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Abstract. With the importance gained by Service-Oriented Architectures
(SOA) to simplify and decompose complex enterprise information system into
autonomous, modular, reusable and, flexible model, the need to make models
interoperable to ensure digital continuity has increased. However, the structural,
syntactic, and semantic heterogeneity of metamodel, drastically complicates the
interconnection of models and thus the digital continuity. A key element of Model-
Driven Architecture (MDA), model transformations could be one of the solutions
to promote model interoperability. They allow the description of the transformation
rules that link the different metamodels concepts. However, significant efforts are
needed to describe and maintain model transformations in an ever-changing digital
environment. One of the key challenges of the MDA approach is the automation
of model transformations. Recent work exploiting machine learning techniques to
infer model transformations has shown very promising results. However, learning
algorithms, involve too much training data and require a large and varied dataset.
In our work, we want to experiment the reinforcement learning techniques to infer
transformation rules and to counter the need to provide a considerable volume of
data for machine learning.

Keywords: Digital continuity - Model transformations - Reinforcement
learning - Q-Learning

1 Introduction

In arapidly changing industrial context, from an economic, technical, and organizational
point of view, ensuring and maintaining the digital continuity of information is a major
challenge. In the digital factory, digital continuity ensures that all information is avail-
able and distributed to the right people, at the right time without restriction due to the
heterogeneity of information systems. It allows the linking of information to guarantee
its completeness and consistency throughout the design and production cycle.

Model transformations could provide a concrete solution to meet model interoper-
ability requirements to promote digital continuity. Model transformation techniques are
the cornerstone of Model-Driven-Architecture [1] (MDA). The MDA framework defines
how a model, conforming to its metamodel, can be transformed into a model conforming

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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to another metamodel [2]. The transformation is defined by a set of structural (relation
between concepts having different structures) and semantic (relation between concepts
having the same meaning) relations that connect the source metamodel concepts to the
target metamodel concepts. These relations are called transformation rules.

The first step when it comes to establish a transformation between two metamodels
is to identify the correspondence relations between their concepts. However, the prolif-
eration of heterogeneous modeling languages complicates their ability to interconnect
properly. In fact, the same information is modelled by different structures and termi-
nologies according to the metamodels which drastically hinder the identification of the
correspondence relations between the concepts of the source and target metamodels [3].

Defining and maintaining model transformations is a constraint that requires time
and knowledge. It is legitimate to wonder how to automate, partially or totally, the trans-
formation rules identification to promote model interoperability. The first approaches
using machine learning techniques have brought very promising results but require a
large set of training data. In this article, experiments have shown the possibility of using
reinforcement learning techniques [4], and more specifically Q-Learning, for learning
model transformations. The advantage of this technique is that it only requires a small
amount of training data. Learning is achieved through the interactions between an intel-
ligent agent and its environment. The agent learns from its actions by following the “test
and learn” principle. Each action taken is rewarded with a higher (beneficial action) or
lower (bad action) score depending on the result obtained. The objective of the intelli-
gent agent is to learn the optimal policy 7 * that maximizes the expectation of rewards
following a feasible action sequence.

The aim of the paper is to infer, using Q-Learning techniques, the structural and
semantic relations that connect the concepts of a source metamodel to the target
metamodel ones by automatically generating reusable transformation rules.

Recent approaches have exploited reinforcement learning methods for automation
of model repairing [5] and “in-place” model transformations [6]. We follow them, and
we propose a learning approach by reinforcement of model transformations.

2 Related Work

The transformation model specifies the transformation rules that allow, from a source
model, to lead to a target model. They are edited at metamodel level but act on model
elements. The QVT! standard, defined by the OMG?, provides an architecture and
dedicated languages facilitating the descriptive transformation of a source model into a
target model. For instance, the declarative transformation language ATL [7] is inspired
by this standard. Transformation is user-defined, i.e., written by developers.

Initiated by Varr6 [8], the Model Transformation by Example (MTBE) approach aims
to semi-automatically derive a set of transformation rules from a set of transformation
pairs given as examples (source models and associated target models). The derivation
of transformation rules is guides by a pre-alignment manually defined between source

' About the MOF Query/View/Transformation Specification Version 1.3 (omg.org).
2 OMG | Object Management Group.
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and target model elements. This mapping between models specifies how an element
of the source model is transformed into an element of the target model. The approach
[8] is then implemented by applying the principles of inductive logic programming to
automate the generation of model transformations by example [9]. Wimmer et al. [10]
propose a similar approach to generate the transformation rules at the metamodel level
in ATL language based on the inter-model mapping specified manually.

Dolques et al. [11] propose a machine learning approach based on the principles of
Relational Analysis of Concepts (RCA) which allows the classification of the objects
according to their properties. RCA takes into consideration the objects described accord-
ing to their relations with other objects. Therefore, inferring the transformation rules is
equivalent to finding the common characteristics shared by the elements of the source and
target models. Their approach is initialized by manual predefined inter-model mapping.
Saada et al. [12] propose to enrich the approach by automatically generating operational
transformation rules using a transformation language executable by a rules engine.

The work of Baki and Sahraoui [13] shows that the search space is too large to
determine an optimal solution when it comes to inferring complex transformation rules.
To reduce search space, the previously established inter-model relationships are then
grouped by categories into different pools. For each identified categories, the use of
genetic algorithms attempts to associate each inter-model relationship with a transfor-
mation rule that best transforms the elements of the source model into elements of the
target model.

Finally, the work initiated by Burguefio et al. [14] takes advantages the field of
machine learning by applying supervised learning methods for pattern recognition. They
use the LSTM method (Long Short-Term Memory), an extension of neural networks,
which has the property of long-term memory that can remember previously established
mapping to build more complex mapping.

3 Discussion

The analysis of the state of the art presented previously made it possible to identify
certain limits which inhibit the possibilities of model transformations automation:

Descriptive Transformation Rules. Writing descriptive, “ad-hoc”, hand-written trans-
formation rules in a transformation language is a very time-consuming activity that
requires both a good understanding of the structure and semantics of the source and
target domain, as well as good knowledge of transformation languages to formalize the
solution. Moreover, considerable efforts are required to describe and maintain the model
transformations in a context where the digital environment is highly heterogeneous and
in continuous change.

Manual Pre-alignment Between Source and Target Models. Most of the research
applying the MTBE approach are essentially based on manually pre-established cor-
respondence relations between the elements of the source and target models. This pre-
alignment is not always easy to provide, it often requires a business heuristic. It is clear
that the impact of the human is omnipresent in the process of describing model trans-
formations. The lack of automation is a significant gap that falls to the development of
automatic interoperability between models.
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An Application of Neural Networks for Learning Model Transformations.
Burgueiio et al. [14] showed that learning model transformations requires a large amount
of source and target models during the training phase with an artificial neural network
(ANN). This constraint is amplified when it comes to learning complex n-m relation-
ships subject to transformation conditions. The diversity of the training dataset is also
a limiting factor. The ANN can predict only the scenarios that it has been previously
learned. Finally, the duration of the training depends on the number of models in the
dataset, and on the number of elements per model.

4 Overview of the Proposed Approach

The proposed approach follows three main steps: (1) the transformation of a class dia-
gram into a graph (see 4.1), (2) the extraction of its structure and its information (see
4.2), and (3) the learning phase (see 4.3). The Fig. 1 show the whole learning process.

STEP 1 STEP 2 STEP 3
©emf @neoui
= ® Structural elements Instance datas
= — =
- = po ° \ttribute doubles D) Attribute trip : Reward r
Source model . HNDESed G B Agent
instance M, Source graph G, Relation triples 7! PN : )
- P - | | 7 OT
Attribute doubles D& Attribute triples T2 exploration
EEQEA , EEQEAVEV .
{(e,a)le € E,a € A} {(eav)lc€E,aEAVEV] ﬂn Action
Target model Relation triples T o Seeney At i D
instance M, Target graph G, {(h,r, )t EE,r ER} <Y < exploitation
(.xmi)

Input data Data preparation Extraction of graph structure and information Reinforcement learning

Fig. 1. Overview of the training phase of transformation models

The output elements obtained after the learning phase are the trained Q-tables in
attributes and in relations expressed by the flattened entities.

The prediction phase of a target model from a new source model (conform to source
metamodel learned) will carried out by reusing the generated Q-tables.

4.1 Input Data: Dataset Presentation

Following the principles of the MTBE approach, a couple of source and target models
in form of instance diagrams are provide to the system, unlike previous works presented
in the state of the art which seek to infer the transformation rules from models only. It is
assumed that, sometimes, it is easier to identify the correspondences between attributes
(and by extension between classes) based on the similarity of their value (i.e., data of
the instance of the model), rather than on the names of the concepts themselves (names
of classes, relations, and attributes) [15].

By applying the principles of reverse engineering, the authors assume finding the
structure and the terminology of the metamodel concepts linked to the instance diagrams
of the source and target models. This will allow inferring the transformation rules at the
metamodel level.
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To illustrate the proposed approach, the commonly used example Family2Person
transformation model present on the Zoo ATL?, is used. The Fig. 2 presents the source
Family the target Person metamodel used to validate the approach.

Livesin

Livesin

GoesTo
RegistredAsStudent
PERSON
~ |RegristredAsWorker TOWN HALL
1; NotEmployed +CityName

1

B N

DaughterOf

MotherOf

Fig. 2. Family source metamodel (blue) and Person target metamodel (green)

These metamodels are composed of classes ((CHILD], [TOWN HALL] ...) which
are themselves composed of attributes (FirstName, CityName...). Classes are linked
together by relationships (GoesTo, RegistredAsStudent...).

The Table 1 presents the transformation rules that link the Family metamodel to the
Person metamodel. The approach must be able to derive the characteristics of source
and target metamodels to infer theses transformation rules.

Table 1. Transformation rules for Family2Person_extanded

Rules Description

Child2Girl If [CHILD] —[DaughterOf ] — [FAMILY] then class [GIRL] is created with

(n—1, oy) FirstName.GIRL = FirstName.CHILD and LastName.GIRL = FamilyName FAMILY
Child2Boy If [CHILD] —[SonOf] — [FAMILY] then class [BOY] is created with

(n—1, oy) FirstName.BOY = FirstName.CHILD and LastName.BOY = FamilyName .FAMILY
Parent2Woman If [PARENT] —-[MotherOf ] — [FAMILY] then class [WOMAN] is created with

(n—1, oy) FirstName. WOMAN = FirstName.PARENT and LastName. WOMAN = FamilyName .FAMILY
Parent2Man It [PARENT] —[FatherOf ] — [FAMILY] then class [MAN] is created with

(n—1, or) FirstName.MAN = FirstName.PARENT and LastName .MAN = FamilyName .FAMILY
City2TownHall If [CITY] then class [TOWN HALL] is created with CityName. TOWNHALL = CityName.CITY
(1-1)

Child2Student If [CHILD] —[GoesTo] — [SCHOOL] then relation RegistredAsSudent is created between class
(n—m, oy) [GIRL] or [BOY] to class [TOWN HALL]

Parent2 Worker If [PARENT] —[ WorksIn] — [COMPANY | then relation RegistredAsWorker is created between
(n—m, oy) class [WOMAN] or [MAN] to class [TOWN HALL]

Parent2Unemployed If [PARENT] -NOT[Worksin] — [COMPANY] then relation NotEmployed is created between
(n—m, oy) class [WOMANT] or [MAN] to class [TOWN HALL]

Note that some rules are subject to transformation conditions that can guide the
transformation of a concept. This would help to hypothesize that the transformation is
guided by specific concept characteristics. For instance, the transformation of the class

3 ATL Transformations | The Eclipse Foundation.
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[CHILD] to the class [GIRL] and [BOY] depends on the association (DaughterOf or
SonOf) that the class [CHILD] has with the class [FAMILY]. Thus, the transformation
of the class [CHILD] is conditioned by one of its relations. A condition on a relation is
then defined by o,

The Fig. 3 presents the instance diagrams of the source and target models conforming
to the metamodels shown in Fig. 2.

Livesin OL:GIRL

Carla RegistredAsStudent

Livesin
: Dubois

Livesin GoesTo | GoesTo GoesTo

02:GIRL
- - - Ju“e REgiStrEdASStUdenl
- Dubois
-
Alban RegistredAsStudent -
Dubois " Nice
FatherOf MotherOf

04:WOMAN
Livesin n Sophic RegristredAsWorker
Dubois
-

’ WorksIn

05:MAN
Axel NotEmployed
Livesin Dubois

Fig. 3. Instance of the Family (in blue) and Person (in green) models

4.2 Extraction of Graph Structure and Graph Information

Data Preparation. Neo4j* graph database is used for the proposed approach. It provides
an ergonomic environment for visualizing relational data. Besides, Neo4;j provides the
Cypher? query language for navigating through graphs that eases the manipulation of the
structure and data. Then, Neo4j provides to the developer the latest algorithms published
in the literature, especially the GraphSAGE? algorithm for calculating node embeddings.
We plan to exploit these valuable algorithms in our future work.

Regarding the import of source and target model instance diagrams in graph format
in Neo4j, the UMLtoGraphDB [16] is used to transform a conceptual model expressed
in UML language (Unified Modeling Language) into a graph representation.

A data graph can be defined by a set of nodes (or entities), and by a set of oriented or
undirected relations (links between nodes). Within the studied framework, the relations
between the entities will be oriented. Each node can contain one or more attributes that
are typed according to the data format (numeric, character, date, etc.). A representation
G of a data graph is defined by G = (E, R, A, V), where E be the set of entities (defined
by their type, i.e., their label) belonging to G, R the set of relations (defined by their
type, i.e., their label) linking the entities together, A the set of attributes that make up
the entities and V the values of the attributes.

4 Graph Data Platform | Graph Database Management System | Neo4;.
3 Cypher Query Language - Developer Guides (neo4j.com).
6 GraphSAGE - Neo4j Graph Data Science.
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Extraction of Structure and Data from Source and Target Graphs.

Once the instance diagrams were imported and then converted to a graphs format in
Neo4j, the python library’, as well as the cypher query language is used to extract the
structure and information contained in the source and target graphs. Capturing the struc-
ture of a model is equivalent to extracting the metamodel to which it conforms. This will
facilitate the definition of transformation relations between the concept of the source
and target metamodels. In this sense, it is important to extract from the source G and
target G; graphs the following elements:

Attribute Doubles. D¢ and D{ such that D¢ = {(e,a)le € E,a € A}. . The attribute
doubles capture the internal structure of an entity, i.e., the attributes that make up the
entity (the entity with the label [GIRL] has the attribute doubles < GIRL, FirstName >
and < GIRL, LastName > according to the target metamodel).

Relation Triples. T] and T; such that T" = {(h, r, t)|h, t € E, r € R} with r a relation-
ship oriented from the entity 4 to the entity z. . Relation triples capture the adjacent
structure of an entity, i.e., neighboring entities (an entity with label CHILD has relation
triples < CHILD, GoesTo, SCHOOL >, < CHILD, Livesin, CITY > and < CHILD,
DaughterOf, FAMILY > according to the source metamodel). The relation triples are
determined from the adjacency matrices ADg and AD; which expresses the structure,
i.e., the oriented relations between the entities in the source and target graphs.

Flattened Entities. To express the subtleties of the structure of the graphs, we have
chosen to represent each entity by its flattened shape. A flattened representation consists
of capturing the internal (entity attributes) and external (inherited, i.e., relationships with
adjacent entities) characteristics of an entity. We have therefore defined the flattened
shape of an entity as follows F, = (DY, T,) where Dj corresponds to the attribute
doubles of the entity e and T, corresponds to the relation triples of the entity e. Thanks
to flattened representations, the context of each entity is fully expressed, and the structure
of the graph is fully captured in a flattened form. The Fig. 4 presents the flattened entities
obtained for the metamodel Family and the metamodel Person based on the instances of
the source and target models.

f GIRL#1 O\ ( BOY#H2 B
att: FirstName att: FirstName
att: LastName att: LastName
out: {r: RegistredAsStudent, to: out: {r: RegistredAsStudent, to:
TOWN HALL} TOWN HALL}

A y @ J

f WOMAN#3 ) MAN#4 )
att: FirstName att: FirstName
att: LastName att: LastName
out: {r: RegistredAsWorker, to: out: {r: NotEmployed, to: TOWN
TOWN HALL} HALL}

L J 4

Fig. 4. Flattened representation of source (in blue) and target (in green) graph entities

7 Neo4j Python Driver 4.4—Neo4j Python Driver 4.4.
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Attribute Triples. iqT% and ;4T¢ such that ;T = {id(e,a,v)lec E,acA,v eV}
where id number is a unique identifier associated with each entity (the entity with id
number 5 has attribute triple < CHILD, FirstName, Julie >). In the case where an entity
e has several attributes a, the id number makes it possible to associate all the values v
with a single entity.

4.3 Reinforcement Learning of Transformation Rules

Among the different reinforcement learning algorithms, the Q-Learning is chosen. The
experiences and knowledge accumulated by the agent are stored in a table called Q-table
which is structured by a set of lines which characterizes all the possible states, and by a
set of columns which represents all the possible actions. Thus, it allows for each state s,
to determine the expectation of the rewards for each action a.

The Fig. 5 presents the main characteristic elements of reinforcement learning,
namely, states, actions, the environment, and the reward function.

[ Delta between the expected transformation

F-mesure and the inferred transformation

Reward r

Observation Environment
Transformation
result

Agent

e

T¢ : Adjacency matrix

“"XP"” ation 04<WOMAN, FirstName, Sophie>
Action a 04<WOMAN, LastName, Dubais>
explottat/on
06<TOWN HALL, CityName, Nice>
D¢ : Attribute doubles |[ Fe, : Flattened entities < . = <
<wow\u FirstName> Fagipun AD{ : Adjacency matrix
<WOMAN, LastName>. Fepoya: o . [0
- Feworanes ol 115
i Feyanws
<TOWN HALL, CityName>
q 06 o - o )

Fig. 5. Reinforcement learning applied to learning transformation rules

The Environment. It includes the instance of the source model and target model in the
form of attribute triples 7' and T} as well as their adjacency matrix ADg and AD;.

The States. They are defined as being the source patterns in attribute in the form of
doublets D¢, and in the form of flattened entities Fe, to express relationships between
entities.

The Actions. Performing an action result in the selection of a target pattern. In other
words, in the case of a model transformation, carrying out an action corresponds to
choosing the target pattern which corresponds to a source pattern. The target attribute
patterns are defined by doublets D¢, where the flattened entities Fe; express relation-
ships between entities. Thus, for a source attribute pattern there exists, potentially, a
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target attribute pattern to match with (similarly for source and target flattened entities).
Choosing an action follows the e-greedy policy, which means that the intelligent agent
can either explore its environment by executing a random action or perform an action
by exploiting the knowledge acquired and stored in the Q-table. The more value of ¢
decreases, the more the agent will be incited to exploit his knowledge.

The Reward. Thereward r depends on the result obtained after applying a certain action
d; € D} and fe, € Fe, for a state d; € D and fe; € Fe,. In our case, it is a question
of evaluating whether the result of the transformation of the source pattern into a target
pattern is correct. Therefore, we have defined the calculation of the reward as being the
calculation of the F-measure which considers the precision P, i.e., the ratio between the
number of expected items produced and the total number of items produced, and the
recall R, i.e., the ratio between the number of expected produced items and the total
number of expected items, such as:

P%R (D)
P+R

F=2

To evaluate if the result of the transformation is conforming to the expected result, we
apply the transformation to the elements of the source instance diagram corresponding
to the source pattern. The result of the transformation will be, then, compared to the
elements of the target instance diagram corresponding to the chosen target pattern.

Optimization and Learning Process. When learning starts, all the state-action pairs of
the Q-tables are initialized to zero. The value for a state-action couple, called Q-value,
is updated according to the interaction conducted by the agent in its environment and is
calculated by the Bellman equation.

2
Or+1(81, ar) = Qi (8¢, ar) + a(r + ymaxg, . | Or(Sr+1, arr1) — Q1 (51, ar)) &

ymaxg, O (si+1, ar+1) allows inferring the Q-value for a state s, and action a, based
on the best action a;4; of the next state s;11. In the case of model transformation,
ymaxg, ., Q:(St+1, ar+1) 1s used to measure the interdependencies of the actions con-
ducted before. In other words, this coefficient makes it possible to assess whether the
action that has just been conducted is consistent with past actions.

S Experiment

To measure the performance of the approach, the evaluation is based on two case studies
presented in Table 2.
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Table 2. Training dataset

Transformations MM MM ; Mg | M; iM g iM ¢

Family2Person - - - - (1) (1)
3)@3B) | (2)(0)(4) (6)(5)(6) (5)(0)(10)

Family2Person_extanded | - - - - (1) (1)
©)(7)(©6) | (5)3)O) NAHO) | (6)(5)(11)

Table read instructions: for the family2Person transformation, the source metamodel. MM is
composed of 3 classes, 4 relationships and 3 attributes (second line); the symbol ‘-* (first line)
means that the source metamodel is not given as input to the algorithm. iM annotation corresponds
to instance models which are the only data given as input to the system.

Table 3. Results of experiments

Approach Transformations Input | Training performances Predict.
data Perf.
Training | P R F F
time (s)
QLearning | Family2Person iM g 11.40 1.0 1.0 | 1.0 1.0
iM ;
QLearning | Family2Person_extended |iM g 32.2 0.74 |1.0 |0.85 |1.0
iM ;

104 --@ F-Measure -
----- Recall 3
----- Precision

o ;i meeeses| The Fig. 6 shows the evolution of F-measure,
F ¥ ' ---------------------- recall and precision over episodes during the train-
: ing phase of Family2Person_extended transfor-
mation. As we can see, the performance metrics
increase with the learning and peak at 1 for the
recall, 0.74 for the precision and 0.85 for the F-
measure (see Table 3). This increase is due to

0.6

0.4

0.2

0 o0 o0 0o the decrease of Epsilon ¢ which means that the
Fig. 6. Learning performance for intelligent agent exploits more the acquired past
Family2Person_extended knowledge during the learning phase.
transformation

A recall of 1 means that all the expected ele-
ments (classes, relationships, and attributes) were
perfectly inferred without loss. However, the precision is not perfect. This is explained
by the fact that the [TOWN HALL] class appears in each target flattened entities (see
Fig. 4). Therefore, each time a source flattened entity is associated with a target flattened
entity, a [TOWN HALL] class is created.

Regarding the training duration, it can be significantly reduced by (1) adjusting the
number of episodes necessary during the learning phase (in our case we did it over 1000
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episodes); (2) improving the source code of the reward function which checks the overall
consistency of the actions taken by reducing the calculation time.

Finally, concerning the prediction of a target model, from a completely different
source instance diagram (conforming to the learned source metamodel), the reuse of
Q-tables (in attributes and in relations thanks to flattened entities) makes it possible to
infer the entire target instance diagram from a new source instance diagram. This means
that all the transformation rules (see Table 1) between the source metamodel and the
target metamodel have been correctly learned.

6 Conclusion

In this article, a concrete solution to model interoperability problems was provided to
guarantee the digital continuity. A model transformation learning approach was pro-
posed to infer structural and semantic relationships between models. More particularly
the reinforcement learning techniques using the Q-learning was exploited to infer the
transformation rules between two metamodels.

The results obtained from the two case studies are very promising since the learning
is done within a reasonable time with only one source instance diagram and one target
instance diagram. Besides, the learning phase makes it possible to extract all the rules
which link two metamodels.

In future work, the difficulty of the used datasets will be increased by adding more
restrictive transformation conditions to learn (condition in attribute, and modification of
the attribute value for instance). Another objective is to set a complete benchmark allow-
ing the comparison of the proposed approach performance with the latest approaches
using machine learning techniques. Finally, the association of Deep Learning methods
with reinforcement learning will be exploited to ameliorate the expected performance.

Acknowledgments. The authors would like to thank the Centre National d’Etudes Spatiales
(CNES) and Thales Alenia Space for their financial, material and above all human support. A proof
of concept within Thales Alenia Space is already under study to demonstrate the performance of
the approach in a real industrial context.
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