
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/22576

This document is available under CC BY license

To cite this version :

Thomas PROVOT, Xavier CHIEMENTIN, Fabrice BOLAERS, Marcela MUNERA - A time to
exhaustion model during prolonged running based on wearable accelerometers - SPORTS
BIOMECHANICS - Vol. 20, n°3, p.330-343 - 2019

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/22576
https://creativecommons.org/licenses/by/4.0/
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


A time to exhaustion model during prolonged running based
on wearable accelerometers
Thomas Provota, Xavier Chiementinb, Fabrice Bolaersb and Marcela Munerac

aDepartment of Mechanics, EPF, Graduate School of Engineering, Sceaux, France; bResearch Institute in
Engineering Sciences, Faculty of Exact and Natural Sciences, University of Reims Champagne-Ardennes,
Reims, France; cDepartment of Biomedical Engineering, Colombian School of Engineering Julio Garavito,
Bogota, Colombia

ABSTRACT
Defining relationships between runningmechanisms and fatigue can
be a major asset for optimising training. This article proposes
a biomechanical model of time to exhaustion according to indicators
derived from accelerometry data collected from the body. Ten volun-
teers were recruited for this study. The participants were equipped
with 3 accelerometers: on the right foot, at the tibia and at the L4-L5
lumbar spine. A running test was performed on a treadmill at
13.5 km/h until exhaustion. Thirty-one variables were deployed dur-
ing the test. Multiple linear regressions were calculated to explain the
time to exhaustion from the indicators calculated on the lumbar, tibia
and foot individually and simultaneously. Time to exhaustion was
predicted for simultaneous measurement points with r2 ¼ 0:792 and
21 indicators; for the lumbar with r2 ¼ 0:568 and 11 indicators; for the
tibia with r2 ¼ 558 and 11 indicators; and for the foot with r2 ¼ 0:626
and 12 indicators. This study allows the accurate modelling of the
time to exhaustion during a running-based test using indicators from
accelerometer measurements. The individual models highlight that
the location of the measurement point is important and that each
location provides different information. Future studies should focus
on homogeneous populations to improve predictions and errors.
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Introduction

The scientific world defines fatigue during sporting activities as a decrease in the ability
to generate a force, couple or imposed power (Billat, 2012). Fatigue from overtraining
or stress intensity is considered a major phenomenon in the prevalence of injuries in
runners (Mizrahi & Daily, 2012; Patterson, McGrath, & Caulfield, 2011; Voloshin,
Mizrahi, Verbitsky, & Isakov, 1998). Moreover, fatigue has often been linked to
decreased performance in athletes and can therefore be directly associated with profes-
sional outcomes (Nicol, Komi, & Marconnet, 2007a, 2007b; Noakes, 2000). During
running, several studies have shown that fatigue, through the risk of injury and the
decrease in performance, increases with impact repetition of the foot against the ground
(Hreljac, 2004; Milner, Ferber, Pollard, Hamill, & Davis, 2006; Pohl, Mullineaux,
Milner, Hamill, & Davis, 2008; Voloshin & Wosk, 1982).
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The effects of these impacts have been largely evaluated with the use of acceler-
ometers. Shorten and Winslow (1992) measured the acceleration on the distal anterio-
medial tibia to study the effects of increasing impact on the body. This study was
mainly focused on the spectral analysis and the shock attenuation through the body.
Similarly, Derrick, Dereu and McLean (2002) studied changes in kinematics and
impacts during a test to exhaustion by using an accelerometer placed on the tibia.
Results showed that peak leg impact accelerations and impact attenuation increased
during the progression of the run to exhaustion. Friesenbichler, Stirling, Federolf and
Nigg (2011) examined muscle fatigue by placing an accelerometer on the triceps surae.
Authors concluded that the intensity of the vibrations, generated by the repeated
impacts, increased with fatigue.

Numerous studies have shown that the measurement of acceleration can provide
critical information on running. Accelerations are representative of the running cycle
(Lee, Mellifont, & Burkett, 2010; Norris, Kenny, & Anderson, 2016; Purcell, Channells,
James, & Barrett, 2005), stride type (Eskofier, Musho, & Schlarb, 2013; Giandolini et al.,
2014), shock attenuation (Derrick et al., 2002; Shorten & Winslow, 1992), kinematics of
the athlete (Strohrmann, Harms, Kappeler-Setz, & Troster, 2012), excitation frequencies
(Friesenbichler et al., 2011; Giandolini, Gimenez, Millet, Morin, & Samozino, 2013) and
lower limb stiffness (Buchheit, Gray, & Morin, 2015; Provot, Munera, Bolaers, Vitry, &
Chiementin, 2016) and thus allow researchers to study athlete locomotion, technique
and performance. These measures were made possible by the development of new,
small, light, wearable and low-cost measurement tools. These new sensors allowed not
only embedded measurements but also athlete performance monitoring. Although
accelerometers have limited measurement capabilities (sampling frequency or magni-
tude range), many have already been validated for running (Lee et al., 2010; Provot,
Chiementin, Oudin, Bolaers, & Murer, 2017).

Fatigue has been studied extensively, and many studies have investigated fatigue by
measuring multiple parameters (Nicol et al., 2007a, 2007b). Noakes (2000) emphasised
that unique expressions of fatigue (e.g., muscular fatigue, energetic fatigue, cardiovas-
cular fatigue and psychological fatigue) are often limited and that the phenomenon of
fatigue is often the mutual representation of these different concepts. Thus, to under-
stand the expression of fatigue, several studies have concentrated on modelling exhaus-
tion while running by means of a group of indicators. Exhaustion is then represented as
the inability to follow a running rhythm during a specific and punctual test without
taking into account the general physical state of the athlete. Gazeau, Koralsztein and
Billat (1997) found large correlations between kinematic indicators (mostly computed
on angular variables of the lower limbs) and time limit to exhaustion (r ¼ 0:995).
However, this study focused only on the ultimate limit of the test and did not take into
account the progression of the state of exhaustion of the athlete. Candau et al. (1998)
studied the energetic cost during running in order to model exhaustion. The energetic
cost was described as function of physiological (blood lactate concentration, ventilation,
etc.) and mechanical variables (potential and kinematic energy). However, in the same
way, the progression of the state of exhaustion is difficult to study, and the relationship
between energy cost and the variability of indicators remains unclear. To our knowl-
edge, no modelling of the progression of the state of exhaustion has been proposed
using only accelerometer data. The aim of this study is to understand the potential use
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of accelerometry in the measurement of exhaustion. It is hypothesised that running
exhaustion, as well as its evolution, can be described using wearable accelerometers
attached to the lumbar spine, tibia and foot.

Methods

Participants

Ten volunteers (5 male and 5 female) were recruited for this study (age:
38.0 � 11.6 years; height: 1.73 � 0.10 m; mass: 66.3 � 12.6 kg). Each volunteer
was a recreational runner with a training frequency of 2 sessions per week. The
participants were recruited based on having a consistent running schedule, a respect
for medical recommendations for the practice of running in competition and a recent
personal competition record for a 10-km (under 45 min) or half-marathon race (under
1 h 40 min). All the procedures were reviewed and approved by the University of Reims
Champagne Ardenne local research ethics committee prior to beginning the study.

Protocol

All the participants were fitted with 3 inertial measurement units (IMU Hikob Fox,
Villeurbanne, France dimensions: 45� 36� 17 mm, mass: 22 g) equipped with a high-
frequency tri-axial accelerometer validated for running assessments (Provot et al.,
2017). The first device was attached to the dorsal surface of the right shoe above the
metatarsals. The second was mounted near the centre of mass of the leg, according to
the anthropometric data described by Winter (2009), on the protruding part (mid-
shaft) of the tibia. The last device was placed on the trunk near the L4-L5 space of the
lumbar spine on the line between the 2 iliac crests (Figure 1). For the first device, 1 axis
of the IMU was directed forward of the foot to approach the anteroposterior axis of the
segment, for the second and third devices, 1 axis of the IMU was aligned with the
longitudinal axis of the segment. Data were collected at a sampling frequency of
1344 Hz with maximum magnitude of � 24 g for the foot and tibia devices and
� 8 g for the lumbar device. The foot device was mounted on the lace in the eyelets
of the housings. Tibia and lumbar devices were secured using a Velcro strip made for
the test along with a medical elastic band to avoid slippage on the skin. All the raw data
were saved on a memory card. The 3 IMU were synchronised using a radio frequency
remote control. The running tests were performed on a treadmill (NordicTrack C300,
Logan, UT, USA). To avoid any effects of the equipment, all the participants were asked
to wear similar appropriately sized running shoes (Kalenji, Ekiden One, Villeneuve-
d’Ascq, France) and socks. During the study, the participants’ heart rate was monitored
using a heart rate strap (Polar, Kempele, Finland).

Before the running test, the participants performed a 10-min warm-up running at
10 km/h. All the participants were informed that no refuelling would be possible during
the test (except for the warm-up). The test was conducted at a constant speed of
13.5 km/h until exhaustion. This speed was appropriate for generating exhaustion in
the study population based on the speeds at which they completed their previous 10-km
or half-marathon races. Exhaustion was defined as the point at which participants were
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no longer able to maintain the 13.5 km/h running speed. This method was also used by
Friesenbichler et al. (2011), and the progression of the state of exhaustion was quanti-
fied with a subjective rate proposed by Borg (1982), which presents a linear variation
with exercise time considering a constant condition. This method ensures that exhaus-
tion is reached at the end of the protocol. Heart rate was used as an indicator of
exertion.

Data processing

Fourteen indicators were computed in this study and divided into 2 groups (Table 1).
First, 4 indicators were measured directly from the raw signal (Table 1 Raw). This set of
measurements was computed for the 3 accelerometers along different segment axis
(longitudinal, medio-
lateral and anteroposterior) or for total acceleration. The computed axes were deter-
mined by a preliminary study on indicator repeatability. Three of these 4 raw signal
indicators were computed in the temporal domain. The first indicator was the root

Figure 1. Location of the 3 IMU on the athlete’s body. x-axis was associated to longitudinal axis of
the segments, y to medio-lateral and z to anteroposterior.
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mean square (RMS) value, which was used to characterise the magnitude of a varying
signal, such as vibration or shock (McGregor, Busa, Yaggie, & Bollt, 2009; Provot et al.,
2016). The second indicator was the time spent beyond 3g (t3g). This indicator was
defined for this study and characterises acceleration over the full test duration. The
third indicator was the vibration total value (av), defined by the ISO 2631 standard
ISO2631 (1997). The indicator was used to characterise the vibration quantity imposed
on the human body. The final raw signal indicator was the total energy (TE) of the
spectrum, defined as the sum of the squared Fast Fourier Transform (Eskofier et al.,
2013; Provot et al., 2016).

The remaining 10 indicators were determined from the accelerometry signals of each
running stride and then averaged. These indicators were computed only for the long-
itudinal axis of the lumbar (Table 1 Stride). Two of these 10 indicators, mean stride
duration (MSD) and mean stride number (MSN) contained in the sample, were
computed directly from the stride signal (Provot et al., 2016; Purcell et al., 2005). The
8 remaining indicators were computed using decomposed stride signals from 2 phases:
a contact phase, where the foot is in contact with the ground, and a flight phase.

According to the literature, there are 2 methodologies for calculating the decom-
position of stride signals. First, the decomposition can follow a physical (mechanical)
hypothesis that suggests that the contact phase includes the exact moment when the feet
is in contact then leave the ground (Blickhan, 1989; Purcell et al., 2005). Decomposition
can also follow a physiological hypothesis, whereby the contact phase includes only the
exact moment at which the mass of the body is supported by the ground (Cavagna,
1970; Gaudino, Gaudino, Alberti, & Minetti, 2013). The decomposition of each stride
on the accelerometer signal was carried using the running phases’ description proposed
in the study by Gaudino et al. (2013). The 8 indicators were the mean contact duration
computed using both the mechanical (MCDm) and the physiological (MCDp) hypoth-
eses; the mean flight duration (MFDm and MFDp); the vertical stiffness of the leg,

Table 1. The 14 indicators computed for the time to exhaustion study.
Foot Tibia Lumbar

Type Indicator Notation Lon M-L A-P Tot Lon M-L A-P Tot Lon M-L A-P Tot

Raw Root mean square RMS � - � � � � � � � � � �
Raw Past time beyond 3g t3g - - - � - - - - - - - -
Raw Vibration total value av - - - � - - - - - - - -
Raw Total energy TE - - � � � - � � � - � �
Stride Mean stride duration MSD - - - - - - - - � - - -
Stride Mean stride number MSN - - - - - - - - � - - -
Stride Mechanical mean contact

duration
MCDm - - - - - - - - � - - -

Stride Mechanical mean flight duration MFDm - - - - - - - - � - - -
Stride Physiological mean contact

duration
MCDp - - - - - - - - � - - -

Stride Physiological mean flight
duration

MFDp - - - - - - - - � - - -

Stride Mechanical vertical stiffness VKm - - - - - - - - � - - -
Stride Physiological vertical stiffness VKp - - - - - - - - � - - -
Stride Mechanical leg stiffness LKm - - - - - - - - � - - -
Stride Physiological leg stiffness LKp - - - - - - - - � - - -

Indicators were computed from the acceleration measured on the longitudinal (Lon), anteroposterior (A-P) and medio-
lateral (M-L) axis of the human segment as the total acceleration (Tot). ‘ � ’ represents the 31 variables determined as
repeatable for running and ‘-’ represents non-computed value.
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defined as the function of the contact and flight durations (VKm and VKp) using
a uniaxial spring mass model (Dalleau, Belli, Bernard, & Binsinger, 2004); and leg
stiffness, defined using a biaxial spring mass model (Morin, Dalleau, Kyro¨l¨ainen,
Jeannin, & Belli, 2005) that is a function of the contact and flight durations (LKm and
LKp). Following the different IMUs and different computed axes, 31 variables were
created from the 14 indicators.

Statistical analysis

In this study, running conditions were set as a constant, and the progression of the state
of exhaustion was defined as linear with the duration of the test. The progression of the
state of exhaustion was represented as a percentage of the maximal duration of the
exercise (Friesenbichler et al., 2011; Noakes, 2004). Total exhaustion was considered to
be 100% at the end of the test. To study the progression of the 31 variables with the
progression of exhaustion, each variable was computed using the accelerometric signal
over a sliding unit of 1 min with a recovery rate of 50%. Each variable was standardised
to ensure that the progression of exhaustion was measured equally for each participant.
Finally, to study the independent behaviour of each variable with the progression of
exhaustion and avoid a participant effect, each similar variable for the 10 participants
was studied together. The variable Zj was created to represent the 31 anonymous
standardised variables, with j ¼ 1 to 31. The progression of Zj was computed from
the 14 indicators and compared to the progression of exhaustion.
A stepwise regression was used to create the progression of exhaustion model using
Matlab R2017b (MathWorks, Natick, MA, USA). This algorithm selected variables
according to their significance, which was determined using a statistical Fisher test
and verified the interdependency of the outcome variable. The model allowed the
estimation Ŷ of the time before exhaustion as a per cent. Ŷ was the function of the
different Zj variables (with j ¼ 1 to 31) and coefficients βj (Equation 1). The validity of

the model was judged on 5 criteria: reliability, significance, quality of the prediction,
average error and sensitivity.

Ŷ ¼ β0 þ β1:Z1 þ :::þ βj:Zj þ :::þ βJ :ZJ (1)

To analyse the model’s reliability, residuals were measured as the difference between the
estimated time to exhaustion Ŷ and the real time to exhaustion Y . The regression was
considered to be adjusted if the residual terms were independent and equally distrib-
uted. The normality of the residual terms was determined using a Shapiro–Wilk test,
provided that the studied variable was normally distributed and the null hypothesis was
rejected if pN < 0:05. Significance was determined using a statistical Fisher test
(pS < 0:05), following the null hypothesis that the regression coefficients (βj) were

null. Quality of the prediction and average error were studied between the estimated

time to exhaustion Ŷ and the real time to exhaustion Y . Quality of the predictions was
studied using a Bravais–Pearson test and the determination coefficient r2. The average
error was represented as the root mean square error (RMSE, Equation 2, where L is the
sample size). RMSE was expressed in the same units as Y (percentage of the time to
exhaustion). To observe the models sensitivity, the same algorithm was used to develop
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models using only 9 participants following a ’leave-one-out’ method. Ten models were
created by suppressing 1 of the 10 participants of the panel in each case.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL
i¼1

ðYi � bYiÞ2
vuut (2)

Results

The average duration of exercise was 38:5� 12:5 min. Figure 2 shows the progression
of the averaged subjective Borg rate for the 10 participants according to the percentage
of the test duration. This result validates the representation of the progression of
exhaustion as a percentage of the maximal duration of exercise.

For the resulting model, only 20 of the 31 variables were selected, reliability and
significance were validated, with pN ¼ 0:277 and pS < 0:001. The model results had
a coefficient of determination of r2 ¼ 0:723 and an RMSE of 15.4%. The residuals were
represented in Figure 3 as a standardised normal distributed variable (Nð0; 1Þ). The
results of the sensitivity analysis using the ’leave-one-out’ method showed that, on
average, the suppression of 1 participant in the model resulted in a 0.6% decrease in the
RMSE and a 0.02 increase in the determination coefficient associated to the quality of
the prediction.

Due to the normality of the residuals (Figure 3), an optimisation of the presented
model was created by excluding points falling outside of a tolerance interval equal to 2
times greater than the SD around the M value. The optimised model is presented in
Table 2. Twenty-one variables were selected for this new model. The modelling results
present a coefficient of determination of r2 ¼ 0:792 and an RMSE of 13.1%. While 21
variables were needed to obtain the best quality of the prediction, using only the first 8
resulted in a coefficient of 0:723, which was equal to the non-optimised model.

Figure 2. Value of the averaged Borg scale for the 10 participants according to the percentage of the
test duration (real time to exhaustion corresponding to Y). The vertical bars represent the SD.
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Finally, to evaluate which measurement site provided the most information on
exhaustion, 3 models were developed using the indicators associated with only the
foot, tibia or lumbar. For the lumbar, 11 variables were selected, and 11 iterations were

Figure 3. Graphic A presents the residuals distribution as function of the real time to exhaustion (Y)
and graphic B, the estimated time to exhaustion (Ŷ). Residuals are presented standardised, the
horizontal lines represent the M value and � twice the SD.

Table 2. List of the selected variables for the optimised model according to the
algorithm iteration.

Iteration Indicator Point Axis r2 βj
1 MSD Lumbar Lon 0.311 368.53
2 RMS Foot A-P 0.471 7.22
3 MSN Lumbar Lon 0.566 348.15
4 t3g Foot Tot 0.607 −7.99
5 RMS Tibia Tot 0.648 13.75
6 RMS Foot Tot 0.683 −5.05
7 LKp Lumbar Lon 0.704 −26.13
8 TE Lumbar A-P 0.723 6.44
9 MFDp Lumbar Lon 0.741 −6.96
10 VKp Lumbar Lon 0.755 27.19
11 RMS Lumbar M-L 0.763 3.65
12 TE Tibia Lon 0.770 −7.07
13 RMS Foot Lon 0.774 3.31
14 MFDm Lumbar Lon 0.777 3.89
15 LKm Lumbar Lon 0.780 −4.36
16 TE Foot A-P 0.782 5.67
17 av Foot Tot 0.785 −3.03
18 RMS Tibia Lon 0.787 2.90
19 VKm Lumbar Lon 0.789 8.16
20 RMS Tibia M-L 0.791 −4.61
21 TE Lumbar Tot 0.792 −2.13

β0 50.81

The variables were selected from different indicators: mean stride duration (MSD), root mean square (RMS),
mean stride number (MSN), past time beyond 3g (t3g), physiological leg stiffness (LKp), total energy (TE),
physiological mean flight duration (MFDp), physiological vertical stiffness (VKp), mechanical mean flight
duration (MFDm), mechanical leg stiffness (LKm), vibration total value (av) andmechanical vertical stiffness
(VKm). The formula expressing the percentage of total exhaustion is represented as the sum of the
different indicators multiplied by their respective coefficients βj . Indicators were computed from the
acceleration measured on the longitudinal (Lon), anteroposterior (A-P) and medio-lateral (M-L) axis of the
human segment as the total acceleration (Tot). β0 indicator represents a constant of the model.
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performed to reach a final determination coefficient of r2 ¼ 0:586 with an RMSE of
18.71%. The model was significant (pS < 0:001) but not reliable (pN ¼ 0:021). For the
tibia, 11 variables were selected, and 13 iterations were performed to reach a final
determination coefficient of r2 ¼ 0:558 with an RMSE of 19.34%. The model was both
significant (pS < 0:001) and reliable (pN ¼ 0:276). For the foot, 12 variables were
selected, and 12 iterations were performed to reach a final determination coefficient
of r2 ¼ 0:626 with an RMSE of 17.79%. The model was significant (pS < 0:001) but not
reliable (pN ¼ 1:87E� 04). The progression of the determination coefficients of the
models as a function of the iteration number is presented in Figure 4.

Discussion and implications

This work proposed a significant and reliable method for modelling the time to
exhaustion by using accelerometry indicators. The optimised model reached
a determination coefficient of r2 ¼ 0:792, thus representing a large component of
the evolution of exhaustion, providing various indicators representing running tech-
nique, perceived vibrations and shocks, the energy required for movement and the
stiffness of the lower limbs. The inclusion of additional variables could provide
substantial information to the model to explain the variability that was not
accounted for by the accelerometer data. These results reinforce the conclusion of
Noakes (2000) that fatigue must be expressed in a multidisciplinary manner. As
proposed by Gazeau et al. (1997) and Candau et al. (1998), kinematic or physiolo-
gical variables that are directly related to energy cost can be integrated into model-
ling to achieve better quality of the prediction.

Figure 4. Evolution of the determination coefficient for the proposed models (foot, tibia and lumbar
model) as function of the iteration number of the algorithm.
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The sensitivity analyses on the number of participants showed that suppressing
1 person tended to improve the quality of the prediction and reduce the error in the
model. These results may have been affected by the heterogeneity of the study popula-
tion, which is highlighted by the variation in the results of each participant
(38:5� 12:5 min). This notion was confirmed in a study by Saunders, Pyne, Telford
and Hawley (2004). Indeed, the morphological differences of the participants (90.6 kg
for 1.92 m and 48.9 kg for 1.60 m for the 2 extreme participants) seemed to impact the
mechanisms of exhaustion during running. However, reducing the size of the popula-
tion tested tended to personalise the model and reduce the variability in the sample.
The advantage of a personalised model is that it could adapt according to the evolution
of the performance of the athlete. Each new test session could then feed the model to
improve the quality of the prediction that can evolve depending on the training.

Although, modelling is sensitive to the number of participants. The removal of
statistically extreme values allowed the optimisation of the model to suppress biases.
The optimised model (based on 21 indicators rather than 20 for the non-optimised
model) increased the quality of the prediction by 0:095 and decreased the RMSE by
2.3%. However, the error was still large (15.4% before, 13.1% after) in estimating time to
exhaustion. A review of the model suggests that indicators rapidly integrated into the
models presented the strongest determination coefficients with the evolution of exhaus-
tion and provided very different information on the activity of running.

First, indicators associated with stride, such as the MSD, represented 31.1% of the
information about the progression of exhaustion in the optimised model. This informa-
tion supports the results of numerous studies that have observed a decrease in stride
frequency (and thus an increase in duration) with the onset of fatigue (Dutto & Smith,
2002; Mizrahi, Verbitsky, Isakov, & Daily, 2000). However, a study by Schache et al.
(2001) demonstrated that the temporal parameters of foot strike showed significant
differences between treadmill and over-ground running; thus, the progression of these
parameters with the progression of exhaustion could differ under real race conditions.
Nevertheless, Morin, Jeannin, Chevallier and Belli (2006) observed a similar variation in
the time parameters associated with fatigue from repeated sprints at variable speeds.

Other indicators that contributed to the model were representative of the vibration
and shock perceived by the athlete (RMS, t3g , TE). These indicators increased the
quality of the prediction of the optimised model to 0:723 in the first 8 iterations.
These results confirm those of Friesenbichler et al. (2011), who observed an increase
in the amplitude of vibrations (directly related to RMS) with exhaustion. TE at the
lumbar level on the anteroposterior axis was also among these indicators. This variable
can be interpreted as the amount of energy needed to move the centre of mass of the
body forward. The place of this indicator in the model can be confirmed by a study of
the energy of exhaustion proposed by Candau et al. (1998). They observed a significant
increase (17%) in mechanical energy cost with the onset of exhaustion.

Finally, the model also included indicators of stiffness of the lower limbs, particularly
LKp, which has been shown by several studies to be significantly sensitive to exhaustion
(Dutto & Smith, 2002; Morin et al., 2005).

This work allowed also the study of the progression of exhaustion at different
measurement points. The results showed that the model developed for the foot had
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a faster and stronger convergence than did the lumbar or tibial models. The models
could also be compared by looking at the variables included during the first iterations of
the algorithm (variables contributing the most to the improvement of the quality of the
prediction). This type of comparison demonstrated that the model of the lumbar
presented information in terms of the foot strike technique, which was consistent
with a study by Lee et al. (2010), but not in terms of perceived shocks or vibrations.
The model developed for the foot presented information in terms of both perceived
impact (with such indicators as RMS and t3g) and foot strike technique (as shown in the
studies by Giandolini et al. (2013, 2014)), which could explain why it had the best
convergence. The lack of information on the impact at the lumbar site is explained by
the body’s capacity for attenuation, which was highlighted in a study by Shorten and
Winslow (1992). However, although both the foot and the lumbar models were not
found to be reliable, these models still provide some understanding of the information
measured on the body.

Following these results, future studies may propose different model improvements.
This study highlighted that the measurement point is important for modelling.
Measurements from different sensor locations do not necessarily provide the same
information. One approach to improving the model would be to use additional mea-
suring points to obtain more information on exhaustion. However, additional measur-
ing points cannot always be incorporated due to comfort constraints that can affect
athlete performance. Another approach would then be to multiply the sensors on
a single measurement point as proposed in the study of Buchheit et al. (2015). The
use of the other sensors of the inertial units or physiological sensors could then provide
additional relevant information to develop specific indicators and optimise the time to
exhaustion model. Moreover, the advantage of a single measurement point would be to
use a light and compact measuring system to measure the information in real condi-
tions on the athlete.

This model can also offer direct practical applications. Provided that it is possible to
capture, process data and communicate the progression of exhaustion in real time, the
athlete would be able to adapt his effort and optimise his performance. This model
could be used to predict physical break phenomena during physical activity. Doing so
could help athletes to manage their efforts by indicating the time duration remaining
before they reach total exhaustion. In addition, coupled with a risk criterion (e.g., limit
percentage not to be exceeded), the model could avoid extreme efforts during which the
probability of injury is important. However, this would require further study of the
correlation between exhaustion and injury.

Finally, the model developed in this study presents certain limitations. The
description of a linear evolution of the exhaustion progression occurs only for
constant conditions that are generally difficult to maintain during the practice of
a sport. Moreover, in addition to the problem of the heterogeneity of the population
tested, the data used for the creation of this model came from data collected in the
laboratory that differs very much from the real conditions (Schache et al., 2001). If
the model developed gives an estimate of the state of exhaustion, several points of
improvement remain necessary to make the use of the exhaustion model more
reliable.

11



Conclusions

This work proposed a significant and reliable method for modelling the time to exhaus-
tion by using accelerometry indicators. The proposed model reached a determination
coefficient of up to 0.792 and thus accounted for a large part of the progression of
exhaustion. These positive results can be explained by the chosen definition of exhaus-
tion, which used indicators that represented running technique, perceived vibrations and
shocks, the energy required for movement and the stiffness of the lower limbs.

This study also highlighted that precision seems to be directly related to the panel of
participants studied. The study of a heterogeneous population does not seem to lead to
a general modelling of time to exhaustion. The mechanisms of exhaustion seem to be
influenced by the morphology of the athletes. One improvement in future research
could be to conduct a similar study on a homogeneous panel of runners. However, this
methodology does not account for the evolution of the athletes. A different approach
would be to study time to exhaustion in a single athlete. This perspective would allow
the development of an auto-adaptive model. In this case, the exhaustion test could be
performed at several different speeds to determine whether the model can be inter-
polated according to running speed.
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