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Abstract. The present work compares results for different numerical methods in search of alternatives to improve the qual-
ity of large-eddy simulations for the problem of a supersonic turbulent jet flows. Previous work has analyzed supersonic
jet flows using a second-order, finite difference solver based on structured meshes, and the results indicated a shorter
potential core of the jet and different levels of velocity fluctuations. In the present work, the results of previous simulations
are compared to new results using a high-order, discontinuous Galerkin solver for unstructured meshes. All simulations
are performed keeping the total number of degrees of freedom constant. The results of the current simulations present very
similar mean velocity distributions and slightly smaller velocity fluctuations, and they seem to correlate better with the
experimental data. The present results indicate that additional studies should focus on the jet inlet boundary conditions
in order to improve the physical representation of the early stages of the jet development.
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1. INTRODUCTION

The use of large-eddy simulations (LES) for solving compressible turbulent jets is growing due to the ability to provide
sufficiently good solutions at a reasonable cost, when compared to direct numerical simulations (DNS) or the realization
of physical experiments. The application of LES on jet flows is interested in obtaining the flow and temperature fields,
providing information for aerodynamics, acoustics and heat transfer analyses.

There are many numerical options to perform LES for compressible turbulent flows. Two major distinct approaches
are based on low-order methods and high-order methods. When using low-order methods, the good results are obtained
from sufficiently fine grids or using adaptive mesh algorithms. The group of high-order methods, instead of depending
on fine grids, chooses to work with more sophisticated numerical algorithms for solving the physical equations that allow
a more rigorous representation of the equations calculated. Moreover, since high-order methods implicitly increase the
number of degrees of freedom, it is possible to have less refined meshes when compared to the low-order methods.

A compressible LES tool, JAZzY, was specifically designed to generate unsteady flow data of compressible turbulent
jets based on a second-order spatially accurate method for structured grids. A validation of JAZzY is performed in
Junqueira-Junior et al. (2018) for a supersonic jet flow configuration. The validation results indicate a shorter potential
core of the jet when compared to experimental and numerical data. The potential core of the jet is defined as the position
in the centerline of the jet where the velocity equals 95% of the jet velocity. Moreover, one can also observe a mismatch
of the mean velocity profiles along the lipline when comparing to the references. The shorter potential core is achieved
when using JAZzY with different mesh refinements and subgrid-scale (SGS) models.

Structured, low-order methods require very refined meshes near the core of the jet and such an approach does not
allow local mesh refinement. Therefore, the cost of calculations is prohibitive. Once the strategy of using structured
grids showed some disadvantages for the problem of interest, the authors decided to investigate the possibilities using
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an unstructured, high-order framework, FLEXI (Krais et al., 2021), which implements the discontinuous Galerkin (DG)
method proposed by Kopriva and Gassner (2010) and Hindenlang et al. (2012). The FLEXI tool applies a discretization
that can be employed on unstructured meshes, thus providing more flexibility with regard to geometries and meshes.
The order of accuracy of the numerical algorithm varies by choosing different polynomial degrees for interpolating the
solution inside each element. The numerical code is open-source and it is already validated with interesting results at
reasonable costs (Gassner and Beck, 2013).

The present work is interested in comparing the effects of the DG method and the structured 2nd-order spatial dis-
cretization approach on the solution of supersonic jet flows. The comparisons presented here investigate the quality of
the results from low-order simulations with the two methodologies and the results using FLEXI with third-order accu-
racy. The results are also compared with experimental data. One important aspect of the present study is the comparison
of different approaches when using similar meshes topologies with, also, similar numbers of degrees of freedom in the
simulations and, hence, comparable computations resources.

2. NUMERICAL FORMULATION

2.1 Governing Equations

The governing equations to be solved by both numerical methods are the compressible filtered Navier-Stokes equation.
In conservative form, they can be expressed by

∂Q̄

∂t
+∇ · F(Q̄,∇Q̄) = 0, (1)

where Q̄ = [ρ̄, ρ̄ũ, ρ̄ṽ, ρ̄w̃, ρ̄Ě]T is the vector of filtered conserved variables and F is the flux vector. The flux vector can
be divided into the Euler fluxes and the viscous flux, F = Fe − Fv . The fluxes with the filtered variables may be written
as

Fei =
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 , for i = 1, 2, 3, (2)

where ũi or (ũ, ṽ, w̃) are the Favre averaged velocity components, ρ̄ is the filtered density, p̄ is the filtered pressure and ρ̄Ě
is the filtered total energy per unit volume. The terms τmodij and qmodi are the modified viscous stress tensor and heat flux
vector, respectively, and δij is the Kronecker delta. The filtered total energy per unit volume, according to the definition
proposed by Vreman (1995) in its "system I", is given by

ρ̄Ě =
p̄

γ − 1
+

1

2
ρ̄ũiũi. (3)

The filtered pressure, Favre averaged temperature and filtered density are correlated using the ideal gas equation of
state p̄ = ρ̄RT̃ , and R is the gas constant, written as R = cp − cv . The properties cp and cv are the specific heat at
constant pressure and volume, respectively. The modified viscous stress tensor may be written as

τmodij = (µ+ µSGS)

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
(µ+ µSGS)

(
∂ũk
∂xk

)
δij (4)

where µ is the dynamic viscosity coefficient, calculated by Sutherland’s Law, and µSGS is the SGS dynamic viscosity
coefficient, which is provided by the subgrid-scale model. The strategy of modeling the subgrid-scale contribution as an
additional dynamic viscosity coefficient is based on the Boussinesq hyphotesis. The modified heat flux vector, using the
same modeling strategy, is given by

qmodi = −(k + kSGS)
∂T̃

∂xi
(5)

where k is the thermal conductivity coefficient of the fluid and kSGS is the SGS thermal conductivity coefficient given by

kSGS =
µSGScp
PrSGS

(6)

and PrSGS is the SGS Prandtl number. The work of Junqueira-Junior et al. (2018) compares the effects of different SGS
models on the simulations of jet flows, and it observes a weak influence of the models. Therefore, the present work only
applies the static Smagorinsky model (Smagorinsky, 1964) in order to calculate the subgrid-scale contribution.



2.2 Nodal Discontinuous Galerkin Method

The nodal Discontinuous Galerkin method used in this work is obtained initially by dividing the physical domain
Ω into multiple non-overlapping elements. Galerkin methods are capable of handling any element type, however, it is
decided to restrict the shape of the elements to hexahedra. When working with hexahedral elements, the implementations
is simpler and the computational efficiency is improved when compared to arbitrary shape elements.

The elements from the physical domain are mapped onto a reference unit cube elements E = [−1, 1]3. The equations,
presented in (1) need also to be mapped to this new reference domain, leading to

J
∂Q̄

∂t
+∇ξ · F̄ = 0, (7)

where∇ξ is the divergence operator with respect to the reference element coordinates, ξ = (ξ1, ξ2, ξ3)T , J = |∂x/∂ξ| is
the Jacobian of the coordinate transformation and F̄ is the contravariant flux vector.

The discontinuous Galerkin formulation is obtained multiplying (7) by the testfunction ψ = ψ(ξ) and integrating over
the reference element E∫

E

J
∂Q̄

∂t
ψdξ +

∫
E

∇ξ · F̄ψdξ = 0. (8)

It is possible to obtain the weak form of the scheme by integrating by parts the second term in (8)

∂

∂t

∫
E

JQ̄ψdξ +

∫
∂E

(F̄ · ~N)∗ψdS −
∫
E

F̄ · (∇ξψ)dξ = 0, (9)

where ~N is the unit normal vector of the reference element faces. Because the discontinuous Galerkin scheme allows
discontinuities in the interfaces, the surface integral above is ill-defined. In this case, a numerical flux, F̄∗, is defined, and
a Riemann solver is used to compute the value of this flux based on the discontinuous solutions given by the elements
sharing the interface.

For the nodal form of the discontinuous Galerkin formulation, the solution in each element is approximated by a
polynomial interpolation of the form

Q̄(ξ) ≈
N∑

p,q,r=0

Q̄h(ξ1p, ξ
2
q , ξ

3
r , t)φpqr(ξ), (10)

where Q̄h(ξ1p, ξ
2
q , ξ

3
r , t) is the value of the vector of conserved variables at each interpolation node in the reference element

and φpqr(ξ) is the interpolating polynomial. For hexahedral elements, the interpolating polynomial is a tensor product
basis with degree N in each space direction

φpqr(ξ) = lp(ξ
1)lq(ξ

2)lr(ξ
3), lp(ξ

1) =

Np∏
i=0
i6=p

ξ1 − ξ1i
ξ1p − ξ1i

. (11)

The definitions presented are applicable to other two directions.
The numerical scheme used in the simulations have a split formulation, as presented by Pirozzoli (2011), with the

discrete form given by Gassner et al. (2016), to enhance the stability of the simulation. The split formulation is employed
to Euler fluxes only. The solution and the fluxes are interpolated and integrated at the nodes of a Gauss-Lobatto Legende
quadrature, which presents the summation-by parts property, that is necessary to employ the split formulation.

The Riemann solver used in the simulations is a Roe scheme with entropy fix (Harten and Hyman, 1983) to ensure that
second law of thermodynamics is respected, even with the split formulation. For the viscous flux, since the discontinuous
Galerkin scheme are not suitable for discretizing the high order derivative operator, the lifting scheme of Bassi and Rebay
(1997) is used. The time marching method chosen is the five-stage, fourth-order explicit Runge-Kutta scheme of Carpenter
and Kennedy (1994). The shock waves that appear in the simulation are stabilized by using the sub-cell shock capturing
method of Sonntag and Munz (2017).

2.3 Second-Order Finite Difference Method

The code JAZzY (Junqueira-Junior et al., 2018) solves the non-dimensional filtered Navier-Stokes equations using a
structured finite difference approach for a general curvilinear coordinate system. It calculates the numerical fluxes using
a second-order centered scheme with explicit addition of artificial dissipation, which is obtained from the anisotropic
scalar model of Turkel and Vatsa (1994). The time integration is done by an explicit second-order five-stage Runge-Kutta
scheme (Jameson and Mavriplis, 1986). Even though the simulation is performed for a supersonic problem, no additional
shock-capturing model is required, because the Turkel and Vatsa (1994) artificial dissipation model can provide additional
artificial dissipation near discontinuities
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3. EXPERIMENTAL CONFIGURATION

Most of recent jet experiments are concerned with representing the sound emitted from modern airplanes in takeoff
configuration, in which the jet flow is in high subsonic regime. However, our focus is to represent supersonic jet flows,
that can be found in large launch vehicles. The experimental work of (Bridges and Wernet, 2008) provided the physics
characteristics desired for the simulation in which a group of nozzle configurations is analyzed to obtain different types
of jet flows.

The present work studies the fully expanded free jet flow configuration with a Mach number of 1.4. This choice
is motivated by the lack of wall geometries and the absence of strong shock waves in the configuration. Such flow
characteristics can contribute to reducing the calculation costs. The experimental apparatus for this configuration is
composed of a convergent-divergent nozzle designed with the method of characteristics to obtain this flow configuration
Bridges and Wernet (2008). The nozzle exit diameter is 50.8 mm. The Reynolds number based on the nozzle exit diameter
reaches values of approximately 1.65× 106, which is large compared to most other jet experiments and LES available in
the literature.

The data acquisition in the tests applies Time-Resolved Particle Image Velocimetry (TRPIV), and it is operated pri-
marily with a 10 kHz sample rate. For spectra analysis, in some smaller fields, the acquisition is made with 25 kHz. The
experiment uses two sets of cameras, one positioned to better capturing the flow along the nozzle centerline and the other
to capture the flow of the mixing layer along the nozzle lipline.

4. NUMERICAL SETUP

4.1 Geometry Characteristics

In the present work, the authors decided to utilize the geometry that provided the best results in the work of Junqueira-
Junior et al. (2018). Such a configuration has a divergent shape with an axis length of 40D. Close to the jet inlet,
one can find a smaller diameter of 16D and, on the opposite side, it presents a diameter of 25D. The code JAZzY is
non-dimensional and the reference length is the exit nozzle diameter D. The simulations using FLEXI are dimensional.
Therefore, the geometry is designed with the same scale as the experiment, so the nozzle exit diameter in the geometry
has D = 50.8 mm. A 3-D view of the geometry domain is presented in Fig. 1a.

4.2 Mesh Configuration

The JAZzY code works with a geometry that is obtained from the rotation of a 2-D mesh that creates prismatic elements
connecting the centerline. FLEXI code is restricted to hexahedral elements. Hence, in order to create two similar grids,
the procedure of rotating a 2-D mesh was done differently. Instead of having a 2-D mesh starting in the centerline, it
started with a diameter of 0.30D and the interior of the mesh is filled with a rectangular core connected to the rotated
mesh. This strategy allows obtaining the same mesh topology for diameters larger than 0.30D. A cut plane of the mesh
used in the FLEXI simulations is presented in Fig. 1b.

(a) (b)
Figure 1: (a): 3D view of geometry domain coloured by boundary condition. Red for jet inlet boundary condition and
blue for the domain boundary condition. (b): Half cutplane of Flexi-2 mesh.

Due to the use of different numerical algorithms and orders of accuracy, it is necessary to establish comparison criteria
for the simulations. For the JAZzY code, the number of degrees of freedom in each cell is one, because it only has one
value of the properties in each cell. For the FLEXI code, the number of degrees of freedom in each cell depends on the



degree of chosen interpolating polynomial. For a second-order simulation, we have a first-order polynomial, that requires
two internal nodes in each direction, and consequently, the degree of freedom in each element is 8. For a third-order
simulation, 3 internal nodes are required in each simulation, leading to 27 degrees of freedom in each element.

Considering the degrees of freedom as the comparison criteria and the reference grid provided in Junqueira-Junior
et al. (2018), with approximately 49 × 106 points, the two meshes created for the FLEXI code present approximately
6×106 and 8×106 elements. The adjustment of mesh sizes is obtained uniformly through the whole domain to guarantee
consistency between the simulations. Table 1 presents a summary of the mesh refinements used in the current work. The
present work uses GMSH (Geuzaine and Remacle, 2009) to generate the computational grids.

Table 1: Summary of the meshes utilized in the simulations.
Meshes Order of Accuracy DOF/cell Cells (106) Total # of DOF (106)
JAZzY 2nd order 1 49.1 49.1
Flexi-2 2nd order 8 6.2 49.6
Flexi-3 3rd order 27 1.8 48.6

4.3 Boundary Conditions

The present calculations apply the same boundary conditions of Junqueira-Junior et al. (2018) for the sake of consis-
tency. For the jet inlet boundary condition, the red region in Fig. 1a, all properties are prescribed and a top hat velocity
profile is imposed. In the JAZzY simulation, the inflow boundary conditions imposed a non-dimensional jet velocity of
1.4, with non-dimensional pressure and temperature of 1.0, and a Reynolds number of 1.57× 106. The inflow boundary
condition of FLEXI simulations imposes a jet velocity of 476.37 m/s, with a pressure of 101, 325 Pa and a density of
1.225 kg/m3, giving a Reynolds number based on the jet diameter of 1.66× 106.

For the domain boundary condition, the blue region in Fig. 1a, Riemann invariant-type boundary conditions are used to
characterize the farfield in the JAZzY code, while Dirichlet boundary conditions are used in FLEXI for the farfield bound-
ary. A sponge zone (Flad et al., 2014) is used in the simulations with FLEXI as an attempt to maintain the non-reflective
properties of the Riemann invariants. This sponge region is implemented circumferentially, with a small damping value
starting at approximately 14D and increased at longer distances from the centerline.

4.4 Calculation of Statistical Properties

For all the simulations, the initial condition is a stagnated flow all over the domain. Then, the jet is fully developed
with approximated 3 flow-through times (FTT). One FTT is defined as the time taken by a particle with the jet velocity
to cross the domain. For another 3 FTTs, the developed jet can reach the statistically steady condition. The statistics
presented in this work are achieved from the following 3 FTTs. The complete simulation takes 9 FTTs. The JAZzY
simulations run 14.2 FTTs before starting to collect statistical data for further 3.3 FTTs.

In the FLEXI simulations, the data are stored with a frequency of 100 kHz, which is at least 4 times larger than the
acquisition frequency from the experiments. From the work of Junqueira-Junior et al. (2018), the data from the simulation
using JAZzY are stored with a frequency of 280 kHz.

5. RESULTS

Two simulations are performed using the FLEXI code in the present work. The first calculation, Flexi S1, uses
second-order accuracy and applies the Flexi-2 mesh, as described in Tab. 1. The second simulation, Flexi S2, runs with
third-order spatial discretization and the Flexi-3 mesh, Tab. 1. The results of the simulations are compared with numerical
(Junqueira-Junior et al., 2018) and experimental data (Bridges and Wernet, 2008).

The first results investigated are the distribution of mean longitudinal velocity component (<U>) and the distribution
of root mean square (rms) of longitudinal velocity component fluctuation (urms) along the jet centerline (y/D = 0) and
the jet lipline (y/D = 0.5). The velocity variables are non-dimensionalized by dividing by jet velocity Uj . The results are
presented in Fig. 2. It is possible to observe from these results that velocity profiles calculated using the FLEXI numerical
tool are very close to the one from JAZzY computation. Such a remark indicates little influence of the numerical method
and order of accuracy for the conditions of such flow configuration.

The mean velocity distribution in the jet centerline, provided by the FLEXI simulations, Fig. 2a, presents a similar
behavior of JAZzY calculations with a shorter potential core than the one observed in the experiments. After the velocity
starts decreasing, the slope of the profile achieved by the simulations and the experimental measures is very similar.
The shorter potential core may be correlated with the earlier increase in the velocity fluctuation, as presented in Fig. 2b,
that all three numerical studies produced. In all simulations, it is possible to observe that the peaks in the calculated
longitudinal velocity component fluctuations occur upstream of the one observed in the experimental data. Furthermore,
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such peaks in the computational results are considerably more pronounced than the ones observed in the experiments.
The simulation with third-order of accuracy generates the smallest peaks among all calculations. However, it produces
the largest double-peaked amplitude, which is a behavior reproduced by all numerical simulations that do not exist in the
experiments.

The mean longitudinal velocity component distribution along the lipline, generated by all three calculations, Fig. 2c,
once more show different results, presenting an earlier decrease in the velocity. Fig. 2d presents similar behavior of
the rms of velocity fluctuations in the lipline calculated using JAZzY and FLEXI, which present a sudden peak closer
to the nozzle exit station that slowly decreases, while the experiment shows a slow increase of fluctuation velocity and
the occurrence of the peak fluctuation farther from the nozzle exit station. The magnitude of the peak presented in the
numerical simulations is significantly higher than the one presented in the experiments.

These results indicate an excessive turbulent intensity close to the nozzle outlet. Such a remark is possibly due to
the choice of the inviscid top-hat velocity profile imposed at the inlet boundary condition. Other jet studies (Bogey and
Bailly, 2010) indicate significant differences in the results due to the inflow condition. They run simulations changing the
boundary layer thickness for initially laminar jets and notice that smaller boundary layer thickness generates sooner peaks
of velocity fluctuation, which is probably the behavior observed in the simulations of this work.

(a) Centerline (b) Centerline

(c) Lipline (d) Lipline
Figure 2: Results of mean longitudinal velocity component distribution (left) and rms of longitudinal velocity fluctuation
(right) in the jet centerline y/D = 0 (top) and lipline y/D = 0.5 (bottom).

Figure 3 presents the mean and the rms fluctuation of the longitudinal velocity profiles in four planes streamwise of
nozzle flow at positions x/D = 2.5, x/D = 5, x/D = 10 and x/D = 15. Additional results of rms of transversal velocity
fluctuation (vrms) distribution and mean Reynolds shear-stress tensor component (<uv>) distribution are presented in the
same figure. The results of transversal velocity fluctuation and Reynolds shear-stress tensor components are also non-
dimensionalized by jet velocity.

The mean results of longitudinal velocity distribution are analyzed in the four planes, Figs. 3a-3d. In the first plane, Fig.



3a, the results indicate a good agreement between the simulations and experimental data, which indicates little influence
of the inlet condition at the beginning of the jet. Downstream, in Fig. 3b, it is observed a larger spreading of velocity when
comparing to the experimental reference, with peaks that are closer to the measured data when compared to the JAZzY
profile. The results presented in the last two positions, Figs. 3c and 3d, show similar behavior, a large spreading of the
velocity with a smaller peak than the one presented by experimental data.

Figures 3e to 3h illustrate results from rms of longitudinal velocity fluctuation. In the first position, Fig. 3e, it is
observed the largest peak of fluctuation close to the lipline (y/D = 0.5) for all simulations. JAZzY simulation results
indicate the highest peaks among all computational data. All calculations present values of urms/Uj very close to ex-
perimental at the centerline (y/D = 0). These results show that, very close to the nozzle exit, even with almost twice of
velocity fluctuation, the mean velocity results are kept the same. The results of the second plane position, Fig. 3f, show
that the largest velocity fluctuations produced at the lipline have already been transported to the centerline producing
higher values of fluctuation than the ones observed in the experiments. Similar to what is observed in Fig. 3e, the results
of JAZzY simulations still present higher levels of fluctuation than the ones obtained by FLEXI simulations. In the third
plane, Fig. 3g, while the experimental data indicates that the fluctuation at the centerline has not yet achieved the levels
of the lipline, in all the simulations the velocity fluctuation of the centerline presents similar values to the values observed
at the lipline. The velocity fluctuations from the JAZzY simulation are still higher than the values obtained from FLEXI
simulations, which are similar to the velocity fluctuation of the experiment. Figure 3h shows similar velocity fluctuations
distributions transversally with the JAZzY simulations presenting the highest values.

The results from rms of transversal velocity fluctuation, presented in Figs. 3i to 3l, show similar distribution observed
in the results from rms of longitudinal velocity distribution, Figs. 3e to 3h. The only difference is the fact that JAZzY and
FLEXI results are ver similar for vrms/Uj profiles.

The mean of the Reynolds shear-stress tensor component is illustrated in Figs. 3m to 3p. One can notice an important
mismatch of JAZzY results when comparing the FLEXI and experimental profiles. Even in the first plane, Fig. 3m, the
values of the Reynolds shear-stress tensor components obtained from the JAZzY simulation are much smaller than the
results from FLEXI simulations. Moreover, the shape of the tensor distribution is also different presenting peaks with
inverted signs while the FLEXI simulations produce one peak with the same direction of the experimental data. The
advance to farther planes from the inlet jet show the decrease in the values of the Reynolds shear-stress tensor component
for the results of FLEXI simulations, reaching values close to experimental data, while the results from JAZzY simulation
show a reduction of one of the peeks and a movement of the peek to the centerline.

The mean velocity results show almost no difference between simulations performed in the present work and the
reference calculations. The main differences are observed in the velocity fluctuations and the Reynolds shear-stress
tensor component. The high levels of fluctuation produced in the JAZzY simulations may be related to the few artificial
dissipation produced by the numerical method. The FLEXI simulations produced few levels of the fluctuations, which is
similar to the levels produced in the experiment and the third order of accuracy simulation is the responsible for the few
levels of velocity fluctuation. Even though, the third order accuracy is the most expensive simulation from all performed,
it produced slightly better results for the same degree of freedom.
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(a) x/D = 2.5 (b) x/D = 5 (c) x/D = 10 (d) x/D = 15

(e) x/D = 2.5 (f) x/D = 5 (g) x/D = 10 (h) x/D = 15

(i) x/D = 2.5 (j) x/D = 5 (k) x/D = 10 (l) x/D = 15

(m) x/D = 2.5 (n) x/D = 5 (o) x/D = 10 (p) x/D = 15

Figure 3: Results of mean longitudinal velocity component, rms of longitudinal velocity fluctuation, rms of transversal
velocity fluctuation and mean Reynolds shear-stress tensor component (from top to bottom) are presented in four stream-
wise positions x/D = 2.5, x/D = 5, x/D = 10 and x/D = 15 (from left to right).



6. CONCLUSIONS

In this work, the authors investigated different numerical methods to simulate supersonic jet flows. The authors
performed an analysis of previous calculations using JAZzY code, which uses finite difference method with second-order
accuracy, and observed higher levels of velocity fluctuation in the lipline and the centerline, which caused a shorter
potential core of the jet. Another framework, FLEXI, based on discontinuous Galerkin formulation on unstructured
meshes, is used in this work to simulate the same problem with second-order accuracy and also third-order accuracy. The
results obtained from FLEXI simulations are very similar to the results from JAZzY simulations.

The results of all simulations produced high peaks of velocity fluctuation close to the nozzle outlet. This high level of
velocity fluctuation is transported to the jet centerline sooner than obtained in the experiments and consequently increased
the levels of velocity fluctuation along the centerline. This phenomenon can be responsible for the short potential core of
the jets obtained in the simulations. This result is also obtained in other works in the literature that investigated different
velocity profiles imposed in the inflow condition for the jet.

Little influence is observed with different numerical methods for a fixed number of degree of freedom. The results
of the simulation with third-order accuracy are the closest to experimental data, indicating that it is a strong candidate
to be used for other configurations. Considering the results obtained, with almost no influence of different numerical
methods and order of accuracy, the continuity of the work should be directed to the imposition of the nozzle exit boundary
condition.
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