply the method at very low amplitude and
then use a linear model damping, but this method does not yield optimal results at large amplitude, as the response is
overestimated. An example can be found in the experimental frequency responses shown in Thomas et al. (2003, 2007)
for plate and shell vibrations. The proposed identification method M2a may still be applied though, and its validity can
be tested numerically. For this purpose, we consider the following oscillator which includes a cubic term:

G+ 264+ q + vlql + I'q® = F cos (2F). (40)

Re-scaling this equation can reduce the number of independent variables to 3.

The same process used for the oscillator of the previous section is applied here. The corresponding results are displayed
on Fig. 2, with the same implemented damping coefficients (&, 77) = (0.001,0.01) and with I"=-1. These simulations show
that the method is still relevant for structures displaying geometric nonlinearities effects, although the equivalent damping
reconstructed with the identified coefficients (dash-dotted line, with (£, #)=(1.7 1073,6.8 10~3)) does not match as well
the equivalent damping calculated with the implemented coefficients (solid line) Fig. 2(b). Indeed, using the identified
coefficients on the reconstructed frequency responses (M2a+MS) yields good results at high amplitude Fig. 2(a). On the
other hand reconstruction using the MS model with the implemented coefficients is accurate for amplitudes up to 0.3a,
but underestimates the amplitude beyond that. Overall, the reconstructions with the identified coefficients fit better to
the “real” solutions. This standout result is due to the fact that Eq. (31) is not accurate for high amplitudes, see Fig. 2(c),
which is directly related to the validity limit of first order approximation in the multiple scales .

In addition, MANIab also gives the amplitude of the other harmonics of the solution. In accordance with the theory
and the multiple scales development (see Appendix B), the amplitudes of the constant value and the second harmonic of
the solution are de facto null (5 orders of magnitude lower, near the float resolution). The plot is not reproduced here for
synthesis purpose. For the oscillator of the previous section, the third harmonic amplitude was also limited; whereas the
amplitude of Eq. (40) solution’s third harmonic is more and more important as the forcing increases, due to the geometric
nonlinearities. This may explain the various degrees of accuracy of the MS model, as the approximation of a solution in
the form of a pure sine function is verified or not.

However, the correlation for these reconstructions is in much better agreement than a strictly linear damping model,
for the values of the damping coefficients that were chosen in the range obtained experimentally. Indeed, for such a
model, the amplitude at resonance is inversely proportional to the damping, and since the equivalent damping at high
amplitude is around five times the damping at low amplitude Fig. 2(b), this would lead here to an overestimation of the
response at high amplitude by a factor 5.

4. Experimental setup

The identification techniques proposed in Section 3.2 are used to identify the damping coefficients of several structures,
presented in Section 4.1. The whole measurement process is described in Section 4.2.

4.1. Specimens

The different structures tested are presented in Fig. 3. A photograph of the maximum amplitude obtained is presented
as well when it is significant.



Fig. 3. Photographs of tested specimens. (a) Steel ruler at rest, (b) Maximum amplitude obtained for steel ruler, (c) u-beam at rest, (d) Maximum
amplitude obtained for the p-beam, (e) L-beam at rest, (f). WS (Wing skeleton) at rest, (g) Maximum amplitude obtained for WS, (h) Wing at rest.

Table 2
Characteristic geometric parameters of the tested structures (Length L, thickness h and width b, in
millimetres).

Structure L h b
Steel ruler 130 0.5 13
p-beam 12 0.08 1.6
L-beam 8 0.08 0.08
WS 8 0.08 0.08
Wing 8 0.08 0.08

The first structure tested is a steel ruler, as it is readily available and easy to measure, which allows validating the
identification method and the set-up. Fig. 3(a) displays the ruler clamped at the desired length, set on the shaker, ready
for the measurement, with an accelerometer at its base and a vibrometer targeting the measuring point. Fig. 3(b) shows
the beam vibrating in profile. The trace is in light green and the maximum positions of the beam are highlighted. The
second tested structure is a micro beam, hereinafter referred to as pu-beam, made of SU-8 polymer (Figs. 3(c,d)). It has a
comparable width-to-thickness ratio with the steel ruler. Its testing helps determining the influence of material and scale
on damping. A similar set-up is used, however, for the present u-beam and all the other micro-structures introduced
below, the clamping is made by gluing them on a flat surface: the head of a given countersunk screw that has a first axial
mode much higher than the frequency range of interest.

The other tested structures are micro-scale beam assemblies which are ever more looking alike a wing of our VWNAV.
The first beam assembly tested is the simplest possible: it is 2 beams which are assembled perpendicularly (the resulting
“L” shape justifies the notation L-beam). Fig. 3(e) presents the L-beam (and its gluing surface) and an adjacent 1-cent
coin, which serves as a scale. The second beam assembly tested is a structure resembling our VWNAYV, but without
membrane (Faux et al., 2018). By testing this structure and a “real” VWNAV wing, it is possible to estimate the contribution
to damping of the membrane. This “wing skeleton” structure (shortened to “WS”) is presented on Figs. 3(f,g). Each trace
of its beams is coloured in light blue, green and pink respectively, and the maximum positions of each beam are again
highlighted. The last tested structure is a wing (or simply W), sampled from an existing prototype. Its characterisation
can serve the design of future prototypes. Fig. 3(h) presents the wing set on the shaker.

The main geometric parameters are detailed in Table 2. The recurring characteristic length of 8 millimetres has been
chosen specifically for comparison purposes with the VWNAV wing, as well as the cross-sections’ geometry.
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4.2. Measurement process and materials

4.2.1. Experimental set-up

A stepped-sine experiment is performed with the set-up presented in Fig. 4. The excitation amplitude is set to a
given value of acceleration that is maintained constant throughout the measurement to establish a frequency response.
The computer generates a signal that a digital-to-analogue converter (DAC) feeds to a power amplifier to activate an
electromagnetic shaker (Briiel & Kjer 4808). The base acceleration is measured with an accelerometer and is looped back
into a controller to counter the interaction of the structure with the shaker, avoiding force drops off near resonance (Varoto
and de Oliveira, 2002). The displacement of the beam is measured with a laser Doppler vibrometer (Polytec PSV400
scanning laser vibrometer). Thanks to an ad-hoc lense system, the laser beam focus can be made compatible with the
structure’s small geometry; one can see the laser spot in Figs. 3(a,c,d). The amplitudes of the first harmonics of the beam’s
velocity and base acceleration signals are then extracted using a homodyne detection in the steady state. Then the relative
displacement can be calculated and plotted for each tested frequency.

4.2.2. Homodyne detection

Let s(t) be a given periodic time signal, that one can write s(t) = so—i—ZkN:] a sin (kwt + ¢ ). We are searching for a; and
¢1, the amplitude and phase of the first harmonic of that signal (the calculation may be applied to any harmonic). We first
multiply s(t) by a cosine and a sine function at the frequency of the first harmonic: s.(t) = s(t) cos (wt), ss(t) = s(t) sin (wt).
By calculating the mean of each product (s.(t)) and (ss(t)), one can show that (s.(t)) & sin(¢1)a;/2, (ss(t)) ~ cos(p1)a1/2,
if the duration T of the mean is large compared to the largest time period of the signal (i.e. T > 27 /w), and the phase is
not random. Amplitude and phase are then:

a; ~ 24/ (sc(t))2 + (s5(t))> and ¢ ~ arctan ( (SC(t»). (41)
(ss(t)

4.2.3. Relative displacement calculation

The displacement w, is obtained by subtracting the displacement of the base w, to the total displacement w, according
to Eq. (16). Using the homodyne detection 4.2.2 for the first harmonics of the vibrometer signal and the accelerometer
signal (respectively noted vyi,(t) = V cos (27 fe t + ) and a.(t) = y. cos(2xfe t 4+ ¥4)) and then integrating them gives:

w(t) = ZV cos(2nfet + ¢, —m/2), and we(t) = _Ye cos (2nfet + g — ). (42)

fe (2nfe )

Denoting by W and « the amplitude and phase of the first harmonic of the seeked relative displacement and applying
Eq. (41) yields:

2 14
Y \/Vz+ Ye T cos(yy — o +7/2)

47%f2  nfe
27 Vfe sin (Y, — w/2) — Yesin(yq — 1)
27 Vf, cos (Y, — /2) — yecos(Yq — )
This process is crucial as the beam total displacement is not measured at the tip to limit the effect of axial displacement

at very large transverse amplitude. Therefore, it presents an antiresonance that is marked increasingly with a decreasing
abscissa along the beam’s length.

o 27fe (43)

o = arctan




4.2.4. Data processing for identification and reconstruction
A synoptic description of the data processing is the following:

. Plot the frequency response of the relative displacement for all tested acceleration amplitudes
. Plot y, as a function of maximum amplitude wpax

. Extract the polynomial coefficients of the fitting curve

. Extract £ and 7, either using

e Eq. (34), i.e. M2a
e M1 to identify &, and Eq. (35) to extract 7, i.e. M2b

AW N =

5. Reconstruction of the frequency responses either using

e the MS model
o the linear model

5. Experimental results

For all tested structures, the materials properties were determined individually. With the mass of the samples (obtained
with a precise balance) and their volume (calculated), one can calculate the density p: for the ruler’s steel and SU-8, it led
to ps = 7920 kg m™ and psy.g = 1290 kg m™3 respectively. Assuming a perfect clamped boundary condition gives Eq. (8)
for the natural frequencies. By adjusting the slope of the theoretical versus analytical frequencies of the first four modes
of the cantilever beams, we find the Young's modulus of the tested beam experimentally (we also assume it does not
vary between the different fabricated structures). The identified values of Young moduli are included in Table 1. Besides,
for all experimental frequency responses processing, a smoothing filter was used to minimise the impact of artefacts of
measurements on the identification. The filter used is the Savitzky-Golay algorithm, (Matlab sgolayfilt function from the
Signal Processing Toolbox). The only plot displaying filtered data is the comparison of the identification methods and
reconstruction models on experimental frequency responses (Fig. 6), and mentions it explicitly in the caption: -(filt). As
explained in Section 3, since the values of the identified coefficients c¢; and c, depend on the scaling, they are not given
in this paper. However the identified values of & and 7 (directly related to c; and c;) are detailed in Table 3 for all tested
structures.

5.1. Cantilever beams

Fig. 5 presents the identification for the macroscale steel ruler of Figs. 3(a,b). Very large amplitudes have been tested,
up to 0.3 times the length of the beam, more than half of it for the peak-to-peak amplitude. A few of the measured
frequency responses near the first mode are plotted in Figs. 5(a,b). The hardening behaviour predicted analytically is
perceptible, but not significant. Furthermore, if the damping was linear, the phase would be independent of the forcing
amplitude. In Fig. 5(b), the phase variation at the vicinity of the resonance is reduced - it becomes more and more “flat” -
as the forcing increases. This effect is also observable in Appendix D, with the plot of the amplitude and the phase of the
simulated frequency responses. This effect was noticed in the study (Ramananarivo et al., 2011) as well. Figs. 5(c,d) show
the fits for the two identification methods M1 and M2a. Both can be well described by a linear or quadratic function of
a, depending on the method used.

Fig. 6 is analogous to Fig. 1 with data from experiments, i.e. the different identification methods and reconstruction
models are compared on experimental data. Similar observations can be made on the identification techniques: the half-
power bandwidth method M1 combined with a linear model does not yield the best correlation, whereas the combination
of the second identification technique M2a (or M2b) and the multiple scales model should be the preferred method.

Figs. 7(a,b) display the frequency responses in the vicinity of the first mode of the micro beam shown on Figs. 3(c,d).
Very large amplitudes were obtained, with the maximum dimensionless amplitude around 0.4 times the length of the
beam, which corresponds to 80% in peak-to-peak amplitude. Figs. 7(c,d) illustrate the identification methods 1 and 2
respectively. As M1's accuracy depends on the quality of the frequency response, and the last two frequency responses
function present higher experimental error, only the four first points were used for the fit. One can verify that the last two
points do not represent a change in the damping behaviour by examining the results of M2 in Fig. 7(d). The reconstructed
frequency responses (Fig. 7a) use the second identification method (M2a) and the multiple scales model. The correlation
is satisfactory up to very high amplitudes.

5.2. Beam assemblies

This section addresses the vibratory response of the beam assemblies shown on Figs. 3(e,f,g,h). As explained in
Section 3.2.2, we need a structural model to apply M2a identification. Since, as it will be shown, the frequency responses of
those structures do not show any hardening or softening behaviour, a linear structural model should be accurate enough
(Fig. 1(a)), as the one presented in Faux et al. (2019). Some discrepancies in the natural frequencies where observed
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Fig. 9. Measurement, identification and reconstruction for the Wing skeleton (bending and twisting modes). (a) Measured and reconstructed frequency
responses in the vicinity of both modes, (b) Measured phase of the frequency responses, (c) M1 on twisting mode, (d) M2 on twisting mode, (e)
M1 on bending mode, (f) M2 on bending mode.

between the measured ones and the ones from the model, attributed to unavoidable imperfections in the geometry and the
boundary conditions. Therefore, we prefer here to use the M2b identification method, which does not need any structural
model of the structure.

Besides, the L-beam and the wing skeleton displayed in-plane vibrations that caused a loss of focus of the vibrometer,
thus preventing measurements at large amplitude. This explains the weak maximum measured amplitude obtained on
the graphs when compared to the photograph Fig. 3(g). This may be related to the choice of a square cross-section for
these structures (Pai and Nayfeh, 1990).

We first consider the L-shaped beam of Fig. 3(e), with the main beam of length 8 millimetres and the perpendicular
segment of 4 millimetres. The measured and reconstructed frequency responses are displayed on Figs. 8(a,b), with the
identifications illustrated in Figs. 8(c,d). Again, it is shown that the proposed identification method allows to obtain a good
correlation between the measured and reconstructed curves which validates its use for the case of single-mode responses
of beam assemblies.

Then, we consider the wing skeleton and NAV wing of Figs. 3(f,g,h). As compared to the previous structures, these
have been designed to have the first two modes very close in frequency (Faux et al., 2018), which is clearly seen on the
frequency responses, Figs. 9-10(a). Therefore, the structural response at frequencies between the two natural frequencies
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Fig. 10. Measurement, identification and reconstruction for the “true” wing (bending and twisting modes). (a) Measured and reconstructed frequency
responses in the vicinity of both modes, (b) Measured phase of the frequency responses, (c) M1 on bending mode, (d) M2 on bending mode, (e)
M1 on twisting mode, (f) M2 on twisting mode.

includes the contribution of both modes due to the frequency closeness of the modes, which invalidates the single-mode
hypothesis of the damping model proposed here. To circumvent this problem, it could be possible to perform a study of
the interaction between these degrees of freedom, but this is out of the scope of this article, as deriving a multi-mode
model including a quadratic damping coupling is not straightforward, mainly because of the non-direct modal expansion
of the velocity modulus (see Appendix A). For these structures, the identification methods have been tested separately on
the two resonances considering two separate oscillators. In the immediate vicinity of both resonances, the reconstructed
frequency responses of the WS and NAV wing match quite well the measured frequency responses, which would indicate
that the damping coefficients are well captured and the single-mode approximation holds at resonance. In addition, the
effect of nonlinear damping may be seen clearly on Figs. 9(b,f).

Last, for the specific case of the wing removed from a prototype of our VWNAYV, one may notice that the two resonances
appear for frequencies lower than in the case of the wing skeleton. This may be due to the added mass effect of the
surrounding fluid. For the first mode, the first point has been discarded from the fit to improve its quality. The apparent
overestimation of the damping for this point may be related to the modal combination. Indeed, at low amplitude, the
half-power bandwidth of a mode may be impacted by the other mode. For higher amplitudes, this can still be true
for the second mode as its peak is lower. Since Eq. (35) uses the linear damping coefficient identified with the half-
power bandwidth method, which does not yield good results here (Figs. 10(c,e)), the validity of the damping coefficients
identified is not guaranteed. Moreover, the quadratic damping coefficient of the twisting mode was found negative — the
displacement amplitude range is very limited, which reduces the significance of the identification. The addition of the
membrane strengthens the coupling of the structure with the fluid, which increases the nonlinear coupling between the
modes and renders the assumption of single-mode response less valid.

5.3. Damping comparison

The measurements led to the identification of various damping coefficients. Fig. 11 presents the equivalent damping &.q
reconstructed with Eq. (29) and the identified (&, 1) coefficients, for the various tested structures, on the amplitude range
tested. The first conclusion to be drawn is that the SU-8 structures have a higher linear modal damping than the steel ruler.
It may be related to the viscoelasticity of the material. Furthermore, one can notice that the structures with larger widths
(the cantilevers) have higher aerodynamic damping which is consistent with the aerodynamic force parameters (Bidkar
et al.,, 2009). The quadratic damping coefficient is also smaller for the wing skeleton’s twisting mode than for the bending
mode, which would indicate a priori a lower lift generation for the twisting mode. For weakly damped structures, taking
into account a quadratic damping term allows a better correlation, as the equivalent damping varies in the range of tested
amplitudes. In the case of the L-beam and the NAV wing second mode, the phase plots (Figs. 8,10(b)) do not display a
significant dependence on the excitation amplitude, which could be interpreted as a low quadratic damping (with the
converse reasoning of Section 5.1). Hence a linear damping model could be sufficient.

As explained in the previous section, the identification method for the drone wing gives low confidence values. This
said, the linear damping coefficient values are localised around 0.04-0.05. It is interesting to note that it is around five



Table 3
Damping coefficients and Reynolds numbers at maximum measured amplitude for the different modes of the tested structure.

Structure Macro p-beam L-beam WS,b WSt W,b Wt

E% 0.26 1.22 1.15 0.78 1.05 5.05* 4.32*
n% 2.20 3.24 0.80 1.23 1.00 30.6* *

Re (L. = b) 2.8 10° 3.1 10? 2.01 14.6 115 0.85 0.31

* Damping coefficient values of W have a low confidence.
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Fig. 11. Reconstructed equivalent damping &.q, computed with the values identified using M2a (cantilever beams) and M2b (beam assemblies) for
the tested modes.

times higher than the coefficient in absence of membrane, which was unexpected as the effect of the membrane was
believed to increase the quadratic damping coefficient only. It could be due to the limit of the identification method,
however the membrane does have an effect even for very small amplitude vibrations, which correspond to the Stokes
regime (Re<1), (in which the action of air on the structure is taken into account with a Stokes drag that depends linearly
on the velocity (Stokes, 1851)). In this regime, the action of air on the structure is then easily translatable into a linear
modal damping. Therefore an increase in the linear damping factor may not be absurd.

6. Conclusion

In this article, we investigated several aspects of a nonlinear quadratic damping term, due to fluid structure interac-
tions, and its application to the large amplitude vibrations of cantilever highly flexible structures. An initial result was
that such a model can be viewed in a certain sense as a classical linear damping model with an equivalent damping
coefficient that depends linearly on the amplitude of motion. In order to confer a general meaning to this quadratic
damping coefficient, special care was taken to make it dimensionless, so that its influence on the dynamics can be
compared from one structure to another one, as it is usually done with a linear damping ratio. It was also demonstrated,
in the case of the considered structures, that this model was both necessary - since the equivalent damping values vary
significantly in the range of tested amplitudes - and sufficient compared to other nonlinear damping models — as the
experimental equivalent damping is well described by a line function of the displacement amplitude.

We also proposed and tested original identification techniques for experimental estimation of the linear and quadratic
modal damping coefficients. These techniques are applicable to single-mode responses only, therefore for structures with a
weak fluid-structure interaction. A first technique is based on the linear damping model; it uses the half-power bandwidth
method to identify the two damping coefficients. The model gives rise to another original technique that is based on
the measurement of the amplitude at resonance of the considered mode, for several amplitudes of excitation in the
steady state. Two versions were presented: (a) a fully analytical version that uses the structural model, and that has
the advantages of being self-sufficient and applicable to structures displaying geometric nonlinearities, and (b) a hybrid
version that uses the half-power bandwidth method to determine the linear modal damping factor. These techniques
were validated numerically thanks to simulations in the frequency domain as well as with several experimental tests,
showing that one of them has a better accuracy. Because our identification technique is based on the measurement of the
system nonlinear frequency response in the vicinity of a given resonance, recent experimental continuation techniques
(see (Denis et al., 2018) and reference therein) could be more convenient than the stepped sine experiments used in the
present study. Their investigation is left for further studies.

Finally, our quadratic air flow model was theoretically compared to other nonlinear damping models of the literature
- all cubic - showing that in the case of a complete model, the equivalent damping ratio was a quadratic function of the



vibration amplitude. In our experiments, it was shown that the quadratic order was the leading one, since the damping
ratio was found linear with respect to the amplitude, demonstrating that our fluid structure damping was predominant
over other sources of damping. This was probably due to the cantilever boundary conditions of our structures, which
favours their high flexibility and thus very high amplitude displacements for low driving forces. For more constrained
structures such as plates and shells, the classical bending/membrane coupling gives rise to geometrical nonlinearities for
lower amplitudes of displacement and viscoelastic effects have been identified as the main source of nonlinear damping,
with a damping term most of the time identified as cubic (see Fig. 7 of Amabili (2018a) and Amabili (2018b, 2019)). It
could be interesting to study and identify on such structures both a quadratic - aeroelastic drag like model - in addition
to the viscoelastic one, to experimentally verify the contribution of both effects, confirm and explain the predominance
of a viscoelastic cubic damping. This is left for further studies.
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Appendix A. Aerodynamic drag force

In order to account for the action of air on the structure, a local term should be added in Eq. (15), of the form w|w|.
Assuming w, is negligible compared to w;, this term leads in Eq. (21) to an additional term of the form:

1
0

+00 +oo
> a) / DURIPi(R) | D @i(%)G(D)| dx. (44)
i=1 j=1

Using the single-mode approximation, one recovers Eq. (23). Otherwise, the drag produces a global nonlinear quadratic
coupling between the modes, whose spatial dependence cannot be separated from the time dependence. In the case of
base excitation, if the assumption w, < w, is not verified, then the excitation motion cannot be pulled out of the absolute
value and the term of Eq. (44) is even more complex.

Appendix B. Method of multiple scales

In this section, the oscillator equation is the following:
G+ 25w0q + w5q +v141q] +v24° + v3q*q + I'q> + T1(dq° + G*q) = F cos (28). (45)

In order to use the method of multiple scales (Nayfeh and Mook, 1979), the terms in Eq. (45) are adjusted in powers
of €, a book-keeping parameter, to have a valid analytical solution:

4+ wjq = —€2€wod — €v1qlq| — €v2q° — €v3q°q — eI'q> — €I1(4q* + §°q) + €F cos (£21), (46)
First, new time variables are introduced:
T, = €"t,Vn e N, (47)

which leads to the following expressions of the partial derivatives with respect to the T,:

d
= Do+eDi+€Dy 4+, (48)



d2
de?
where D,, = % Then, q is developed in powers of ¢:

= D} + 2eDyD; + €*(D? 4 2DgD3) + - - - (49)

q(t) = qo(To, T1, To, ...) + €q1(To, T1, Ta, ... .) + €2G2(To, T1, T, - . ). (50)
Substituting Eq. (50) into Eq. (46) and equating the coefficients of € to zero, we obtain:

D3do + @3do =0, (51)

D3q1 + wjgr = — 2DoD1qo — 26 woDo(o (52)

— v1DoqolDoqo| — v2(Dodo)® — v3g3(Dodo)
— I'q§ — IT((Doqo)*do + Djqods) + F cos (22To).
Eq. (51) leads to a solution go of the form:
qo = A(Ty)eé0™ + cc, (53)

with cc referring to the complex conjugate of what precedes in the right-hand side of the equation. Focusing on the
primary resonance of the system, we set the detuning parameter such that 2 = wg + €o. Substituting Eq. (53) into
Eq. (52) gives:

- . 3 1 - .
D3q + wiq1 = — A*A(3T" — 203 IT)e™°™ — 2jwy(D1A + Aé wo + (Evza)g + 51)3),42,4)@@0%

. . F .
— (I' = 203 T)A%e¥0T0 4 j(vy03 — v3wg)A®e¥™0T0 4 5ed(”OTWTl) +cc (54)
— wivij(Aei*0To — Ae=iw0Toy|j(AeiwoTo — Ag—I@oTo).

Eliminating the secular terms from Eq. (54) requires all terms in the right-hand side of the equation proportional to ei“0To
to be zero. For the last term of Eq. (54), we develop it into Fourier series and calculate the first harmonic’s amplitude to
set it to zero (we note T = wpTp):

3 1 . . F .
0 = — 2jwo(D1A + Ak wy + (Evzw(z) + 51)3)AZA) — A’A(3T" — 202200 + Eeﬂ”ﬂ

;2 2
_ A9V [ adt _ Ae T (AT — AeIT)|e T dr. (55)

2 0

Now, expressing A in the polar form (A(T;) = Jae™)) and switching variable ¢ = t + g (Anderson et al., 1996), yields:

0 aa a 3 =211
0= (Zwoa—'B 2o 4 akwy + 6(31;2&)3 +3)) — 31" —2M1wg 3) B

Ty T, 8
F 2n+p ) )
1 Fem y @ 2[ sin ¢|sin ple 7 dgp .
2 2 B S—— —————
f(#)
As f(¢) is 2 -periodic, we have fotf( fznﬂ f(¢)d¢ and one can calculate fOZ” flg)dgp = —%, Multiplying by e=#,
and separating real and imaginary parts m the previous equation leads to:
3r—2Mw?
affl = o lad — £ cos(aT1 ,3) =0 (56)
;TC: = —a(wo + 3= wov1a + (F0ivs + §V3)a%) + 57— Slﬂ(UTl - B)=0
Let y = o T; — B. Furthermore, being in steady-state regime comes down to (%‘1 = ;Tyl = 0. Eq. (56) is now:
(3 —2w30) 4 F
ao — ——a =———cosYy,
8wy 2wo
4 3 1 F
Ewpa + —wwoa + (= a)ovz + *Ug)a = o sin y
wo
The forced response of the system in steady-state can be obtained from:
3 — 20211 F? 4 3 2
@ —wp = AL - g+ﬂ p2e2 B ae) (57)
8wy 4600(12 8 8wy

Note: Given the fact that the nonlinear function related to the aerodynamic damping in the oscillator equation (Eq. (45))
presents a central symmetry, the constant value and the even harmonics of the solution are zero (see the appendix of
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Fig. 12. Simulated frequency responses with MANIab.

(Vakilinejad et al., 2020)), although this term presents a quadratic nonlinearity. Surely, in Eq. (54), there are no constant
value or harmonic of order 2. Indeed, one can verify that the constant value and the Fourier series coefficient of the second
harmonic of the term —jw(z,vl(Ae” — Ae7T)|(AeT — Ae”")| are zero.

Appendix C. Manlab implementation of the nonlinear equations

In the framework of MANIab, the problem to solve must be written under the form of a first-order dynamical system
with quadratic nonlinearities only (Guillot et al., 2020). As Eq. (39) is a simplified version of Eq. (40), the latter only is
detailed here. We introduce r = g to transform Eq. (40) into the first order dynamical system:

g=r (58)
i = Fcos (§2t) — (261 4+ q + vr|r| + I'g%).
We introduce two more variables s = g? and u = |§| = |r|. This last equation is non-smooth so we replace it by a
regularised version 8§ = r? — u?, with 8 the regularisation parameter chosen as small as possible. In practice, convergence

tests demonstrated that § = 0.001 was low enough. The problem can now be expressed as the following first-order
dynamical system with quadratic nonlinearities only:

g=r, (59)
i = Fcos (2t) — 2ér — q — vru — I'gs,

0=s—¢",

0=6—r2+u%

It is necessary to initialise MANlab with a starting point: we choose the linear solution q; = F /(1 — 222 4 2i£2). We set
a starting frequency at £2 = 0.01. The starting point is described with the Fourier coefficients of q, r, s and u: ge,s = Re(q;),
qsin = —Im(QI), Teos = Qqsinv Tsin = _-Qqcos. So = qgos/z + qzin/zu S2c0s = qgos/z - q?in/zu S2sin = (cosGsin,» Up = 2~Q|qc05|/7[,
and uycos = —$2|qcos|4/(37). The other parameters values are £ = 0.001, v = 0.037 /4, and F varies between 0.0005 and
0.005.



Appendix D. Phase of the simulated frequency responses with MANlab

In Fig. 12, the phase variation at the vicinity of the resonance is reduced - it becomes more and more “flat” - as the
forcing increases.
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