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Backbone curves of coupled cubic oscillators in one-to-one
internal resonance: bifurcation scenario, measurements
and parameter identification

Arthur Givois . Jin-Jack Tan . Cyril Touzé . Olivier Thomas

Abstract A system composed of two cubic nonlin-

ear oscillators with close natural frequencies, and thus

displaying a 1:1 internal resonance, is studied both

theoretically and experimentally, with a special

emphasis on the free oscillations and the backbone

curves. The instability regions of uncoupled solutions

are derived and the bifurcation scenario as a function

of the parameters of the problem is established,

showing in an exhaustive manner all possible solu-

tions. The backbone curves are then experimentally

measured on a circular plate, where the asymmetric

modes are known to display companion configurations

with close eigenfrequencies. A control system based

on a Phase-Locked Loop (PLL) is used to measure the

backbone curves and also the frequency response

function in the forced and damped case, including

unstable branches. The model is used for a complete

identification of the unknown parameters and an

excellent comparison is drawn out between theoretical

prediction and measurements.

Keywords Nonlinear vibrations � Backbone curve �
Bifurcations � 1:1 Resonance � Stability �
Measurements � Model identification

1 Introduction

Nonlinear system displaying internal resonance has

been the subject of a number of studies as a strong

nonlinear coupling could lead to solutions that are

completely different from linear predictions

[4, 12, 24, 25, 27, 40, 42]. Internal resonance is

closely related to the normal form theory and Poin-

caré’s theorem where the specific resonance relation-

ship between eigenfrequencies is linked to a resonant

monom that cannot be cancelled through a near-

identity transform [15, 31, 44, 46]. In vibration theory,

these systems are usually denoted in series of numbers,

e.g. 1:2 and 1:1:2, which refers to the relationship

between the eigenfrequencies of the system. For

instance, a 1:2 resonant system has eigenfrequencies

related by x2 ’ 2x1 while a 1:1:2 system exhibits

x2 ’ x1 and x3 ’ 2x1.
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Among all possible internal resonances, 1:1 reso-

nance is described by two oscillators having close

eigenfrequencies and may appear as the simplest one

and the first to be studied. It occurs in numerous

mechanical systems having known symmetries such as

strings, where the two polarizations of a same mode

have close eigenfrequencies [13, 14, 37, 38]; beams

[1, 26]; and two-dimensional structures with obvious

symmetry such as circular plates [32, 39, 45, 47]

square membranes or plates [6, 9, 48], or circular

cylindrical shells [44]. The resonant monoms related

to 1:1 resonance are of cubic order so that quadratic

nonlinearity is of no concern in this case. In most of

these studies, the emphasis is put on deriving the

forced vibration response, and less studies are directly

concerned with the the freely vibrating 1:1 internal

resonance scenario.

Restricting attention to the free vibration, the

papers by Lewandowski in the early 90s give the first

contributions to understand the bifurcation points

found on backbone curves. Analytical results obtained

on the case of a beam with 1:3 internal resonance were

first derived [19], and then extended to plates and

membranes featuring either 1:1 or 1:3 internal reso-

nance [20]. The analytical methods used a two-mode

approximation and a single-harmonic component in

the time domain. A seminal study on the 1:1 internal

resonance has been provided by Manevitch and

Manevitch [21]. In particular, they derive the possible

solutions for cubic oscillators deriving from a poten-

tial, thus restricting to three parameters for describing

the nonlinear coupling coefficients. They also provide

a complete study of the possible cases with varying

parameters, expressing the solutions in terms of first

integral of motions and ratio of amplitudes obtained

after numerous changes of coordinates, rendering the

solutions sometimes difficult to read. More recently,

the bifurcation of the backbones in case of 1:1

resonance has also been studied in [5], but with

restriction to a single case of coefficients values, thus

not bringing important novel results as compared to

the exhaustive study by Manevitch and Manevitch.

Meanwhile, advances of dedicated experimental

continuation methods allows easier and more reliable

measurements of backbone curves as well as unsta-

ble branches of forced and damped systems. Among

them, the control-based techniques that are founded on

a path-following approach of an arclength parameter

and stabilized via feedback control, have managed to

obtain backbone curves and bifurcations experimen-

tally for single degree-of-freedom nonlinear systems

[3, 33, 36]. An alternative approach where control of

the phase is achieved via a phase-locked loop (PLL)

procedure has lead to the measurement of frequency

response functions of a piezoelectric ring in high-

amplitude nonlinear regimes [22]. Denis et al. has

further shown that the PLL technique allows mea-

surement of the frequency responses on both sides of

the phase resonances including the unstable part [7].

Despite the requirement of a monotonous evolution of

the phase, the robustness and efficiency of the PLL

control are demonstrated in the aforementioned

piezoelectric systems [7, 22], in musical instruments

like Chinese gongs [16] and also in the current work.

For unforced conservative systems, there is an

equivalence between the backbone curves of a non-

linear system and its nonlinear modes, since a

backbone represents the frequency dependence on

amplitude, when ones spans the family of periodic

orbits (or the equivalent invariant manifold) [34, 35].

In this framework, internal resonance is usually

identified as loops in the backbone curve, as shown

for example in [17], with the peculiar feature that the

internal resonance occurs on the nonlinear frequen-

cies, far from their linear values. In the present case of

a 1:1 internal resonance between the linear eigenfre-

quencies, the topology of the backbone curves is found

to show more cases than only simple loops, with no

unique qualitative topology, giving new insights in the

behaviour of nonlinear modes. Another important

aspect is the experimental identification of nonlinear

modes, which has been a very active subject during the

recent years (see, for instance, [7, 28]). Since most of

the techniques rely on complex identification algo-

rithms which aims at extending the ones for linear

systems widely used in industrial contexts [29], we

propose here a simple identification method based on

the available model, following the unimodal technique

introduced in [7].

In the present contribution, a theoretical investiga-

tion of the bifurcation scenario for the backbone

curves of a system displaying 1:1 internal resonance is

detailed, followed by measurements on a circular

plate. As compared to previous studies, the main

outcomes are to generalize the results obtained in [21]

to four nonlinear coupling parameters. More impor-

tantly, instability regions for uncoupled solutions are

derived, a point that were not present in [5, 20, 21], and



is important, since it gives a more direct and simpler

analysis of the bifurcation scenario. These instability

regions are found by comparison with the forced and

damped cases. The theoretical analyses are all pre-

sented in Sect. 2. Then, an experimental procedure

based on the PLL control is applied to measure the first

asymmetric modes of a freely vibrating circular plate.

The backbone curves and bifurcation scenarios of such

a 1:1 internal resonance system are identified. These

are all presented in Sect. 3, which also includes

descriptions of the experimental procedures and the

estimation of the nonlinear coefficients. Finally, the

paper is concluded in Sect. 4.

2 Theoretical results

The theoretical derivations are devoted to expressing

the backbone curves for a system of two cubic

nonlinear oscillators with close eigenfrequencies.

Denoting X1 and X2 the displacements of oscillator 1

and 2, the equations of motion under study read:

€X1 þ x2
1X1 þ e C1X

3
1 þ C1X1X

2
2

� �
¼ 0; ð1aÞ

€X2 þ x2
2X2 þ e C2X

3
2 þ C2X2X

2
1

� �
¼ 0; ð1bÞ

where e is a book-keeping parameter, x1 and x2 are

the two eigenfrequencies such that x1 ’ x2, C1 and

C2 are the leading cubic coefficients for each oscilla-

tor, and C1 and C2 are the cross-coupling coefficients.

The choice of this formulation is guided by the

following considerations:

– In a normal form approach [44, 46], one can show

that quadratic nonlinearity does not lead to reso-

nant terms for the 1:1 internal resonance when

x1 ’ x2. Consequently there is no need to take

them into account.

– The general normal form for a system with cubic

nonlinearity should also include the monoms X2
1X2

and X3
2 for the first oscillator, and X2

2X1 and X3
1 for

the second oscillator. Here we select a simplest

form depending on four parameters only, C1, C2,

C1 and C2 instead of the most general form

including 8 coefficients. The reason is that for most

of the mechanical systems like strings, beams and

plates, the symmetry relationships leads to equa-

tions of the form (1). Consequently it has been

decided to restrict our attention to a four-parameter

problem with varying coefficients. This point will

be further discussed in Sects. 3 and 4.

When C1 ¼ C2 ¼ C, the stiffness derives from the

potential energy V:

V ¼ 1

2
x2

1X
2
1 þ x2

2X
2
2

� �
þ e
4

C1X
4
1 þ 2CX2

1X
2
2 þ C2X

4
2

� �
:

ð2Þ

This case was considered by Manevitch and Mane-

vitch in [21]. In order to extend their result to a more

general case with four parameters and include the

possibility of taking into account slight imperfections

of real structures, we will also consider the case

C1 6¼ C2 in this study.

The solutions of this nonlinear problem is derived

thanks to a first-order perturbative approach using the

method of multiple time scales. As most of the

derivations of the perturbative solution are classical,

they are given in ‘‘Appendix 1’’, where a special

emphasis is also put on deriving the first-order

equations for both the forced/damped case and the

free case, in order to show the similarity and differ-

ences occurring in the two sets of equations. In this

section, only the main results are recalled, the reader is

referred to ‘‘Appendix 1’’ for the detailed calculations.

A detuning r1 is introduced in order to quantify the
difference between the two eigenfrequencies:

x2 ¼ x1 þ er1: ð3Þ

Without loss of generality, we can assume r1 � 0,

which is not restrictive and onlymeans that oscillator 2

is the one with the larger eigenfrequency. The two

time scales T0 ¼ t and T1 ¼ et are introduced, and the
solution is expressed under the form

Xi ¼ Xi1ðT0; T1Þ þ eXi2ðT0; T1Þ, i ¼ 1; 2. The first-

order solution reads

X11 ¼ AðT1Þ expðix1T0Þ þ c:c:; ð4aÞ

X21 ¼ BðT1Þ expðix2T0Þ þ c:c:; ð4bÞ

where c.c. stands for complex conjugate. Finally the

unknown amplitudes AðT1Þ and BðT1Þ are expressed in
polar form, A ¼ aðT1Þ expðiaðT1ÞÞ, B ¼ bðT1Þ
expðibðT1ÞÞ. In order to make the slow-scale first-

order system autonomous, the following change of

variable is introduced for the angles:



c1 ¼ �a; ð5aÞ

c2 ¼ �r1T1 � b: ð5bÞ

As explained in A, this choice is motivated by direct

comparisons with the forced/damped system. Finally,

the slow-scale autonomous system reads:

a0 ¼ � C1

2x1

ab2 sin 2ðc1 � c2Þ; ð6aÞ

c01 ¼ � 3C1

2x1

a2 � C1

2x1

b2 2þ cos 2ðc1 � c2Þ½ �; ð6bÞ

b0 ¼ C2

2x2

ba2 sin 2ðc1 � c2Þ; ð6cÞ

c02 ¼ � 3C2

2x2

b2 � C2

2x2

a2 2þ cos 2ðc1 � c2Þ½ � � r1:

ð6dÞ

The solutions of (6) are obtained after integration with

respect to the slow time T1. Two kinds of solutions

exist:

– The uncoupled solutions, where a single mode is

excited while the other stay quiescent. Two

uncoupled solutions exist and will be denoted as

the A-mode for which a 6¼ 0 and b ¼ 0, and the B-

mode, for which b 6¼ 0 and a ¼ 0,

– The coupled solutions, for which both amplitude

solutions are non zero, i.e. a 6¼ 0 and b 6¼ 0.

2.1 Uncoupled solutions and instability regions

The uncoupled solutions are easily derived from (6).

They are defined by a ¼ const, b ¼ 0, c1 ¼
�3C1=ð2x1Þa2T1 þ u1 and b ¼ const, a ¼ 0,

c2 ¼ �ð3C2=ð2x2Þb2 þ r1ÞT1 þ u2, thus leading to:

X1ðtÞ ¼ 2a cos xA
NLt � u1

� �
;

X2ðtÞ ¼ 2b cos xB
NLt � u2

� �
;

ð7Þ

where u1 and u2 depend on the initial conditions. The

associated backbone curves are:

for the A-mode:

xA
NL ¼ x1 1þ e

3C1

2x2
1

a2
� �

: ð8Þ

for the B-mode:

xB
NL ¼ x2 1þ e

3C2

2x2
2

b2
� �

: ð9Þ

where xA
NL (respectively xB

NL) refers to the nonlinear

oscillation frequency of A-mode (resp. B-mode), as a

function of its amplitude a (resp. b).

The next question to tackle is the derivation of the

stability of these uncoupled solutions, in order to

predict where a loss of stability can happen in favour

of a coupled solution through activation of the 1:1

resonance. In previous works and particulary in the

paper by Manevitch and Manevitch [21], instability

regions were not derived, for the main reason that

setting either b ¼ 0 (to study the stability of the A-

mode) or a ¼ 0 (to study the stability of the B-mode)

leads to a degenerate problem given by Eq. (6): the

four-dimensional phase space shrinks to a two-

dimensional one without any possibility of studying

the stability with respect to vanishing directions. The

solution is found by using the analysis of the system

with forcing and damping, as shown in ‘‘Appendix 2’’.

Then, taking the limit of vanishing damping and

forcing, one is able to demonstrate (see ‘‘Appendix 2’’)

that the stability region of the A-mode is bounded by

the two following curves:

xs
Alim ¼ x2 þ eð2þ sÞC2a

2

2x2

; with s ¼ �1: ð10Þ

Symmetrically, the instability region for the B-mode is

bounded by the two curves:

xs
Blim ¼ x1 þ eð2þ sÞC1b

2

2x1

; with s ¼ �1: ð11Þ

In particular, one can note that the stability of A-mode

(resp. B-mode) is dictated by the value of the coupling

coefficient C2 (resp. C1), which is logical since this

term is responsible for the nonlinear energy transfer

between the two oscillators.

The situation is illustrated in Fig. 1, which has been

obtained for a perfect detuned case, i.e. with all

nonlinear coefficients equal, here

C1 ¼ C2 ¼ C1 ¼ C2 ¼ 1, and a detuning between

the two eigenfrequencies with x1 ¼ p, e ¼ 1 and

r1 ¼ 1, thus leading to x2 ¼ 1þ p. Each instability

region lies respectively in the plane of A-mode (i.e.

where b ¼ 0) and B-mode (where a ¼ 0), and is

delimited by two curves that are obtained by setting

either s ¼ 1 or s ¼ �1. These two curves are plotted in

red and green in Fig. 1. If the backbone curve of the



A-mode (resp. B-mode) enters the instability region

delimited by the two curves given by Eqs. (10) and

delimiting the grey-shaded area in Fig. 1a (resp. the

blue-shaded areas in Fig. 1b), then the uncoupled

solution becomes unstable. Note that the A-mode

starts at x1 when a �! 0, whereas the instability

region starts atx2. Symmetrically, B-mode starts atx2

while the instability regions at x1. All curves are

parabolas, and for the A-mode, the coefficient of the

parabola is 3C1

2x1
, while the two instability curves are

governed by C2

2x2
and 3C2

2x2
. Consequently one may also

inspect the possible intersections of backbones with

instability regions by simply looking at the nonlinear

coefficients. In the case considered with

C1 ¼ C2 ¼ C1 ¼ C2, the A-mode crosses the instabil-

ity region in two points, whereas the B-mode has only

one crossing point with its instability region. This

question will be further discussed when all possible

solutions are described by varying the coefficients, see

Sect. 2.3. It is a very important feature of this problem

to understand that most of the topology of the solutions

can be understood by simply looking at the coeffi-

cients values.

2.2 Coupled solutions and their stability

The coupled solutions have already been derived in

[21] with the assumption C1 ¼ C2, here we simply

recall the main results. Inspection of non-zero constant

solutions for the amplitudes a and b of the system (6)

shows that uncoupled solutions can exist if and only if

sin 2ðc1 � c2Þ ¼ 0, which leads to the conclusion that

we have necessarily cos 2ðc1 � c2Þ ¼ s ¼ �1, where

the notation s ¼ �1 is introduced for convenience.

This choice leads to two different kind of solutions. If

s ¼ þ1, then c2 ¼ c1 þ pp, with p 2 Z. Replacing this

relationship in the phases a and b used in the polar

form of the amplitudes AðT1Þ and BðT1Þ, one can

easily show that the solutions X1 and X2 fulfills the

following relationship

X1

a
¼ �X2

b
; ð12Þ

with a positive case when p is even and a negative case

when p is odd. Following Manevitch and Manevitch,

this solution is called the normal mode (NM) and is

represented in Fig. 2a. A normal mode is character-

ized by a phase difference of 0 (in-phase normal mode,

for odd p) or p (out-of-phase normal mode for p even)

between the two solutions, and in the configuration

plane ðX1;X2Þ, the solutions are oscillating on a line as
dictated by Eq. (12). In particular the two modes reach

their maximum amplitudes at the same time.

Fig. 1 Instability regions of the uncoupled solutions. a In the

plane ðx; aÞ, with b ¼ 0 is the stability of the A-mode. The

backbone curve given by Eq. (8) is in black (unstable part with

dashed line), while the stability region delimited by Eqs. (10) is

given by the thin red line (for s ¼ � 1) and green line (for

s ¼ þ1). b In the plane ðx; bÞ, with a ¼ 0 is the stability of the

B-mode. The backbone curve given by Eq. (9) is in blue

(unstable part with dashed line), while the stability region

delimited by Eqs. (10) is given by the thin red line (for s ¼ � 1)

and green line (for s ¼ þ 1). (Color figure online)

X1

X 2

X1

X 2

odd peven p

even m

(a) normal mode : s=+1 (b) elliptic mode : s=−1

odd m

Fig. 2 Definition of normal mode and elliptic mode



The other case is obtained when s ¼ �1, where

c2 ¼ c1 þ ð2mþ 1Þ p
2
for m 2 Z. One can easily show

that the relationship between the amplitudes writes:

X2
1

4a2
þ X2

2

4b2
¼ 1; ð13Þ

These solutions are the elliptic modes (EM), as

represented in Fig. 2b and are characterized by

ellipses in the configuration space ðX1;X2Þ.
The solution branches for the coupled solutions are

then simply obtained by remarking that with s ¼ �1,

c01 ¼ c02, which gives the following relationship:

r1 ¼
3C1

2x1

� ð2þ sÞ C2

2x2

� 	
a2 þ ð2þ sÞ C1

2x1

� 3C2

2x2

� 	
b2;

ð14Þ

with s ¼ þ1 for the normal mode solution and s ¼ �1

for the elliptic mode solution. In order to represent this

solution in the space spanned by the two amplitudes a,

b, and the nonlinear oscillation frequency, one has to

retrieve the backbone curve for the coupled solutions.

Since the amplitudes a and b are constants with respect

to T1, integrating for example Eq. (6b) with respect to

T1 leads to

c1ðT1Þ ¼ � 3C1

2x1

a2 � ð2þ sÞC1b
2

2x1

� 	
T1 þ u1; ð15Þ

with u1 the initial phase corresponding to the initial

conditions. Replacing in Eqs. (4a) and (4b) allows one

to get the coupled solution:

X1ðtÞ ¼ 2a cos xc
NLt � u1

� �
;

X2ðtÞ ¼
�2b cos xc

NLt � u1

� �
; for s ¼ 1

2b cos xc
NLt � u1 � p=2

� �
; for s ¼ �1

(

ð16Þ

where the common nonlinear oscillation frequency

xc
NL for the coupled solution is:

xc
NL ¼ x1 þ e

3C1

2x1

a2 þ ð2þ sÞC1b
2

2x1

� 	
; ð17Þ

with s ¼ þ1 for the normal mode, s ¼ �1 for the

elliptic mode, and a and b the amplitudes of the

coupled solutions verifying Eq. (14).

The stability of the coupled solutions is found

classically by computing the eigenvalues of the

Jacobian matrix from the system (6), see ‘‘Appendix

3’’ for the detail of the calculation. One can then easily

derive the following stability conditions for the

coupled solutions, which extends the results by

Manevitch and Manevitch [21] to the case C1 6¼ C2.

The stability of both NM and EM depends only on the

physical parameters of the system (i.e. eigenfrequen-

cies and coupling coefficients), but not on the ampli-

tudes of the solutions. Inded, the value of the scalar Sc
is sufficient to decide upon the stability of coupled

solutions, with Sc equals to

Sc ¼
C1x2

C2x1

þ C2x1

C1x2

: ð18Þ

The stability rules for the coupled solutions read

– The normal mode is stable as long as Sc\2,

– The elliptic mode is stable as long as Sc [ 2=3.

This very particular feature leads to the fact that the

stability of the coupled solutions is pre-determined

directly from the values of the parameters of the

system.

Figure 3 shows the coupled solutions in the detuned

perfect case studied before, i.e. for

C1 ¼ C2 ¼ C1 ¼ C2 ¼ 1, x1 ¼ p, e ¼ 1 and r1 ¼ 1.

As already noticed in Fig. 1, the A-mode has two

intersections with the instability region, while the B-

mode has only one intersection. From the first loss of

stability of the backbone curve of the A-mode, an

elliptic mode emerges. A supercritical pitchfork

bifurcation occurs at this point, and the two bifurcated

branches (coupled EM) have the same amplitude, so

that only one curve appears in Fig. 3, but have a

difference in the phase of the B-mode with respect to

the A-mode, which is � p=2 as shown by Eq. (16).

Indeed, the two EMwith odd and even m resulting in a

p difference between c1 and c2 branch from this point.

From the second intersection, a normal mode

emerges and connects to the other branch point

defined by the intersection of the backbone curve of

the B-mode with the instability region. These two

points thus define two subcritical pitchforks, where

NM branches from the uncoupled solutions. Figure 3a

shows a three-dimensional plot of the solutions in the

space ðx; a; bÞ, which is the correct representation to

show the uncoupled solution, included respectively in

the subplane ðx; aÞ, and ðx; bÞ, and the coupled

solutions. Figure 3b, c shows the projections of the

solutions on the planes ðx; aÞ and ðx; bÞ.



The stability of the coupled solutions is determined

by the scalar Sc, which writes, for the particular perfect

detuned case:

Sc ¼
x2C1

C2x1

þ C2x1

C1x2

; ð19Þ

¼ 1þ er1 þ
1

1þ er1
; ð20Þ

’ 2þ e2
r21
2
: ð21Þ

The result has been obtained by simplification thanks

to the equality between the coupling coefficients, and

usingx2 ¼ x1 þ er1. We can then simply deduce that

the normal mode is unstable, while the elliptic mode is

stable in this case, an information that is reported in

Fig. 3.

2.3 Parametric study: bifurcation scenario

We are now interested in deriving all the possible

cases when r1 [ 0 and the nonlinear coupling coef-

ficients are varying. In order to restrict a little the

possible cases, we concentrate on a hardening type

system with C1, C2, C1, C2 [ 0. Note however that

other cases with negative coefficients can easily be

deduced from the present study. The particular case

without detuning is derived in ‘‘Appendix 4’’:

although this very specific case is hardly ever

encoutered in real life applications, it presents some

mathematical interests and completes the derivations

of the present section.

As understood from the example shown in ‘‘Ap-

pendix 4’’, the backbone curves of the A-mode and the

B-mode may have, depending on the relative values of

the coefficients, either zero, one, or at most two

intersections with the instability regions. These cases

delimit the discussion and span the 9 possible cases.

Let us denote IEa as the intersection of the backbone

curve of A-mode with the first instability region, and

INa the intersection with the second curve. The

situation is depicted in Fig. 4a. The points IEa and

INa are thus found by equating Eq. (8) with Eq. (10)

(with s ¼ �1) thus leading to:

Fig. 3 a Three-dimensional representation of the solution

branches in the ðx; a; bÞ space. Black line: backbone of the A-

mode, blue line: backbone of the B-mode, red line: elliptic

mode, green line: normal mode. Unstable solutions are marked

as dashed lines, stable portions with solid lines. b Projection of

the solutions in the ðx; aÞ plane. c Projection of the solutions in
the ðx; bÞ plane. (Color figure online)



a2 ¼ r1
3C1

2x1

� ð2þ sÞ C2

2x2

;
ð22Þ

with s ¼ �1 for IEa and s ¼ þ1 for INa. Eq. (22) can

also be retrieved from Eq. (14) by letting b ¼ 0. The

consequence of this is that IEa is a branch point where

only an elliptic mode can branch with s ¼ �1 (thus the

index Ea as ‘‘Elliptic’’ mode from A-mode), and INa is

a branch point to a normal mode.

The same reasoning on the B-mode leads to the

conclusion that IEb and INb are branch points leading

respectively to elliptic mode and normal mode from

the B-solution, and they are defined by:

b2 ¼ r1

ð2þ sÞ C1

2x1

� 3C2

2x2

;
ð23Þ

The main consequence is that EM can branch only

from the left-hand side curve of the instability region,

which has been thus reported in red in Figs. 1 and 3, it

is also the colour retained to draw the backbone of the

EM. On the other hand, NM can only branch from

right-hand side curve from instability region, which is

thus reported in green.

From Eqs. (22) and (23) we can easily derive

existence conditions for the branch points, which read:

– IEa exists if 3C1x2 �C2x1

– INa exists if C1x2 �C2x1

– IEb exists if C1x2 � 3C2x1

– INb exists if C1x2 �C2x1.

Note that these conditions can also be found easily

from the inspection of Fig. 4 by comparing the

coefficients of the parabolas of each curve.

The 9 possible cases are represented in Fig. 5,

where, for the sake of simplicity, C1 and C2 have been

considered as fixed, and C1 and C2 as variable. The

existence conditions of the branch points have been

reported on the horizontal and vertical axes. For

example when referring to C1: no branch point exists

when C1\C2x1=x1 (thus the symbol ;), then only INb

INa

I Ea

IEb

INb

INb

(a) (b)

Fig. 4 a Definition of IEa and INa as intersection of the

backbone curve of the A-mode with the two instability curves.

Backbone curves for three different values of C1: 0.3, 0.7 and

1.5, showing respectively no intersection, one intersection (only

IEa exists) and two intersections. b Definition of IEb and INb as

intersection of the backbone curve of the B-mode with the two

instability curves. Backbone curves for three different values of

C2: 0.2, 0.8 and 1.5, showing respectively two intersections, one

intersection (only INb exists) and no intersection. Other param-

eters are fixed as C1 ¼ C2 ¼ 1, x1 ¼ p, e ¼ 1 and r1 ¼ 1.

(Color figure online)
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when C1 and C2 are fixed. Specific points labeled a–d
corresponds to the examples given in Fig. 6a–d. A 1 sign is

represented when the branch of coupled solution is of infinite

extent, otherwise the branch is finite



exists for C1 [C2x1=x1 and finally both INb and IEb
exist for C1 [ 3C2x1=x1.

The parameter plane exhibits 9 different regions,

one with no branch point at all and one with 4 branch

points, 2 regions with 1 and 3 branch point, and 3

regions with 2 branch points. In each area, the existing

branch point is reported, as well as the stability of the

coupled mode, which could be a normal mode (NM)

and/or an elliptic mode (EM), following the rule of the

value of Sc as compared to either 2 or 2/3. For

example, in the two zones where a single branch point

exists, there is a region where INb exists, thus the

coupled solution is a normal mode and it is stable. In

the other area, an elliptic mode arises from the branch

point and it is also stable. In these two cases, the

coupled mode solution branch is infinite and is

reported in the chart for each case with the 1 sign.

In the three regions with two branch points, one can

distinguish the upper right region, where both IEb and

INb exist. This means that both the NM and EM appear,

and are both connected to the B-mode solution. They

are also both infinite and the NM is stable while the

EM is unstable. Symmetrically, the lower left region

shows two coupled modes branching from the

A-mode, of infinite size, with NM unstable and EM

stable. In the central region, the NM is connected to

the B-mode while the EM branches from the A-mode,

and both coupled solutions are stable.

In the regions with 3 branch points, the upper right

zone is characterized by an EM branch of finite size,

since both IEa and IEb exist. The stability of the EM is

undetermined in this case, since the two cases (stable/

unstable) can appear in this area, depending on the

parameter values. On the other hand, NM is an infinite

branch of stable solution. Symmetrically in the lower

left region with 3 branch points, NM is a finite branch

of solutions connecting A-mode to B-mode, and its

stability cannot be unambiguously determined,

whereas EM is stable. Note that the perfect detuned

case studied in the previous section falls into this

region as illustrated in Fig. 3. Finally when the four

branch points exist, the two coupled solutions are of

finite extent, EM is stable while the stability of NM

cannot be unambiguously determined.

Figure 6 illustrates the preceding analysis by

showing various cases. Figure 6a, corresponding to

point (a) shown in Fig. 5, is a case where only one

branch point exists and give rise to a stable normal

mode, emanating from a pitchfork bifurcation on the

B-mode. Figure 6b also shows a three-dimensional

representation of the solution branches in the space

ða; b;xNLÞ, where 4 branch points are present, giving

rise to two stable coupled solutions of finite extent.

Note that in this area of the stability chart shown in

Fig. 5, the elliptic mode is always stable, however

depending on the values one can have either a stable or

an unstable normal mode. In Fig. 6b with the selected

values of the coefficients, the normal mode is also

stable. Figure 6c, d shows the solutions in a Fre-

quency-Energy Plot (FEP), which is possible only

when C1 ¼ C2. Figure 6c shows the shape of the

solution branches in a case where two branch points

exist, giving rise to two stable coupled solutions of

inifinite extent. Finally, in Fig. 6d, three branch points

are present, so that the elliptic mode is stable with

finite extent, while the solution branch of elliptic mode

is stable with infinite extent.

Depending on the cases described above, several

geometrical characteristics of the coupled solutions

can be drawn out. First, two main topologies can be

exhibited. The first possibility for a given coupled

solution is to emerge from an uncoupled backbone

curve (A-mode or B-mode) through a pitchfork

bifurcation and extend to infinity. In Fig. 5, this is

shown in all cases having from 1 to 3 branch points and

labeled with a 1 sign. The second possibility for a

given coupled solution is to connect the two uncoupled

backbones. In this case, two pitchfork bifurcations are

necessary. In Fig. 5, they are present only in cases with

3 or 4 branch points. Depending on the stability of the

considered coupled solution, the pitchfork bifurca-

tions are either subcritical or supercritical. Secondly,

as shown before, the EM branches always emerge

from the upper limit, in term of amplitude, of the

instability region, i.e. the red limit curves of the

instability regions obtained with s ¼ �1. On the other

hand, the NM branches always emerge from its lower

limit, the green limit curve of the instability regions

obtained with s ¼ þ1. In a FEP, the obtained topolo-

gies are shown in Figs. 6c, d. They are very different

from more classical n : m internal resonances that

appear as loops in the FEP (see [10, 17]).

2.4 Comparison with a numerical solution

To conclude this section on the theoretical develop-

ments, a comparison is drawn out between the

analytical solutions derived with the multiple scales



method and a numerical solution obtained thanks to a

continuation method. A pseudo-arc length method, as

implemeted in the software AUTO 2000 [8], is used to

obtain the numerical reference solution. A key point

related to the analytical solution is that the first-order

expansion is valid as long as the amplitudes of the

responses are smaller than one. For the sake of clarity,

all the figures shown in the previous sections have

been realised by selecting e ¼ 1, leading to amplitude

values larger than one, preventing direct comparison

with the numerical solution. In order to draw out a fair

comparison, the coefficients have been reselected as

e ¼ 0:1, x1 ¼ p and r1 ¼ 1, so that x2 ¼ pþ 0:1.

The nonlinear coefficients have been set to

C1 ¼ C2 ¼ 10, C1 ¼ 20 and C2 ¼ 5. For these values,

the stability chart given in Fig. 5 predicts a

stable elliptic mode of infinite extent and a normal

mode of finite extent, which is here found to be

unstable.

Figure 7 shows the comparison between analytical

and numerical results, where analytical results are

reported with a thick line whereas a thin line is used for

numerical solutions. As expected, the solutions are

almost perfectly identical when the amplitudes are

smaller than 1, which is especially true for the solution

branch of normal modes, where both solutions are

perfectly equal. For all the other branches, one can

observe that as soon as the amplitudes are larger than

one, a small departure is found between the analytical

solution and the numerical solution, as seen on the

uncoupled solutions and the branch of coupled elliptic

modes. These differences are completely logical and
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Fig. 6 Miscellaneous solutions for C1 ¼ C2 ¼ 1;x1 ¼ p, e ¼
1 and r1 ¼ 1. Black line: backbone of the A-mode, blue line:

backbone of the B-mode, red line: elliptic mode, green line:

normal mode. a Case with one branch point for C1 ¼ 2;C2 ¼ 5,

and corresponding to point (a) in Fig. 5. bCase with four branch

points for C1=3, C2=1, point (b) in Fig. 5. c Frequency-Energy
plot (FEP) for the case C1 ¼ C2 ¼ 1:5 with two branch points,

point (c) in Fig. 5. d FEP for the case C1 ¼ C2 ¼ 2:6 with three
branch points, point (d) in Fig. 5. (Color figure online)



in line with the first-order perturbative solution. Note

in particular that it could lead to modification of the

predictions of bifurcation scenario given by the

chart in Fig. 5. Indeed, all the solutions in Fig. 5 are

found by comparing the curvature of solution branches

at first order defined by parabolas. When amplitudes

are larger than one, the curvature is slightly modified

by higher-order so that some pitchfork bifurcation

points I can move and change the whole picture.

Hence the analytical predictions are meant to be very

accurate only for small amplitudes, otherwise slight

modifications may appear.

3 Experiments

An experimental investigation is also performed in

order to illustrate the previous findings, in which the

first two companion asymmetric modes of a circular

plate are considered. The selected plate is of radius

R ¼ 0:11m, thickness h ¼ 1:5mm, and is made in

brass of mass density q ¼ 8486kg m�3, Young’s

modulus Y ¼ 110GPa and Poisson ratio m ¼ 0:3. The

responses are measured around the first resonances of

the structure, i.e. the two companion asymmetric

modes with two nodal diameters. Due to the rotational

symmetry of the plate, these modes thus have close

eigenfrequencies.

3.1 Experimental setup

The experimental setup is shown in Fig. 8. The plate is

hanged horizontally (with respect to gravity) by three

Nylon threads attached in three holes of small radius,

equally spaced near its outer edge, to replicate the

theoretical free boundary conditions. The excitation

system consists of a custom-built non-contact

coil/magnet device. The interested reader can refer

to [39] for all practical details. It has a very low

distorsion rate compared to a traditional shaker

excitation, the mechanical forcing considered here is

Fig. 7 Comparison between analytical and numerical solution

obtained with a pseudo arclength continuation method. Selected

parameters are C1 ¼ C2 ¼ 10, C1 ¼ 20, C2 ¼ 5, e ¼ 0:1,
x1 ¼ 3:14159, x2 ¼ 3:24159. Analytical solutions with thick

lines, numerical solutions with thin lines, showing a perfect

comparison as long as the amplitudes are smaller than 1. Colour

code as in the previous figures: black line: backbone of the

A-mode, blue line: backbone of the B-mode, red line: elliptic

mode, green line: normal mode. (Color figure online)
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Fig. 8 Investigated structure and operating deflection shapes of

the two modes, with detailed positions of the nodal radii (in

dashed lines), accelerometers (A), coils (C1, C2), magnets (M),

lests (L) and nylon threads (NT). Notice that the orientations of

the two bottom figures are different from the upper one, with a

rotation of ’ 45�. (Color figure online)



proportional to the current intensity. A preliminary

modal analysis is performed from velocity measure-

ments thanks to a scanning laser vibrometer (Polytec

PSV-400). The operating deflection shapes of the two

companion modes under interest are shown in Fig. 8

and labeled A-mode and B-mode in accordance with

the theoretical part of the article, the A-mode being the

one with the lower eigenfrequency. To measure the

modal coordinates associated with those two modes,

we use two small accelerometers (Brüel & Kjær 4375)

glued near the edge of the plate, precisely on a nodal

radius of the deformed shapes, to naturally discrem-

inate the effect of the two modes. In this way, each

accelerometer measures the oscillation of one mode

only. Two neodymium magnets are also glued on the

nodal radii of the two modes, so as to allow actuation

of each mode separately with the help of a coil.

The plate with no accelerometers and only a single

magnet attached (to excite the plate) have eigenfre-

quencies at 107.3 Hz and 115.8 Hz. To reduce the gap

between those two frequencies that arises from the

unavoidable imperfections of the system, additional

lests (magnets) are placed on the two nodes of

A-mode, on both sides of the plate, to reduce the

frequency of B-mode. Table 1 shows the effect of all

added masses and that the full configuration has closer

eigenfrequencies, with a frequency difference of

4.59 Hz instead of 8.5 Hz.

An experimental continuation procedure based on a

Phase Locked Loop (PLL) [7] is used to measure the

backbone curves as well as the forced responses of the

system as shown in Fig. 9. The excitation is an

amplified sine signal of frequency X sent to the coil,

which creates a force proportional to the current

intensity denoted as I(t). A real time control system (a

dSpace MicroLabBox 1302T), with a control loop

mainly based on a proportional/integral controller,

adjusts the frequency X so that a prescribed phase is

obtained between the force excitation signal1 and the

acceleration of one of the modes (called a1ðtÞ and a2ðtÞ
respectively for the A-mode and B-mode). Due to the

nonlinearities, a small harmonic distorsion is often

observed in the acceleration signal and the phase

estimations are performed on the first harmonic of the

signal, as extracted from a homodyne detection. The

sampling frequency of the control system is fixed at 50

kHz and for all measurements, the integral and

proportional gains of the control loop are respectively

fixed at Ki ¼ 150 and Kp ¼ 5. These values are larger

than those used in [7] but avoid the instability regions

of the control system in a closed-loop case. It has been

shown in [7] that if the system behaves as a single

Duffing oscillator, the unstable parts of the forced

response are stabilized by the control loop, without

changing the systems response in the steady state.

In practice, since only the first harmonics of the

signals are measured, we write the current intensity

and the two displacement signals at points A and B:

IðtÞ ¼ I0 cosXt; wAðtÞ ¼ w1 cosðXt � w1Þ;
wBðtÞ ¼ w2 cosðXt � w2Þ:

ð24Þ

Then, since the acceleration are measured at points A

and B, with amplitudes a1, a2 and phases w1, w2

respectively, we obtain the amplitude w1, w2 and the

phases /1, /2 of the displacement signals at points A

and B on the plate by:

w1 ¼
a1

X2
; w2 ¼

a2

X2
; /1 � w1 þ p ðmod 2pÞ;

/2 � w2 þ p ðmod 2pÞ:
ð25Þ

Two distinct measurements can be performed [7].

First, it is possible to measure a given backbone curve

by prescribing the phase lag between the displacement

and the forcing signals to a fixed value / ¼ �p=2, so
as to excite the system in phase resonance. Then, by

increasing the forcing amplitude, the control system

adjusts the frequencyX so that/ is as close as possible

to�p=2 and X is thus theoretically the free oscillation

frequency of the associated conservative system. This

is because at phase resonance, the forcing exactly

cancels the viscous damping forces [30]. The second

experiment measures a forced response. In this case,

the amplitude of the forcing I0 to a selected value is

prescribed. For a given system, if the phase is a

monotonous function of a path parameter on the forced

response curve e.g. a Duffing oscillator [7], a phase

sweep (between 0 and p for instance) gives the full

forced response of the system with the unstable part

stabilized (and thus measured) by the control system.

These two types of measurements are both applied to

the circular plate in the current work.

1 In practice the current intensity in the coil is measured, and is

assumed to be proportional to the actual force with no phase lag.



3.2 Backbone measurements and identification

The backbone curve of the A-mode is first measured.

The plate is excited at a node of B-mode as shown in

Fig. 9, so that the modal excitation of the companion

B-mode is as small as possible. Then, using the PLL

procedure described in the previous section, a phase

lag of w1 ¼ p=2 (/1 ¼ �p=2) is prescribed and the

amplitude of excitation is increased from zero. The

black curve in Fig. 10a, b shows the amplitude and

phase of the A-mode, w1 and w1, as a function of the

driving frequency X, whereas the purple curves shows
the amplitude and phase of the B-mode,w2 andw2. For

low amplitudes, a smooth hardening backbone curve is

obtained, with the amplitude w2 of B-mode remaining

close to zero (Fig. 10a). This solution branch is thus a

part of the (uncoupled) backbone of the A-mode, since

no significative response of the B-mode is observed.

Then, for ðw1;X=ð2pÞÞ ’ ð0:8mm; 111HzÞ, a change

of curvature is observed and w2 starts to increase from

zero. Looking at the phases in Fig. 10b, it is observed

that the phase of B-mode locks exactly at

w2 ¼ w1 � p=2. Qualitatively, this part of the

response has the features of an elliptic mode, as

described theoretically in Sect. 2.2, that emerges from

the A-mode after an imperfect pitchfork bifurcation.

In the same manner for the backbones of the A-

mode and the EM, the same procedure is applied to

obtain the backbone of the B-mode. The plate is

excited at an node of the A-mode and the phase of the

B-mode is prescribed at w2 ¼ �p=2 with the driving

amplitude increased from zero. A single hardening

uncoupled backbone is obtained and shown as a solid

blue line in Fig. 11.

With the backbones of the A-mode, B-mode and

EM all gathered in Fig. 11, it is possible to estimate

the values of the coefficients of the reduced order

model of Eq. (1). First, the two eigenfrequencies x1

and x2 are obtained as the vanishing amplitude limit

of the two A-mode and B-mode backbones, at

104.66 Hz and 109.26 Hz. Then, with the curvature

of those two uncoupled branches, the coefficients C1

and C2 can be estimated using Eqs. (8) and (9).

Finally, the elliptic mode coupled backbone that

emerges from the uncoupled A-mode backbone at

’111 Hz allows the estimation of the two remaining

nonlinear coefficients, that are considered equal in this

case: C1 ¼ C2. The fitting of this last coefficient is

processed such that:

– From Eq. (22), the intersection between the

backbone curve of A-mode and the instability

region from which the elliptic mode appears (point

IEa) gives an estimate for coefficient C2;

– The curvature of the elliptic mode, given by

Eq. (17) identifies the coefficient C1 independently

of C2.

The backbone curves computed with the estimated

coefficients are also shown in Fig. 11, as well as the

instability regions, computed with Eqs. (8), (9), (17),

Table 1 Comparison of the resonance frequencies of the plate, with initial and complete devices

Plate setup Mode A: f1 (Hz) Mode B: f2 (Hz) Df ¼ f2 � f1 (Hz)

Hanged plate ? {magnet} 	2 107.3 115.8 8.5

Plate ? {magnet ? accel.} 	2 ? lests 104.66 109.25 4.59

Charge amplifier

Power amplifier

dSPACE
MicroLabBox

Computer

Accelerometers

Coil / magnet system

Current intensity
A

B

A−mode

B−mode

Fig. 9 Scheme of the

experimental setup. a1, a2
and Q denote the measured

accelerometers and the

electromechanical

excitation, respectively at

the inputs and output of the

dSpace



(36) and (37). An almost perfect agreement is obtained

between the experimental measurements and the

theoretical results for amplitudes of oscillations up to

1 mm. For higher amplitudes, a slight departure

between theoretical predictions and measurements is

observed, which is probably due to the first-order

solution used in the calculations, valid only for small

amplitudes of motion.

It must also be noted that the model identification

proposed here can be viewed as an extension to the

case of a 1:1 internal resonance of the general

procedure proposed in [7]. The model is obtained by

a normal form reduction (restricted to a 4 nonlinear

terms perfect case) and identified via backbone curves

obtained from experimental continuation. It is, to the

knowledge of the author, a first (but modest) attempt

of identification of a nonlinear model with modes in

internal resonance, whereas other contributions use

the forced responses [23, 39, 41]. It will be seen in the

next section that this parameter identification is also

robust in the sense that the results can be easily

extended to forced vibrations.

The identified coefficients are now compared to

analytical values computed from a nonlinear plate
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Fig. 10 Amplitudes and phases of the displacement signals of

the A and B-mode mode during a phase resonance experiment

(black and purple curves, respectively) and during a forced

experiment (blue and red curve, respectively; phase sweep at

constant driving amplitude of I0 ¼ 0:191A). Some details,

around the amplitude resonance of the elliptic mode, are

provided (z1, z2). (Color figure online)
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Fig. 11 Experimentally identified backbones and stability

curves: amplitudes w1 and w2 of A and B-mode as a function

of frequency X. Black solid line: measured backbone curve of

A-mode (A-mode exp., before the stability limit, in red) and

elliptical mode (EM—exp., after the stability limit). Blue solid

line: experimental backbone curve of B-mode (B-mode exp.).

Black dotted and blue dashed lines: identified backbones of

respectively A and B-modes in uncoupled regime (A-mode

ident., B-mode ident.). Black dashed line: identified backbone of

the coupled elliptic mode (EM—ident.). (Color figure online)



model, founded on the Kirchhoff-Love kinematics and

the von Kármán strain—displacement law. A com-

plete derivation and numerical results can be found in

[10, 45], where a dimensionless form of the nonlinear

plate equations is used to obtain the general system of

Eq. (1). Due to the choosen locations of the

accelerometers, the physical parameters are consid-

ered proportional to the modal coordinates. Conse-

quently, the following relationships between physical

and dimensionless values are used to perform the

adjustment of the model parameters:

f ¼ h

2pR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12qð1� m2Þ

s

�x; w1 ¼ UðrmeasÞ
h2

R
2a;

w2 ¼ UðrmeasÞ
h2

R
2b; e ¼ 12ð1� m2Þh2

R2
;

ð26Þ

where f refers to a frequency in Hz related to a

dimensionless angular frequency �x , UðrmeasÞ is the

theoretical amplitude of the mode shape of the

considered mode, defined with Bessel functions (see

[45]) at the radius rmeas of location of the accelerom-

eters. One has to notice the factor 2 comes from the

definition of w1 and a (resp. w2 and b) in Eqs. (7) and

(24).

According to this scaling, the dimensionless values

of coefficients C1, C2, C1 ¼ C2 are gathered in

Table 2, from both the theory [45] and the present

estimated values. The estimated nonlinear coefficients

are a little smaller than the theoretical values, with an

error of the order of 5%, 10% and 20% for the

coefficient C1, coefficient C2 and the 2 coefficients C1

and C2 respectively. These differences with the

numerical values can be explained by the imperfec-

tions, inherent to the plate but also the added masses

(accelerometers, magnets). The nonlinear coefficients

are sensitive to the mode shapes, in particular to the

differences between the nodal and anti-nodal diame-

ters compared to those of a perfect plate. Similar

results have been found in [39].

Due to the imperfections, the pitchfork bifurcation

at 110 Hz leading to the coupled elliptic mode is also

imperfect; thus a single continuous stable branch is

found and naturally followed by the PLL. The second

stable coupled branch (with almost the same ampli-

tude and a phase w2 ¼ w1 þ p=2), should be isolated

from the main branch and connected to the uncoupled

unstable A-mode backbone by a saddle-node

bifurcation. It has not been possible to initialize the

PLL procedure on one of the isolated branch to

measure them, as it has been done in [39]. Moreover,

preliminary numerical investigations on the model of

Sect. 2, shows that whatever the value of the coeffi-

cients, only perfect pitchfork bifurcations are found.

This suggests that the imperfections of the plate should

be taken into account by small nonzero added

nonlinear cubic terms in the model (e.g. the X3
2 and

X2
1X2 terms in Eq. (1a) and the X3

1 and X2
2X1 terms in

Eq. (1b), thus extending the analysis to eight param-

eters for the nonlinear coefficients. This is logical as

adding those new terms in the equations prevent the

uncoupled solutions from existing, since invariant-

breaking terms, in the sense given in [43], are now

present. Consequently, perfect bifurcation cases exist

with those new terms, which has been clearly observed

with numerical investigations using continuation

methods. The detailed analysis of this transition to

imperfect bifurcations is however left for further

studies.

3.3 Forced response around A-mode and PLL

behavior

In parallel to the backbone curve measurements of the

previous section, forced responses have also been

measured by the PLL control system, by keeping the

amplitude of forcing constant and sweeping the phase

of the directly excited mode from 0 to p. These

supplementary measurements demonstrate that the

PLL control system is also able to observe the 1:1

internal resonance in the case of the forced responses.

In particular, the entire response curve could be

measured only if the controlled phase is monotonous.

Figure 10 shows a typical forced response when the

driving point is chosen on a node of the B-mode to

mainly drive the A-mode. Similar responses than those

predicted and measured in [39, 45] are obtained, with a

phase difference of w2 � w1 ¼ p=2 between A and B-

mode in the coupled part, a characteristic of a forced

elliptic mode giving rise to a rotating travelling wave.

Two features are noteworthy. First, the forced

response lies in the vicinity of the backbones, with a

crossing at the phase resonance of the coupled branch

(w1 ¼ p=2), which stands close to the amplitude

resonance. Second, the unstable part is stabilized by



the PLL control loop on a large part of the coupled

response, as discussed in the following.

Figure 12 displays the backbone of the A-mode and

several forced responses, for three excitations levels.

First, the same qualitative behaviour is obtained, with

the nonlinear forced responses, shown as green and

yellow curves, distributed around the backbone curve

both for the uncoupled solution and after the emer-

gence of the 1:1 internal resonance. Secondly, for the

same response curves, the PLL control loop is not able

to stabilize the whole forced response in a single phase

sweep, as it would be the case for a Duffing oscillator

[7]. Indeed, a first branch is obtained by an increasing

phase sweep from w1 ¼ 0 corresponding to point C in

Fig. 12. Then, point D is reached, with the emergence

of the 1:1 interaction, which is theoretically stable until

the saddle-node bifurcation at point E on the green

curve. Then, further increasing the phase leads to the

measurement of a theoretical unstable coupled branch,

which is stabilized by the PLL until point F in which

the control loop loses its stability. It is possible to

measure another branch starting from point G with a

phase close to p and doing a decreasing phase sweep,

to first reach point H with a saddle-node bifurcation

and then point F where the control loop loses its

stability.

To discuss this instability of the control system in

forced regime, the experimental results are compared

to the numerical simulations obtained using the

continuation software Manlab [2, 11], that enables

the simulation of periodic responses of system like

Eq. (27) using the harmonic balance method and an

asymptotic numerical method. The stability of the

branches is obtained by the Hill method [18]. The

values of the parameters used for the simulation are

gathered in the last row of Table 2. The values

commonwith the free response case have been slightly

changed for a better fit on the experiments. Then,

modal damping factors (dimensionless), defined as

n1 ¼ el1=x1 and n2 ¼ el2=x2, have been estimated

by a half power bandwidth method on linear (small

amplitude) frequency response functions. Finally, the

forcing amplitudes have been chosen such that

F1 
 F2, with F1 ¼ 5:97 and F2 ¼ F1=35:0, with a

slight non zero forcing of B-mode due to experimental

imperfections.

The computed forced responses are presented in

Fig. 13. A remarkable comparison is obtained

between theory and experiments. However, the sim-

ulations show precisely the topology of all the

unstable branches, especially the uncoupled resonance

of the A-mode. Its unstable part is connected to the rest

of the diagram through two pitchfork bifurcations, at

points D and F in Fig. 13. Because of the nonzero

value of F2, these pitchfork bifurcations are imperfect.

The main result is that the PLL control loop loses its

stability precisely at the pitchfork of point F, where the

unstable uncoupled A-mode branch is connected to the

rest of the diagram. For a reason out of the scope of this

paper, the PLL control system is not able to branch

into the coupled regime from the uncoupled one and

inversely at point F. It must be noticed that the stability

of the PLL control loop has been theoretically proved

only with a single Duffing oscillator in [7]. This study

remains to be extended to the present case of a 1:1

internal resonance. A particular focus on the phase

paths of the two oscillators needs to be performed.

Indeed, the particular behaviour of the PLL control

loop observed in this section could be explained by a

complex topology of the phases, not compatible with

the monotonous path prescribed in these experiments.

4 Conclusion

This paper adresses the theoretical analysis and the

experimental investigations on a system with two

coupled oscillators of cubic nonlinearities featuring

Table 2 Identified values of frequencies, modal dampings and nonlinear coefficients by adjusting theory with experiments. The

theoretical value of those coefficients, from [45], are also given

Identified Theory

f1 (Hz) f2 (Hz) n1(%) n2(%) C1 C2 C1 C2 C1 ¼ C2 ¼ C1 ¼ C2

Free 104.66 109.26 – – 1.80 1.68 1.55 1.55 1.89

Forced 104.90 109.01 0.13 0.06 1.80 1.58 1.85 1.58 1.89



1:1 internal resonance. The coupled and uncoupled

solutions of the nonlinear system are derived by using

a multiple-scale analysis. The main outcomes of the

analytical results offer a complete view of the

bifurcation scenario thanks to the derivation of the

analytical expressions of the instability regions, that

has never been written out in the previous

investigations on the 1:1 resonance in free vibrations.

An extension to the results by Manevitch and

Manevitch [21] is also provided by taking into account

4 nonlinear coupling coefficients as parameters.

Depending on the parameter values, nine possible

bifurcation scenarios have been established, with

different topological configurations including
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supercritical or subcritical pitchfork, two kinds of

coupled solutions (elliptic and normal modes), with

solution branches either of finite or infinite extent. The

measurements on two companion configurations of a

circular plate exhibit one bifurcation point, from

which a coupled elliptic mode emerges. The estima-

tion of the nonlinear coefficients leads to identification

of the corresponding scenario, showing that the

experimental setup does not allow measurement of

all the existing solutions. The behaviour of the PLL

system in the forced regime has also been commented

showing its difficulty in following a single run of a

complete bifurcation diagram when a 1:1 resonance is

activated. This behaviour is found to be different from

the one observed when following a simple Duffing

equation, necessitating further research in order to

give a better control on the system to measure all

solutions smoothly. Imperfect bifurcations has been

also discussed as a key point to explain the slight

differences between the theory and the experiments,

and it has been underlined that in free vibrations,

imperfect pitchfork bifurcations are observed only

when taking into account the other nonlinear coupling

coefficients than the four retained in this study. This

particular point may call for further dedicated research

to shed light on this specific behaviour.
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Appendix 1: derivation of first-order equations

This appendix gives the full detail of the derivation of

the first-order slow-scale equations for the system of

cubic oscillators featuring 1:1 internal resonance using

the multiple scales method. The derivation is written

for the forced and damped problem and is then finally

reduced to free vibration by cancelling the forcing and

damping terms. This allows us to give a unified

presentation for the two cases, following closely the

derivation shown in [45]. It is also mandatory for our

presentation since the derivation of the instability

region for the free vibration is derived from the forced

and damped case, as explained below.

The starting point is thus the following equations of

motion:

€X1 þ x2
1X1 þ e 2l1 _X1 þ C1X

3
1 þ C1X1X

2
2

� �
¼ eF1 cosXt;

ð27aÞ

€X2 þ x2
2X2 þ e 2l2 _X2 þ C2X

3
2 þ C2X2X

2
1

� �
¼ eF2 cosXt:

ð27bÞ

These two equations generalizes the case of free

vibration considered in (1), by adding two different

damping factors for each oscillator, l1 and l2, and two
forcing terms with amplitudes F1 and F2, scaled at

order e since the primary resonance is investigated.

These equations are close to those used in [45], except

that two distinct damping terms are considered instead

of a single one l ¼ l1 ¼ l2 selected in [45]. Note also
that in [45], the nonlinear stiffness terms were at the

right-hand side of the equations of motions, so that the

comparison can be drawn by simply changing the

signs of C1, C2, C1 and C2.

The two detunings are introduced as

x2 ¼ x1 þ er1; ð28aÞ

X ¼ x1 þ er2: ð28bÞ

The first detuning r1 quantifies the 1:1 internal

resonance, while r2 expresses the fact that a primary

resonance is investigated so thatX ’ x1. The multiple

scales method is introduced, with T0 ¼ t a fast time

scale and T1 ¼ et a slow time scale. The unknown are

expanded as Xi ¼ Xi1ðT0; T1Þ þ eXi2ðT0; T1Þ. The first-
order solution is easy to find and reads:

X11 ¼ AðT1Þ expðix1T0Þ þ c:c:; ð29aÞ

X21 ¼ BðT1Þ expðix2T0Þ þ c:c:; ð29bÞ

where c.c. stands for complex conjugate. The

solvability conditions write, for the two unknown

complex amplitudes AðT1Þ and BðT1Þ :



�2ix1ðA0 þ l1AÞ � 3C1A
2 �A� C1ð�AB2 e 2ir1T1

þ 2AB�BÞ þ F1

2
e ir2T1 ¼ 0;

ð30aÞ

� 2ix2ðB0 þ l2BÞ � 3C2B
2 �B

� C2ð�BA2 e �2ir1T1 þ 2BA�AÞ þ F2

2
e iðr2�r1ÞT1 ¼ 0;

ð30bÞ

where ð Þ0 denotes the derivative with respect to the

slow time scale T1. These two equations can be

rewritten by considering the polar form for the two

unknowns, such that A ¼ aðT1Þ expðiaðT1ÞÞ and

B ¼ bðT1Þ expðibðT1ÞÞ. The non-autonomous system

for the amplitude and phases finally writes:

a0 ¼ �l1a�
C1

2x1

ab2 sinð2b� 2aþ 2r1T1Þ

þ F1

4x1

sinðr2T1 � aÞ;
ð31aÞ

a0 ¼ 3C1

2x1

a2 þ C1

2x1

b2 2þ cosð2b� 2aþ 2r1T1Þð Þ

� F1

4x1a
cosðr2T1 � aÞ;

ð31bÞ

b0 ¼ �l2b�
C2

2x2

ba2 sinð�2bþ 2a� 2r1T1Þ

þ F2

4x2

sin ðr2 � r1ÞT1 � bð Þ;

ð31cÞ

b0 ¼ 3C2

2x2

b2 þ C2

2x2

a2 2þ cosð�2bþ 2a� 2r1T1Þð Þ

� F2

4x2b
cos ðr2 � r1ÞT1 � bð Þ:

ð31dÞ

Note that in order to make the system (31)

autonomous, one needs to introduce the following

two additional variables

c1 ¼ r2T1 � a; ð32aÞ

c2 ¼ ðr2 � r1ÞT1 � b: ð32bÞ

When forcing and damping terms are removed,

Eq. (31) depends on only one angular variable, so that

numerous different choices can be selected in order to

make the system autonomous. In order to stay close to

the notations used for the forced and damped system,

the following change of coordinate is selected as:

c1 ¼ �a; ð33aÞ

c2 ¼ �r1T1 � b: ð33bÞ

This choice leads to the autonomous system given in

Sect. 2, Eq. (6).

Appendix 2: instability region for the uncoupled

solutions

In this section we derive the instability region of the

uncoupled solutions for the free vibration case, from

the analysis of the damped/forced system. The starting

point is the instability regions derived in [39] for the

forced/damped case, i.e. for the system (31), made

autonomous using change of variable from Eq. (32).

The analysis led in [45] shows that uncoupled solution

where only the first mode is excited is unstable when

this relationship is fulfilled :

r2 ¼ r1 þ
C2a

2

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2a

4

3x2
2

� l2

s

ð34Þ

Cancelling the damping by letting l ¼ 0 in this

equation leads to

r2 ¼ r1 þ ð2þ sÞC2a
2

x2

with s ¼ � 1: ð35Þ

The last step is to replace r2, which is defined by

(28b). However cancelling the forcing would result in

X being undefined. Instead, one needs to map X to the

nonlinear oscillation frequency in the free regime. r2
is then the detuning allowing one to express this

nonlinear frequency as a function of the linear

eigenfrequency with xNL ¼ x1 þ er2. Replacing r2
with its expression as given by Eq. (35), one can

finally obtain:

xNL ¼ x2 þ eð2þ sÞC2a
2

x2

with s ¼ � 1: ð36Þ

This equation shows that as soon as the nonlinear

frequency of A-mode enters the region delimited by

the two curves obtained with s ¼ � 1, then the



uncoupled solution becomes unstable. In order to

derive the instability region for the B-mode, the same

reasoning is applied using symmetric relationships,

leading to:

xNL ¼ x1 þ eð2þ sÞC1b
2

x1

with s ¼ � 1: ð37Þ

Appendix 3: stability of the coupled solutions

The stability of the coupled solution is derived

classically from the jacobian matric of (6). The

general jacobian J reads, with Sc ¼ sin 2ðc1 � c2Þ
and Cc ¼ cos 2ðc1 � c2Þ in order to ease notations:

J ¼

� C1

2x1

b2Sc � C1

x1

ab2Cc � C1

x1

abSc
C1

x1

ab2Cc

� 3C1

x1

a
C1

x1

b2Sc � C1

x1

bð2þ CcÞ � C1

x1

b2Sc

C2

x2

abSc
C2

x2

ba2Cc
C2

2x2

a2Sc � C2

x2

ba2Cc

�C2

x2

að2þ CcÞ
C2

x2

a2Sc � 3C2

x2

b � C2

x2

a2Sc

0

BBBBBBBBBB@

1

CCCCCCCCCCA

:

ð38Þ

The coupled solutions are characterized by specific

relationships on the angles leading to simplification of

J . Indeed one has sin 2ðc1 � c2Þ ¼ 0 and

cos 2ðc1 � c2Þ ¼ s ¼ � 1. With these simplifications

the 4	 4 determinant of the jacobian matrix D ¼
detðJ � kIÞ with I the identity matrix can be

analytically derived as:

D ¼ k2 k2 � 3a2b2s
C2C2

x2
2

þ C1C1

x2
1

� �
þ 2

C1C2

x1x2

b2a2sð2þ sÞ
� 	

:

ð39Þ

Two eigenvalues are found to be zero which is logical

for coupled solutions in four-dimensional phase space.

The two other eigenvalues are solutions of

k2 ¼ 3a2b2s
C2C2

x2
2

þ C1C1

x2
1

� 2

3

C1C2

x1x2

ð2þ sÞ
� 	

;

ð40Þ

with s ¼ þ1 for normal mode and s ¼ �1 for elliptic

mode. Each mode (normal or alliptic) is stable as long

as k2\0, which leads to the conclusion that stablity is

governed only by the value of the scalar

Sc ¼ C1x2

C2x1
þ C2x1

C1x2
, the normal mode being stable as

long as Sc\2, and the elliptic mode as long as

Sc [ 2=3.

Appendix 4: parametric study: bifurcation

scenario in the particular case without detuning

In this appendix, the particular case of perfectly equal

eigenfrequencies x1 ¼ x2 with a vanishing detuning

r1 ¼ 0, is considered. In this case, the amplitude

values for which the branch points IEa, INa, IEb and INb
(as defined in Eqs. (22) and (23)) are equal to zero: this

means that the coupled solutions could exist from a

vanishing amplitude. This is the direct consequence of

the fact that, as r1 ¼ 0, the gaps between the starting

point of the A-mode and the B-mode backbone curves

and their instability regions, does not exist anymore.

The second consequence is also that uncoupled

solutions are either always stable or always unstable,

whatever the amplitude. Considering the coupled

solutions, cancelling the values of all branch points

does not mean that NM and EM always exist. Indeed,

Eq (14), which defines the amplitude relationships for

coupled solutions, rewrites with r1 ¼ 0

3C1 � ð2þ sÞC2ð Þa2 ¼ 3C2 � ð2þ sÞC1ð Þb2; ð41Þ

with s ¼ � 1 for NM and EM. Consequently coupled

solutions can exist if and only if the respective

coefficients in front of the square amplitude have the

same sign.

The stability chart that gives all possible solutions

as function of the nonlinear coefficients is thus

modified and shown in Fig. 14a. The main difference

with the detuned case where r1 [ 0 is that the coupled

solutions of finite extent can not exist anymore since

all branch points have the same vanishing amplitude.

This leads to modification of the lower right part of the

stability chart to make it symmetric. The possible

cases are discussed as function of the stability of the

uncoupled mode, reported in Fig. 14a on the vertical

and horizontal axes. Four cases exist:

– Case 1 A-mode and B-mode are stable. This means

that the backbone curve of each uncoupled solution

is outside its instability region. It corresponds to

the four edges of the stablity chart, in upper left,

upper right, lower left and lower right regions. Two

cases are then possible:

– Case 1.1: if 3C1\C2 and C2 [C1, or if

3C2\C1 and C1 [C2. This case means that

the backbone curve of the A-mode stays on the

left of the instablity region while backbone



curve of the B-mode is on the right (or vice-

versa). Then in this case the coefficients of

Eq.(41) have opposite signs, thus no coupled

solutions exist.

– Case 1.2: if 3C1\C2 and 3C2\C1 (case 1.2.1),

or if C1 [C2 and C2 [C1 (case 1.2.2), the

backbone curves of the A-mode and the B-

mode are respectively on the same side of their

instability regions. Then in this case both

coupled solutions exist, and inspection of the

values of Sc indicates that in case 1.2.1 NM is

stable while EM is unstable, and case 1.2.2

leads to the contrary with NM unstable and EM

stable.

– Case 2 The A-mode and the B-mode are unstable.

This means that each backbone curve is totally

inside the instability region, so thatC2=3\C1\C2

andC1=3\C2\C1. Then in this case both coupled

solutions exist and are stable.

– Case 3 The A-mode is unstable and the B-mode is

stable. The instability of the A-mode is obtained

thanks to the condition C2=3\C1\C2. Two

subcases are then possible:
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Fig. 14 Stability analysis and bifurcation scenario in the case

r1 ¼ 0, with fixed parameters as x1 ¼ x2 ¼ p, C1 ¼ C2 ¼ 1. a
stability chart showing the possible solutions when varying the

values of the coupling coefficients C1 and C2. b Three-

dimensional representation of the solution branches in space

ðx; a; bÞ, for C1 ¼ C2 ¼ 5. c–d Two-dimensional projections in

the planes ðx; aÞ and ðx; bÞ for the case C1 ¼ C2 ¼ 25. (Color

figure online)



– If 3C2\C1, then EM does not exist, only NM

is possible and is stable (case 3.1).

– If C2 [C1, then NM does not exist, only EM is

possible and is stable (case 3.2).

– Case 4 The B-mode is stable and the A-mode is

unstable. This case can be simply deduced from

the previous one by symmetry (changing the

indices 1� 2).

Figure 14b illustrates a case in the upper right region

of the stability chart, in which both the A-mode and the

B-mode are stable and the two coupled solutions exist:

the NM is stable while the EM is unstable. Finally

Fig. 14c, d shows the projection on the ðx; aÞ and

ðx; bÞ for the case in the central region where both

uncoupled solutions are unstable. In this case, the only

stable solutions are the coupled branches, and both EM

and NM are stable.
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46. Touzé C, Thomas O, Chaigne A (2004) Hardening/soften-

ing behaviour in non-linear oscillations of structural sys-

tems using non-linear normal modes. J Sound Vib

273(1–2):77–101

47. Williams CJH, Tobias SA (1963) Forced undamped non-

linear vibrations of imperfect circular disks. J Mech Eng Sci

5:325–335

48. Yasuda K, Asano T (1986) Nonlinear foced oscillations of a

rectangular membrane with degenerated modes. Bull JSME

29(255):3090–3095

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.


	Backbone curves of coupled cubic oscillators in one-to-one internal resonance: bifurcation scenario, measurements and parameter identification
	Abstract
	Introduction
	Theoretical results
	Uncoupled solutions and instability regions
	Coupled solutions and their stability
	Parametric study: bifurcation scenario
	Comparison with a numerical solution

	Experiments
	Experimental setup
	Backbone measurements and identification
	Forced response around A-mode and PLL behavior

	Conclusion
	Acknowledgements
	Appendix 1: derivation of first-order equations
	Appendix 2: instability region for the uncoupled solutions
	Appendix 3: stability of the coupled solutions
	Appendix 4: parametric study: bifurcation scenario in the particular case without detuning
	References




