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At present, optical sensors are being widely used to realize high quality control or reverse engineering
of products, systems, buildings, environments or human bodies. Although the intrinsic characteristics
of such breakthrough technologies may vary, ensuring complete acquisition relies on the definition
of the optimal acquisition planning. To this end, the view planning problem (VPP) must be solved
to automatically determine the optimal positions and/or trajectories of the acquisition devices to
fully cover the part to be digitized. Such an automatization of the entire acquisition process is of
considerably interest in the context of Industry 4.0. The aim of this paper is to review the state
of the art works addressing the view planning problem and to identify the future challenges and
possible research directions. First, the paper introduces a set of criteria to analyze the available
methods, grouped into several macrocategories. The categories are presented and formalized to clearly
understand the backbone and similarities of the grouped methods. Second, the paper describes and
characterizes the available methods, based on their analysis according to the adopted criteria. The

results of this extensive analysis clearly highlight the open issues and future challenges.

1. Introduction

The need to reconstruct high-resolution 3D virtual models of
objects, products and systems has become mainstream in many
industrial applications. The ability to reverse engineer and specif-
ically to reconstruct or update 3D models of machined parts,
buildings, historical monuments, lands and human bodies is of
considerable interest in the context of Industry 4.0 as well as
in building information modeling (BIM) and cultural heritage
applications. With the emergence of increasingly accurate and
convenient acquisition means (e.g., optical sensors, robot arms,
drones), the requirement of 3D reconstruction has increased sig-
nificantly in several domains, especially in manufacturing control
and building surveillance applications. In recent years, the accu-
racy of laser scanners and fringe projection acquisition devices
has been considerably enhanced, thereby making it possible to re-
spond to an industrial demand for automated control. At present,
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inspection is often conducted in delayed time and in a loca-
tion different from the manufacturing point. This configuration
increases the cycle time and the final cost of a part. In 2018,
Zhang proposed a state of the art review of the various means
of measurement based on structured light [1] and discussed the
advantages and drawbacks of this type of technology. One of the
key steps driving the automatic reconstruction of 3D objects is
the planning of views, namely, the view planning problem (VPP),
aimed at automatically determining the optimal positions and/or
trajectories of the acquisition means to fully cover the part under
consideration.

In recent years, this problem has been studied to realize the
reconstruction of postmanufactured mechanical parts by using
optical sensors. In the current industrial inspection methods,
probes mounted on coordinate measuring machines (CMM) are
used, for high-accuracy measuring. However, in this type of in-
spection, the amount of time spent is considerably high compared
to the number of points acquired. In contrast, optical sensors can
be used to collect several thousand points in a few seconds. By
installing such sensors on robots or other means of movement,
multiple views of the object to be inspected can be acquired. In
such a scenario, the challenge is to position and orient the sensor
in space to scan the part efficiently, i.e. to cover the part as much
as possible while minimizing the number of scans.
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Although view planning methods are applicable to many do-
mains, this paper focuses on methods to realize view planning
to reconstruct objects by using optical sensors. Such methods
can facilitate the development of Industry 4.0. By automatically
generating a view plan using an optical sensor, machined parts on
machine tools can be scanned and controlled in real time without
human intervention, thereby allowing the automatic adjustment
of machine parameters and tool paths during machining, directly
through a supervisor. At present, in general, after a part is ma-
chined to completion, it is inspected on a different machine,
usually a coordinate measuring machine (CMM), and the ma-
chining is restarted with new parameters if the quality is not
satisfactory. This process is repeated until the part specifications
are specified. By automatically planning the acquisition views and
obtaining a point cloud, controls can be automated, scrap genera-
tion can be reduced, and the product quality and competitiveness
can be enhanced.

In 2003, a state-of-the art review of the existing methods was
provided by Scott et al. [2]. Therefore, this survey paper is focused
on the methods developed a posteriori. In 2020, Zeng et al. also
provided a survey on the view planning problem [3]. Nevertheless
this state-of-the-art only focuses on next-best-view methods and
it sorts methods by type of application. The contribution of this
work is threefold: (i) A set of criteria is defined to compare and
classify the existing techniques; (ii) the existing techniques are
extensively analyzed and systematically characterized consider-
ing the identified criteria; (iii) the open questions and future
challenges are highlighted.

The remaining paper is organized as follows. Section 2
presents the issues related to the view planning problem and ex-
plains the criteria adopted to classify the methods. Section 3 and
Section 4 introduce the methods that use the a priori knowledge
of the object to be digitized and those in which no knowledge of
the object is considered, respectively. The final section presents
the concluding remarks with a comparative study of the methods
classified according to the identified criteria.

2. Classification of the approaches and definition of the
adopted comparison criteria

This section introduces the view planning problem, along with
the different categories of and criteria used to characterize the
different solution approaches.

2.1. View planning problem and classification of the resolution meth-
ods

The view planning problem (VPP) can be handled in two
different ways: either with or without knowledge of the object
to be digitized. Generally, methods that exploit the knowledge of
the object to be scanned employ a CAD model or simply a mesh
as the input. In contrast, the methods that do not exploit such
knowledge usually start with an initial position and determine
the next positions in real time.

Solving the VPP involves determining a minimum number of
views that should be used to reconstruct the part in 3D. A classical
method involves generalizing the VPP in the form of a more
typical problem, namely, the set covering problem (SCP). This
problem can be formulated as follows: If P is a set of elements
{1,2,3,...,n}, and Ps is a list of subsets whose union is equal
to P, solving the SCP is equivalent to finding the smallest list of
subsets in Ps such that the union of this list is equal to P. In 2001,
Scott et al. [4] highlighted an approach to transpose the VPP into
the SCP. If the outer skin of a 3D object is divided into several
patches, and if one scan represents an overlap of a set of these
patches, the goal is to overlap a maximum of patches with the

Table 1
Symbols used to characterize the methods with respect to the adopted
criteria.

Symbol Meaning

v Criterion fully addressed by the method

~ Criterion considered in the method but
in a partial or unexplained manner

Empty Criterion not addressed by the method

? Information not available or unclear

NA Criterion not applicable to the method

minimum number of scans. The SCP is a classical optimization
problem, and in 1972, Karp [5] demonstrated that among 21
other problems, the SCP problem is NP complete. In other words,
no solution to this problem can be realized in polynomial time.
Consequently, the existing methods can be classified in three
categories:

e Methods based on the SCP principle that use optimization
algorithms to solve the problem in a reasonable time. In this
paper, these methods belong to the category “set covering
problem transposition”, as described in Section 3.1.

e Methods that do not seek to minimize the number of scans
at all costs when an input model is used. These methods
do not need to solve the classical optimization problem as
the SCP is not considered in this case. Such methods are
grouped in the “covering optimization” category described
in Section 3.2.

e Methods solving the VPP in the absence of an input model,
for instance, in reverse engineering applications or for area
exploration applications. Here, the objective is to scan a
complete object without any prior knowledge of its shape.
In this context, an iterative process is realized to search for
the next optimal scan at each new iteration, until a stop
criterion is reached. These methods belong to the “search
based” category described in Section 4.

2.2. Adopted criteria and scoring system

The algorithms developed to solve the VPP can be character-
ized through several criteria. Scott et al. [2] defined a number
of criteria in their paper, some of which, identified with a *, are
used in this survey paper. Each criterion is identified by a letter
of the alphabet to facilitate its referencing. Among the adopted
criteria, several approaches are specific to the computer graphics
domain, even though the considered methods are not only related
to this domain. To examine these criteria, 5 types of symbols
are used, as described in Table 1. In this article, the methods are
evaluated with respect to each of these criteria. For instance, (a,v")
and (a,~) characterize methods that fully or partially address
a certain criterion, respectively. The evaluation techniques for
these methods are summarized at the end of the document (see
Table 3).

2.3. Algorithmic criteria

The following criteria refer to the algorithmic characteristics
of the developed methods to solve the VPP.

2.3.1. General criteria

Independence to the sensor types* (a). The viewpoints must be
generalized to ensure that they can be configured regardless of
the type of sensor. The algorithm must be generalized to ensure
that all viewpoint configurations can be handled regardless of the
sensor technology.
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Invariance to the object size (b). The algorithm must be able to
consider objects of all sizes. The number of viewpoints must
therefore be set considering the sizes of the sensor field and
object to be scanned.

Types of support and installation constraints (c). The scanning
strategy must take into account the constraints related to the
parts and sensor positions, and the algorithm must generate scan
configurations satisfying the multiple constraints.

Treatment of constraints (d). The algorithm must be as generic
as possible to handle multiple types of constraints in a simple
manner. The addition or removal of the constraints must be
reasonably simple.

2.3.2. Algorithm performance characteristics

Self terminating” (e). The algorithm must be able to determine
when the objective is attained and stop the process autonomously
(without human intervention).

Scan number minimization (f). The algorithm must seek to mini-
mize the number of viewpoints used in the scan plan.

Cover maximization (g). The algorithm must seek to maximize the
covering of the surface to be scanned.

Time inspection minimization (h). The algorithm must determine
a scanning strategy that minimizes the inspection time. For ex-
ample, the algorithm should compute an order between each of
the scans to minimize the dead times at the time of inspection.

2.3.3. Object constraints

Type of entity selection (i). The scan plan is built considering a
CAD model. The algorithm must be able to identify the parts of
the object associated with the scan plan and create scan overlaps
in these particular areas. This criterion is important according to
the industry needs, in order to increase the efficiency of the ma-
chining and geometric tolerance control processes. This criterion
is deeply related to the time inspection minimization criterion

(h).

A priori knowledge of the object” (j). The algorithm must have a
minimum knowledge of the object to be scanned.

Overlap between scans* (k). The overlaps between the scans ob-
tained from different viewpoints can be used to obtain correspon-
dences between the scans. This aspect is essential to register the
point clouds and reconstruct 3D objects.

Analysis of the degrees of freedom for registration (I). The point
cloud registration often relies on the iterative closest point (ICP)
algorithm. The principle is to identify the alignment of the point
clouds that can minimize the distance between the clouds. The
accuracy generally depends on the shape of the point clouds,
which depends on the degrees of freedom that characterize the
contact between the point clouds. Therefore, it may be relevant to
analyze the shapes and degrees of freedom of the surfaces to be
aligned to determine whether a suitable alignment of the scans
can be performed.

2.3.4. Sensor constraints

Occlusion treatment™ (m). The algorithm must take into account
the geometry and shape of the part to detect the surface occlu-
sions and consider them when generating a scan plan covering
the whole surface.

Sensor quality measure (n). The algorithm must consider the
characteristics and limitations of the acquisition technology to
minimize disruptions and errors, for example, the inclination or
distance of the sensor from the surface.

Collision detection™ (0). When generating the scan plan, the algo-
rithm must avoid collisions between the part, sensor, support and
environment.

2.3.5. Validation conditions (p)

To ensure consistency with the industrial conditions, the re-
sults must be validated considering real industrial parts in a real
environment with potential obstacles.

2.3.6. Type of discretization

The considered criteria help approximate the types of geomet-
ric representations that can be manipulated, which helps clarify
the associated advantages and disadvantages. The methods exam-
ined in this paper involve five types of discretization processes,
which can be used as an input of the methods or as intermediate
representations adopted to satisfy the algorithmic needs (Fig. 1).

Mesh (q). In the context of the VPP, a mesh is a discrete represen-
tation of an object’s outer surface and is often used to accelerate
computation. The mesh is composed of points, edges and faces.
Depending on the type of mesh used, it can be organized in
different ways. For example, the edges can be oriented, and the
mesh can have a certain direction of travel. Triangular meshes are
often used for display purposes; however, they can also be used
for processing when subdivided homogeneously.

Voxel grid (r). The voxel grid is used to represent an object in a
simple manner and to represent the space areas discretized by a
three dimensional grid. Depending on the type of structure used,
the voxels can be labeled in a binary manner or according to sev-
eral labels following certain criteria. This structure is particularly
effective to perform a neighborhood search.

Parametric surfaces (NURBS) (s). Parametric surfaces allow the
representation of complex shapes. For instance, Non-Uniform
Rational B-Spline (NURBS) [6] surfaces allow a complex object
to be represented in a simple manner by using control points,
knot sequences and weights. It is generally used for the analytical
description of a surface.

Point cloud (t). Point clouds are often derived from a data acqui-
sition, and they allow a real object to be represented as a set of
3D points.

B-Rep (Boundary representation) (u). B-Rep representations [7]
are widely used in the industrial domain to describe solids such
as CAD models. A B-Rep object is composed of several elements
that constitute the object’s skin. It covers aspects related to the
geometry and the topology of the skin. Faces of a model can be
represented by means of parametric surfaces (NURBS, B-Spline,
etc.) and connected to each other by so called wires composed of
edges and vertices.

2.4. Technological criteria

A part of the considered methods work only with one type
of sensor or are limited to specific applications. Consequently,
the approaches must be characterized with respect to a set of
technological criteria. Such criteria allow users to choose the
appropriate method according to their specific constraints. The
characteristics of the existing approaches with respect to these
criteria are summarized at the end of the paper (see Table 2).

2.4.1. Acquisition technology
The digitization phase can be realized using various acquisi-
tion technologies, which can be classified in three categories.

Laser scanners. Laser scanners usually involve a camera. A ray
is projected onto the surface to be scanned, and the scanner is
moved to obtain the complete digitization of the surface (Fig. 2).
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Fig. 2. Example of Keyence© brand laser scanner.

Structured light sensors. Structured light sensors generally in-
volve one or two cameras. The sensors project a set of light
patterns onto the object to be scanned and observe the way that
the patterns deform, to reconstruct the surface within a field
specific to each sensor. The sensor is fixed during the acquisition
(Fig. 3).

%

Fig. 3. Example of GOM® brand structured light sensor.

Others sensors. Several other types of acquisition devices, using
cameras, wireless sensors, probes, etc. have been reported in the
literature.

2.4.2. Type of support

To establish a scan plan that allows the entire part to be
scanned, the acquisition system must be able to move around
it. Different strategies can be used depending on the available
means. For instance, the part can move according to its sup-
port, the acquisition device can move around the part, or a
combination of both strategies can be employed.

Turning table. A turntable can be used as a support for the part
to be scanned, if the part is not excessively large. The table can
generally rotate around an axis, or even two or three axes in
certain cases, to allow data acquisition from several viewpoints
(Fig. 4).

Fig. 4. Example of FANUC® brand motorized turning table.

Robotic arm. A robotic arm is often used to approach areas that
cannot be easily accessed. The sensor is fixed at the end of the
arm. Depending on the size of the arm, the sensor can move
around and orient itself in different configurations with respect
to the part. The robotic arms reported in the literature can move
in six to eight axes (Fig. 5).

Fig. 5. Example of Staiibli© brand robotic arm.

CMM. Coordinate measuring machines are traditionally used to
measure a machined part by using probes. The machine consists
of a table and a gantry that moves in three axes, with a measure-
ment head installed at the end. Although such machines have a
high accuracy, the measurement process is slow as the points are
acquired individually (Fig. 6).

UAV. Several of the considered methods employ unmanned aerial
vehicles (UAVs). UAVs are small remotely controlled aerial vehi-
cles equipped with acquisition devices such as LIDAR, and they
are used to reconstruct large objects, such as monuments or land,
whose parts cannot be reached otherwise (Fig. 7).

Mobile robot, AGV. Mobile robot are able to move in an environ-
ment or to carry heavy objects (8). They are useful to explore
dangerous environments for humans (when there are radiations
for instance). In the process of view planning they can be used to
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Fig. 6. Example of ZE1SS© brand CMM.

Fig. 7. Example of DJI© brand UAV.

Fig. 8. Example of IMR System© brand mobile robot.

move around an object and to scan with a sensor attached to it,
or to carry a robotic arm equipped with a sensor.

2.4.3. Application type

The different types of VPP applications can be classified into
four categories in order to choose properly the tools and the
data processing. The classification is important because search-
based methods are more suitable for the digitization of unknown
objects and the model-based methods are more appropriate for
the digitization of known objects. Also the size of the object
could influence the processing time. Here, objects are considered
“small” when they fit into twice the length of the scanner field
area, in the opposite case they are considered as “large”.

Digitization of small unknown objects. Such applications involve
inspecting mechanical parts or reverse engineering realistic 3D
objects to feed databases for 3D model learning or 3D simulations.

Digitization of large unknown objects. Such applications involve
the reconstruction of complex external structures such as build-
ings, historical monuments, statues of even large outdoor scenes
and environments.

Digitization of small known objects. The reconstruction of small
objects, whose shape is known a priori, is a key focus area in this
review. Such applications pertain to the 3D reconstruction of an
object to enable its inspection at the end of the manufacturing
process.

Digitization of large known objects. As in the case of small known
objects, such applications involve the inspection of large parts
and the reconstruction of historical monuments, towers or build-
ings, whose geometry is known a priori.

3. Approaches based on a priori knowledge

This section describes methods that exploit the a priori knowl-
edge of the object to be digitized (jv'), in contrast to search based
approaches, in which the shape of the object is not required to
be known. In this case, one of the inputs of the algorithm is a 3D
representation of the object to be scanned (e.g. mesh, point cloud,
volume, CAD model).

In particular, two types of algorithms exist: methods that seek
to solve the SCP, and methods that seek not to minimize the
number of scans but maximize the coverage of the object.

3.1. Approaches based on solving the SCP

According to the definition presented in Section 2.1, the el-
ements of set P correspond to the parts of the surface to be
scanned, known as patches. The list of subsets Ps is represented
by a list of the viewpoints. Each viewpoint pv is defined by
coordinates pos to compute the set of patches p; visible from this
point.

To solve the SCP, the existing methods involve five main steps
(Fig. 9). The first step involves the segmentation of the surface
into patches. The object model to reconstruct is sampled into
n patches of p; surfaces in the set P. The second step involves
sampling the space into viewpoints. A list Ps of viewpoints pv is
sampled. A viewpoint pv is generally described with a vector pos
that represents a (x, y, z) position and an orientation (rx, ry, rz),
and a vector wp, that contains the patches p; of the object surface
belonging to P visible from pv. At the beginning of the method,
the vector wy, is empty. The third step involves an evaluation
of the viewpoints. At this step the vector wp, of the viewpoints
pv are filled. The fourth step involves the resolution of the opti-
mization problem. The number of pv which covers the maximum
of surface patches p; is minimized. Finally, the fifth step involves
identifying the criteria used to optimize the objective function.

All the methods in this section follow the same steps pre-
sented in the formalization of the view planning problem reso-
lution in Fig. 9.

3.1.1. Surface segmentation methods

Among the various surface segmentation methods, the most
common approach is to use a mesh of the object and consider a
face of this mesh as a patch p;. The meshes can involve different
levels of details, and often, a simplified mesh is used to approxi-
mately represent the shape of the object. Loriot in 2009 [8], Scott
et al. in 2002 [9,10] and Mahmud et al. in 2011 [11] used this
method because it can reduce the complexity of the algorithm,
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Fig. 9. Formalization of the 5 main steps involved in the methods to solve the
SCP.
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Fig. 10. Original mesh (left) and mesh subdivided using the bubble mesh
algorithm [14,18] (right).

and therefore, the calculation time (q v'). However, if the object
is complex, the self occlusions of the surface may be lost when
using this approach.

In 2009, Scott [12] decided to use the decimated mesh of a
model (q v'). In this approach, the simplification level is deter-
mined experimentally for each scan plan. Thus, the method is
not automatic, and a manual preprocessing must be performed.
Similar to the condition in the aforementioned approaches, mesh
simplification results in the removal of occlusions, and thus, po-
tentially important features. In all the methods proposed by Jing
et al. [13-16] and Mohammadijaki et al. [ 17], the employed mesh
is subdivided to obtain a homogeneous mesh over the entire
surface (q v'). Jing et al. used the bubble mesh algorithm [18] (this
method generates a uniform triangular mesh which preserves
the original shape), the process flow of which is illustrated in
Fig. 10. In this approach, the faces of the mesh are homogeneous
sized over almost the entire surface, even in the case of a flat
surface. Consequently, the sizes of the patches (i.e. segmentation)
are similar.

Another way to segment a surface into patches is to position
the object in a grid of voxels. In 2005, Martins et al. [ 19] used this

method (r v'). This method allows the realization of a structure
that can be used to detect collisions between the object and
scanner, for example. Hepp et al. [20] also used this method (r,0
V).

In 2011, Krause et al. [21] used a grid to segment the surface,
although a simple 2D grid was used instead of voxels, because the
surface to be covered was planar (r ~).

3.1.2. Viewpoint sampling methods

In these methods, a key aspect is to generate the viewpoints.
If the determined viewpoints do not cover the surface suitably,
the VPP cannot be solved.

Orientation with a normal surface A widely used approach in-
volves generating a set of viewpoints per patch, with the view-
points aligned against the normal of the patch. Scott [9,10], Mar-
tins et al. [19] and Mahmud [11] used this method in their
respective research. In 2011, Krause et al. [21] generated a set of
positions for each patch, although no orientation was generated,
as it was not required in their algorithm. Although this sampling
method is simple, it depends considerably on the surface segmen-
tation. If the mesh or its segmentation are excessively coarse, the
self occlusions cannot be considered, because the orientations are
defined according to the normal of each patch.

In 2009, Scott et al. [12] and Loriot [8] generated viewpoints
along the normal to each point on the surface. Subsequently, a
filter was applied to all the viewpoints to reduce the complexity.
Nevertheless, similar to the limitation of the aforementioned
approach, this type of sampling was also considerably dependent
on the segmentation step.

Random sample in a volume space Jing et al. [13] randomly sam-
pled the positions of the viewpoints within a specific volume. This
volume involved two volumes. Specifically, the first and second
volumes were obtained by dilating the surface with the minimum
and maximum distances of the camera field, respectively. The
final volume was the intersection between these two volumes.
To compute the orientations, each object was considered to have
a force of attraction. Thus, for each viewpoint, the forces of the
closest patches were summed, and the resulting normalized 3D
force corresponded to the direction of the viewpoint.

In 2017, Jing [14,15] used the same method, albeit instead of
the volume, the viewpoints were sampled on the medial object
of the previous volume. Subsequently, the viewpoints were pre-
selected according to certain criteria to reduce the computation
time. This method could be used to sample the viewpoints to en-
able the visualization of the surface. However, since the positions
of the viewpoints were sampled randomly, and the orientations
were computed according to the force of attraction of the surface,
certain parts of the surface were likely never observed from the
sampled viewpoints.

Graph method Hepp et al. [20] created a graph of candidate view-
points. The nodes of the graph corresponded to the viewpoints,
and the voxels observed from these viewpoints were recorded.
The edges corresponded to a collision less path between the two
viewpoints. The principle of this method was to reduce the graph
to a minimum graph to cover the surface to be scanned. The
candidate viewpoints were generated iteratively. At each created
viewpoint, 6 new viewpoints were added with an offset in the
directions —x, X, —y, ¥, —z and z. The viewpoints were retained
if they were not too close to the already generated viewpoints,
and if they were located in a free access space. The orientations
were determined through random sampling, while preferring the
points located close to the regions of interest. The advantage of
this method was that the generated viewpoints were located in
an accessible space free of collisions.
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Sampling in robot kinematic space Jing et al. [16] sampled the
viewpoints on an ellipsoidal hemisphere containing the object,
and for each viewpoint, a robot configuration was defined in
the robot kinematic space (c v'). The viewpoints for which no
configuration existed, or which involved a collision with the
environment, were directly removed from the set. The advantage
of this method is that the viewpoints can be directly filtered at
the time of their generation, based on the occurrence of a collision
and robot accessibility criteria (o, v). However, this aspect can
be a disadvantage, as the method is constrained to a specific
workspace for a robot arm whose accessibility can be directly
tested. This phenomenon does not occur in the case of other types
of media. Moreover, the size of the objects is constrained by the
maximum extension of the robot arm (b ~).

Mohammadikaji et al. [17] did not simply sample a finite
number of viewpoints as the first step. In each iteration of the
optimization algorithm, a new random sampling of the view-
points was performed within the search space predefined by the
sensor and model support. This working method is similar to
that of search based methods that search for the next optimal
scan at each iteration. The advantage of this method is that all
the viewpoints are renewed at each iteration, which theoretically
increases the possibility of finding a better viewpoint. However,
the efficiency of this approach is low, since unlike in the case of
other methods that sample and evaluate viewpoints only once,
the process is performed each time a new viewpoint is calculated.
In the approach used by Jing et al. [16], the viewpoints are
sampled and optimized in a space defined by the support (c v).
The method is thus valid only for the support for which it is
defined, and the size of the object is also constrained by the size
of the positioning space (b ~).

Apart from the methods of Jing et al. [ 16] and Mohammadikaji
et al. [17], all the methods presented in this section can be
considered to be generalized for any object size (b v).

According to the definition of the viewpoints, a method may
be independent to the measurement technique. Most of the
considered methods use generalized viewpoints. Specifically, the
methods proposed by Hepp et al. [20], Jing et al. [13-15], Mah-
mud et al. [11], Scoot et al. [10,12] and Loriot [8] define a
viewpoint in terms of a position and a second parameter, which
can be an orientation, or a set of parameters, such as an ori-
entation and a scan direction, such as for laser scanners (a v').
However, Martin et al. [19] defined the viewpoint in terms of
only the orientation and calculated a path for the laser scanner.
No position in space was defined, and only the distance between
the surface and scanner was fixed according to the sensor char-
acteristics. The viewpoints were not generalized, although they
could be easily generalized by dividing the scan path into several
parts sized as the sensor field, if the sensor was not a laser
scanner (a ~). Krause et al. [21] defined a point as a simple
coordinate in space since the adopted method and positioning
means did not require any additional information. Jing et al. [16]
and Mohammadikaji et al. [17] positioned viewpoints in the
space of the positioning mean. Consequently, the viewpoints
were specific to the type of mean and could not be generalized
to other acquisition devices.

3.1.3 Visibility evaluation methods

The methods to evaluate the visibility of a surface from a
viewpoint usually exploit a binary measurability matrix for each
patch of the surface. These matrices were derived by Tarbox
et al. [22]. The algorithms used by Scott et al. [9,10,12], Loriot [8],
Jing et al. [13-16] and Martins et al. [ 19] exploit the measurability
matrices to evaluate the visibility of each patch from different
viewpoints. An example of such a matrix is shown in Fig. 11. This
matrix can be used to efficiently determine the surface patches

visible from different viewpoints (m v'). The quality of the matrix
depends on both the quality of the segmentation of the surface
and sampling of the viewpoints. However, the computation of
these matrices is time consuming and must be performed during
the preprocessing of the algorithm. Another way to evaluate the
visibility of each patch is to create a visibility cone for each patch,
as performed by Mahmud et al. [11]. These cones determine a
set of orientations from which the patch is visible (m v'). Thus,
the patches with a nonempty intersection of their cones can
potentially be simultaneously visible. Nevertheless, these cones
cannot be used to simultaneously evaluate the visibility of the
patches and scan them with a well defined field, such as in the
case of structured light sensors. In the case of laser scanners, an
orientation must be associated with a scan path, and a simple
orientation may also be employed.

In contrast, in the approaches of Krause et al. [21], Hepp
et al. [20] and Mohammadikaji et al. [17], a visibility function
is used for each viewpoint. In other words, each viewpoint is
evaluated according to a predefined function with certain criteria
defined specific to each method.

3.1.4 Objective function criteria

The approaches based on solving the SCP maximize the cover-
age of the surface while minimizing the number of viewpoints (f
v,g V). These algorithms minimize or maximize a so called cost
function or objective function, respectively. The definition of this
function is decisive for the result to be obtained, and it can be
characterized using several criteria.

The first criterion corresponds to the surface coverage. Scott
et al. [9,10,12], Loriot [8], Krause et al. [21], Jing et al. [13-16],
Hepp et al. [20], Martins et al. [19] and Mohammadikaji et al. [17]
integrated this criterion when defining their objective functions.
Mohammadikaji et al. [17] considered the selected CAD model
from the perspective of the specific region to be covered (i v'),
and therefore did not intend to achieve a complete coverage of
the model at all costs.

Nevertheless, in the VPP, the coverage is a necessary but
insufficient criterion, and other aspects must be considered. In
addition to optimizing surface coverage, Jing et al. [13-15], Hepp
et al. [20], Martins et al. [19] and Mahmud et al. [11] attempted
to optimize the scanner’s direction based on the surface normal
(n-checkmark). This principle helped enhance the quality of the
point cloud. In 1999, Prieto [23] demonstrated that the angle
between the surface normal and sensor orientation should not
exceed 35°, because beyond this angle, the resulting point cloud
is extremely noisy and cannot obtain accurate measurements.

To evaluate the coverage of the surface from a viewpoint,
Jing et al. [13,14,16] and Hepp et al. [20] considered the effects
of occlusions. Several methods, such as those of Loriot [8] or
Scott [9], simplify the model of the object and attempt to scan
only the simplified model. Depending on the simplification rate,
certain parts of the real surface may not be reached because of
the occlusions not considered.

Another key criterion to be optimized is the overlap between
scans. In computer graphics, to align two point clouds, the reg-
istration algorithms rely on identifying a common part between
the two point clouds. When considering a complete scan plan,
because several measurements must be performed, several align-
ments must be realized to reconstruct the point cloud of the
complete part. Consequently, the criterion pertaining to the fact
that each viewpoint in a scan plan must have at least one part
in common with another viewpoint must be optimized. Scott
et al. [9,12], Krause et al. [21], Jing et al. [15] and Hepp et al. [20]
used this criterion in their objective functions (k v').

Moreover, no collisions should occur between the acquisition
means, object to be scanned and obstacles in the environment.
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Fig. 11. Matrix of measurability (left), where v; and s; denote the viewpoints and patches of the surface (right), respectively [8].

Scott et al. [12], Hepp et al. [20], Jing et al. [16] and Martins
et al. [19] integrated the collision criterion directly into the ob-
jective function to avoid selecting viewpoints that would collide
with a surrounding element (o v).

In the industry, the scan plan is used to scan parts to be in-
spected and controlled, to reduce the inspection time. One of the
criteria used by Hepp et al. [20] and Jing et al. [16] is to optimize
the inspection time (h v). To this end, the considered criterion
pertains to the distance between a newly identified viewpoint
and previously selected viewpoints. The type of distance can vary
according to the means of displacement of the sensor (e.g. robot
or drone).

In general, by using an objective function, constraints can be
added or removed as desired (d v'), as long as the constraints can
be evaluated in the created virtual environment.

3.1.5 SCP resolution methods

The set covering problem is an NP complete problem, and thus,
the optimal solution cannot be found in a reasonable time. To
solve this problem, many optimization algorithms try to approx-
imate the solution in a finite time. To this end, one of the most
widely used algorithms is the greedy algorithm [24], which is an
iterative algorithm that locally chooses the optimal solution at
each iteration. A disadvantage of this method is its tendency to
fall into local optimums. Nevertheless, this approach is easy to
implement and, under a relevant cost function, the approach is
sufficiently efficient to be used to solve NP complete problems.
Scott et al. [9,10,12], Jing et al. [13,15] and Martins et al. [19]
used only the greedy algorithm to optimize the problem (e v').
Certain other optimization methods reported in the literature
drew upon the greedy method and improved it to better fit the
application requirements. The approach of Hepp et al. [20] is a
recursive greedy algorithm that ensures a balance between the
scan optimization and optimization of the distance between the
scans. Specifically, this algorithm ensures a balance between the
greedy and cost benefit algorithms (e v).

Jing et al. [16] also proposed a greedy approach, although
the Monte Carlo tree search (e v') was used in this case. At
each iteration, starting from a starting node, a search tree was
established. Subsequently, the algorithm attempted to identify
the best “child” in this tree, which became the next starting node.
This method, combined with an ad hoc cost function enabled the
determination of a solution to not only the SCP, but the traveling
salesman problem (TSP), while minimizing the inspection time.

In addition, Krause et al. [21] proposed a new greedy approach
to solving the SCP, namely, the sensor placement at informative
and cost effective location (SPIEL). The principle is as follows.
The possible positions are decomposed, and the greedy algorithm
is used to order the positions in each cluster. A string is then
generated to link the positions. The first nodes of each chain is

linked to form a complete graph (modular approximation graph
G’) in which the edges are weighted by the communication costs.
An approximate solution to the maximization problem is then
found on G’ (represented by a set of edges), and the solution is
extended to the graph G, thereby obtaining the shortest path to
cover a maximum area (e v').

Moreover, to solve this optimization problem, Loriot [8] used
a tool developed by Lan et al. [25], in which, the metaheuristic
for randomized priority search (MetaRaPS) was employed. This
solution was considered to be a general form of the greedy,
COMSOAL and greedy randomized adaptive search procedure
(GRASP) algorithms developed by DePuy et al. [26]. The tool
helped improve the selection of a solution at each iteration of the
greedy algorithm and in penalizing solutions whose search space
was condensed in one location (e v).

The use of genetic type optimization algorithms has also been
reported in the literature. Jing [14] used a random key genetic
algorithm combined with a greedy algorithm to solve the cover-
age problem. In particular, an implementation available in MAT-
LAB [27] was employed. The principle was to encode the informa-
tion with a random key between 0 and 1 and to store the keys
in the genes of a chromosome. The decoding process consisted
of sorting the genes by values. The cost function was evaluated
by adding the sorted genes individually to the solution until the
coverage constraint was satisfied. Although genetic algorithms
are generally time consuming, in this case, the initialization was
close to the solution (since it was similar to the partial solution
found using the greedy approach) and the problem optimization
was prompt (e v').

Mohammadikaji et al. [17] combined the greedy optimization
method with particle swarm optimization (PSO). The principle
was to avoid the state of being confined to a set of positions de-
fined at the beginning of the process. With each new iteration of
the greedy algorithm, certain parameters in the search space were
initialized to create an initial particle swarm, and subsequently,
a particle swarm optimization process was performed to find the
next optimal position (e v'). The disadvantage of such algorithms
is the low time efficiency in most cases. In the approach of
Mohammadikaji et al. [17], an iteration based optimization was
performed, owing to which, the process was extremely long, and
the effort was comparable to that of manual computation.

3.1.6 Algorithm validation

Various applications have been considered in the literature,
and numerous tools have been proposed to develop a test plat-
form and validate the algorithms.

Scott et al. [12], Martins et al. [19], Loriot [8] used view plan-
ning to rebuild all kinds of models. To this end, Scott et al. [9,10,
12] and Loriot [8] used structured light sensors, whereas Martins
et al. [19] used a laser scanner mounted on a CMM.
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Fig. 12. Top: (left) fast rasterization based simulation to evaluate the measure-
ment coverage; (middle) simulations with path tracing, considering the camera
spectral response; (right) real camera image. Bottom: Point cloud scanned by
applying 30 acquisitions optimized through the greedy planning realized using
the method of Mohammadikaji et al. [17].

The inspection of mechanical parts has been extensively ex-
amined (av,b?), notably in the works of Mahmud et al. [11],
Jing et al. [14,16] and Mohammadikaji et al. [17] (see Fig. 12).
Jing et al. [14,16] used a structured light sensor mounted on a
robotic arm, with the part placed on a rotary table. In contrast,
Mohammadikaji et al. [ 17] used a laser scanner. Similar to Martins
et al. [19], Mahmud et al. [11] mounted their laser scanner on a
CMM.

In 2017, Jing et al. [14,15] expanded their work to building
inspection and surveillance applications, as well as to reconstruct
the surface of a large outdoor statue [13]. Hepp et al. [20] also
proposed the application of their algorithm to reconstruct out-
door environments. The acquisition means used in these methods
were cameras mounted on UAVSs.

Krause et al. [21] proposed an application that was slightly dif-
ferent from the existing approaches. The recovery algorithm was
not used for any reconstruction, but to support the placement of
thermal sensors to control the temperature on the floor of a build-
ing (i NA)(p NA). Even though temperature and humidity sensors
were used instead of optical sensors, the principle remained the
same, since the goal was to cover an area by placing the sensors
at a sufficient distance, thereby allowing efficient communication
between the sensors; this aspect can be compared to the overlap
between each scan of the surface.

The types of object on which a method is validated can vary
widely. In many cases, classical models such as the Stanford
Bunny, a mask, a gnome, a hairdryer or the model of a woman'’s
body are used [12,16,19]. Mohammadikaji et al. [17] (p v') and
Mahmud et al. [11] (p ~) validated their methods by using
industrial mechanical parts. In this regard, certain studies can
be considered to be preliminary considering the experiments
conducted. Scott et al. [10] and Jing [14] tested their method
on objects with simple shapes and with little or no change in
curvature. Such testing techniques cannot fully validate the ap-
proaches, considering the highly complex nature of industrial

applications. Several of these validations were performed through
simulation, as in the works of Jing et al. [15] and Hepp et al. [20] (i
NA)(p NA). Jing et al. [13,14] validated their methods on a statue
in its outdoor environment as well as on an actual building.

3.1.7 Summary of SCP resolution based methods

The methods presented in this section are based on a transpo-
sition of the VPP into a more general graph theory combinatorial
optimization problem, that is, the SCP.

All the identified methods follow the same global scheme,
as formalized in 5 main steps. In the first step, the surface is
segmented to create a set P of patches. To this end, two types of
methods can be used. The first method is to mesh the surface and
consider that a face of the mesh represents a patch of the surface.
This method was used by Loriot [8], Scott et al. [9,10,12], Mahmud
et al. [11], Jing et al. [13-16] and Mohammadikaji et al. [17]. The
second method employs a grid, in which each cell represents a
patch. This approach was adopted by Martins et al. [19], Hepp
et al. [20] and Krause et al. [21].

In the second step, the viewpoints are sampled to obtain a
list of subsets Ps. To this end, two groups of methods can be
used: The first group is based on the segmentation of the surface
to determine a viewpoint for a given patch, as used by Scott
et al. [9,10,12], Martins et al. [19], Mahmud et al. [11], Krause
etal.[21] and Loriot [8]. The second method does not perform any
surface segmentation and instead samples viewpoints randomly
in a defined space, as performed by Jing et al. [13-16], Hepp
et al. [20] and Mohammadikaji et al. [17].

The third step is to evaluate the visibility of the sampled view-
points. Two types of methods can be used to conduct this step:
The methods that evaluate the visibility of a patch, used by Scott
et al. [9,10,12], Loriot [8], Jing et al. [13-16], Martins et al. [19]
and Mahmud et al. [11], and those that evaluate viewpoints, as
used by Krause et al. [21], Hepp et al. [20] and Mohammadikaji
et al. [17].

The final step is to solve the minimization problem. To this
end, two groups of methods can be identified. The first group em-
ploys different variants of the greedy approach and was used by
Scott et al. [9,10,12], Jing et al. [13,15,16], Martins et al. [ 19], Hepp
et al. [20], Krause et al. [21] and Loriot [8]. The second group,
which was utilized by Jing [14] and Mohammadikaji et al. [17],
employs metaheuristics to solve the problem.

The key difference among these approaches is the structuring
of the cost function to be minimized. The result varies depending
on the parameter that each function intends to minimize. The
criteria used are specific to each method, and thus, the methods
cannot be grouped in this scenario.

3.2 Approaches based on coverage optimization

This section attempts to classify methods in which the view
planning problem and set coverage problem are not directly
compared. The objective of these methods is to optimize, first,
the coverage of the object to be scanned, and later, the number of
scans. Specifically, these methods focus mainly on the technique
to segment the surface into patches and involve four main steps.
The first step is to segment the surface into patches. The object
model to reconstruct is sampled with n patches of p; that are part
of the set P. The second step involves optimizing the position
and orientation of the scan. Each point of view pv is individually
constructed with a vector pos which contains the position (x, y, z)
and the orientation (rx, ry, rz), computed in order to determine a
vector wy, that contains a maximum of patches p; of the object
surface. The third step consists in evaluating the visibility of
patches p; from viewpoints with the computation of the wy,
vector, and in also optimizing the viewpoint positions. The last
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Fig. 13. Formalization of the resolution steps for methods based on coverage
optimization.

step involves computing the required number of scans in order
to maximize the patches p; included in all the wy, selected vector
viewpoints. Fig. 13 shows how the methods based on coverage
optimization can be formalized around these four main steps.

3.2.1 Surface segmentation methods

In these methods, the result is dependent primarily on the way
that the surface is segmented. Consequently, several different
types of segmentation methods have been developed.

Sadaoui et al. [28], Lartigue et al. [29] and Koutecky et al. [30]
performed an adaptive voxelization of the model as a function
of both the surface normals and size of the sensor field (r v').
Specifically, first, a grid of voxels is created, with each voxel
having the size of the sensor field. It is ensured that the an-
gle between all the surface normals contained in each voxel is
not greater than a certain threshold. Subsequently, the voxel is
divided in two, and so on, iteratively. This method has certain
advantages. For instance, by using a voxel grid, collisions (o v')
can be easily detected, and all the volumes (e.g. sensor fields) can
be easily represented. However, this segmentation method can
turn greedy rapidly and segment the surface into extremely small
voxels, for instance, in the case of a complex model with many
changes in the curvatures and normals. Moreover, in this method,
the normals must be calculated accurately. Sadaoui et al. [28]
proposed the conduction of a “preparation” step before voxelizing
the model. In this step, the CAD model is tessellated in the form of
a mesh such that the faces are at most 50% the size of the sensor
field (q v'). The CAD model is decomposed into entities to be and
not to be inspected (i v'). This decomposition helps the approach
focus on the scan plan and the accuracy of the measurement of
the parts of the model to be measured.

In 2009, Germani et al. [31] performed the segmentation of a
surface according to a sphere encompassing the object, divided
into several sectors. However, this segmentation method works
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Fig. 14. Critical point groups: (a) cylindrical surface, (b) cross-sectional
view [32].

only if the object is convex, and because even the shape of the
object is not considered, occlusion issues may occur.

Several view planning algorithms tend to segment the surface
by sampling the surface as a point cloud and clustering the points
according to the normals and distances. Lee et al. [32] and Son
et al. [33] sampled the points along the parametric curves of the
model and computed the so called critical points (t v/, s ~). If the
angle between the normal vectors of two points was greater than
a certain value, the points were identified as critical and grouped
into regions (see Fig. 14).

Raffaeli et al. [34,35] proposed several methods to segment
a surface. One approach was similar to the aforementioned ap-
proach, with the surface sampled in a point cloud. The points
were grouped according to their normal and distance by using the
k means algorithm. Another approach was to divide the surface
into patches by performing the NURBS parameterization of the
surface (t, s, q v'). Each patch was defined smaller than the sensor
field size to ensure a margin for overlap (k v). In 2013, the
authors sampled the point cloud on the edges of the model rather
than on the surface. These methods are reasonably effective as
they consider the risk of occlusion by using normals and the size
of the sensor field as well. Moreover, these approaches require
the clustering part to be parameterized, in order to implement
the k means technique, but the way this is performed is not fully
explained.

In 2018, Phan et al. [36] used parametric surfaces to segment
a surface. The 3D mesh of the object was transformed into 2D
parametric surfaces, and parallel planes were generated on this
surface (q v/, s ~). The direction of the scans depended on the
length of the parametric surface. Using the same concept, Wu
et al. [37] projected the points onto a 2D plane and divided
the plane into a rectangle with the size of the sensor field. The
method of Wu et al. [37] appears to be suitable only for objects
without concavity, because the surface of the model is projected
perpendicularly on the 2D plane (q v'). Furthermore, the occlusion
problems are not taken into account.

Normals are commonly used when segmenting the surface; in
fact, certain approaches use normals to create “cones” of visibil-
ity. This concept is used to represent a set of sensor orientations
around the normal of a point on the surface from which it is
visible. Lee et al. [38], Souzani et al. [39] and Ding et al. [40]
used this approach. Specifically, the points on the surface whose
“cones” of visibility intersect were considered to be part of a
set of points visible from the same orientation. Lee et al. [38]
sampled the surface along the parametric curves of the model
and visibility cones, and the so called LADs were calculated for
each point (t v). Similarly, Souzani et al. [39] discretized their
model as a grid of voxels; for each voxel containing the surface,
a visibility cone was computed. Ding et al. [40] used the same
method for grid points. This method considerably reduces the
occlusion problems (m v'). However, this method only works for
laser type sensors. Specifically, the patches of the surface are
separated according to only the orientations, which is suitable
for laser sensors that scan continuously along a path; however,
for certain sensors (e.g., structured light sensors), a well-defined
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field must be considered because such sensors scan only a precise
area in one acquisition.

Germani et al. [31] and Bircher et al. [41] considered one side
of the mesh to represent a segmentation of the surface (q v). In
this case, the segmentation depended on the mesh size of the
object to be scanned. However, this method was efficient only
when the subdivision of the mesh was homogeneous, and the
number of faces was not extremely large.

Shi et al. [42] divided the mesh into patches according to the
face normals of the mesh (q v'). For each patch, a bounding box
was generated to contain all the triangles. This method was sim-
ilar to those employed by Sadaoui et al. [28], Lartigue et al. [29]
and Koutecky et al. [30].

3.2.2 Viewpoint position and orientation optimization methods

In the aforementioned methods, to solve the SCP, the view-
points were first sampled and later selected from this set of
points. With certain exceptions, the approaches based on cov-
erage optimization are different. Instead of choosing from a set
of points, the viewpoints are generated individually, and their
position and orientation are optimized.

Lee et al. [38] used a laser scanner in their approach. The
orientation of the sensor was determined, and the difference in
the angle between this orientation and the normal to the surface
of each point of the patch was minimized. The distance from the
viewpoint to the surface was determined based on the sensor
characteristics. For each patch, the scan path was determined
by creating a rectangle enclosing the patch and dividing it into
subrectangles along the x axis. Likewise, for each patch, Phan
et al. [36] determined a scan direction and path by ensuring that
the laser ray is perpendicular to the direction of travel of the path.
The scan direction was defined as the average of the normals of
the faces involved in the scan path on the patch. Similar to Lee
et al. [38] and Phan et al. [36], Souzani et al. [39] minimized the
sensor orientation such that the corresponding angle with the
surface normal was minimized (n v). The direction of the path
was determined to scan the entire patch, in this case, a voxel, and
the distance of the sensor from the surface was determined based
on the sensor characteristics. Lee et al. [38] decreased the size of
the scanner ray such that each actual scan is larger than the sim-
ulated one, and a guaranteed overlap occurred between scans (k
v ). Nevertheless, the approach does not involve any control, and
the shape of the surface involved in the overlap remains unclear.
Phan et al. [36] generated their viewpoints to control the overlap
between each scan (k v). The distance between the generated
parallel planes on the 2D surface was determined according to
the overlap ratio between two desired passes. However, Souzani
et al. [39] did not provide any information regarding the con-
sideration of the overlap between scans (k?), and thus, a correct
alignment between each measurement could not be ensured.

Germani et al. [43] and Wu et al. [37] defined a viewpoint
per patch by minimizing the angle between the normals of the
patch and direction of the sensor (n v'). Ding et al. [40] initialized
a direction and searched for all the patches on the surface for
which the average normals did not diverge excessively from the
initial direction. The directions were generated iteratively until
the surface was covered. If the surface could not be completely
covered with the generated directions due to surface occlusions,
new directions were generated by adjusting the initial ones. Using
a similar approach, Lee et al. [32] and Son et al. [33] determined
the directions, distances and orientations for each patch. In the
presence of occlusions, if the surface of the patch could not be
scanned completely (m v'), the viewpoint was changed, and if this
configuration was insufficient, a new viewpoint was added (see
Fig. 15).

The disadvantage of this method occurs in the case when
the surface is unreachable (e.g. in the event of extremely deep

Sensor 0 O

Fig. 15. Modification of a scan direction due to: (a) DOF constraint, (b) occlusion
problem [33].
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Fig. 16. Representation of the initial set of viewpoints (a), and voxel
qualification (b) [29].

holes). In this case, the new viewpoints must be added at infinity,
although the maximum number of viewpoint re-orientations and
additions must be fixed. Son et al. [33] and Lee et al. [32] used
the same approach as that of Lee et al. [38] to ensure an overlap
between the scans and decrease the size of the scanner line such
that each real scan is larger than the simulated one (k v').

Lartigue et al. [29] used the same principle in their Voxel2Scan
method. For each patch, a set of six initial directions was defined
along the (x,y,z) axes of the grid. The voxels were qualified
as “well seen”, “poorly seen” and “not seen”, depending on the
occlusions (m v'), distances to the sensor, field size, angle of the
sensor to the surface (n v') or collisions of the sensor with the
environment (o v'), as shown in Fig. 16. Subsequently, for unseen
voxels, two strategies were exploited. In the first strategy, new
directions were added at the intersection of the planes of the
main coordinate system, and the process was restarted with the
newly added directions. This process was conducted iteratively
until all the voxels were seen. The second strategy was adopted
in the case in which the normals varied considerably, and the
process resulted in numerous voxels. The positions calculated
using the initial voxelization were retained. The parent voxel was
considered, and the viewpoint was created from the center of this
voxel. However, small occlusions due to the strong segmentation
were not processed.

Germani et al. [31], Raffaeli et al. [34,35] and Koutecky et al.
[30] used a visibility map to calculate the viewpoints. First, a
viewpoint was defined using a point (mean point of the patch)
and a vector (mean normal of the points of the patch) for each
patch. The position was along the normal at a distance from the
mean point, defined by the sensor characteristics. The visibility
map was used to determine the occlusion directions. This map
was computed for each point of the patch by projecting the faces
to be inspected onto a sphere centered on the point (see Fig. 17).

Only the rays having an angle of less than 50° with the surface
normal were projected onto the sphere to preserve the high point
cloud quality at the time of scanning (n v'). This visibility map was
used to automatically detect an occlusion (m v'). Subsequently,
the sphere was sampled every degree and transposed into a
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Fig. 17. Determination of the visibility map. For a generic point, the occlusion
produced by another surface was evaluated in the cone corresponding to the
maximum glancing angle [35].
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Fig. 18. Example of combined visibility map obtained from the intersection of
the fictitious (upper) and real tree points (lower). The red dots represent the
mean surface normal, and the different tones of gray indicate the regions with
different levels of occlusion. The scanner orientation is searched in the most
white area [35]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

matrix. The viewing maps were assembled (overlapped) to pro-
duce a grayscale image (see Fig. 18). The scanner positions were
searched in the areas with the maximum number of visible points
to maximize the overlap of the patches. The disadvantage of this
type of map is the large time required for the determination.
The calculation cannot be performed in real time and must be
performed before the execution of the algorithm.

The approach of Bircher et al. [41] did not focus on minimizing
the number of viewpoints. Similar to the methods for PCS resolu-
tion, in this approach, the viewpoints for each face of the object’s
mesh were generated. The principle was to solve the problem
of the commercial traveler, that is, to minimize the travel time
between all the viewpoints (h v). The viewpoints were sampled
to minimize the angular distance between the normal of the

face and the orientation of the sensor (n v'), and to minimize
the distance to the neighboring viewpoints. To this end, the TSP
solver Lin-Kernigen-Helsgaun (LKH) heuristic [44] was used to
calculate the optimal path. This method could minimize the time
taken for the reconstruction by calculating a “minimum path”
between each viewpoint. However, no notion of the overlap be-
tween the viewpoints was considered. Consequently, the model
was required to be convex, or the cavities were required to be
sufficiently large for the surface to be scanned entirely.

The principle of feedback was employed by Shi et al. [42].
This method is somewhat similar to the so called search based
methods, which are not aware of the model and whose objective
is to find the next viewpoint sequentially, based on the part that
has already been scanned. Shi et al. [42] start with an initial mesh
of the preconstructed object, parts of which were missing in the
complete covering. The authors initially generate the viewpoints
considering the enclosed boxes of the patches and update them
based on the result of a cost function that check whether the
holes in the mesh were filled. Here again, holes correspond to
part of the object that have not been acquired. If a stop criterion
is not defined, the process could add infinite dots to fill the holes.
The criterion corresponds to the ratio between the total area of
the holes, and the measurement error between the model and re-
sulting point cloud. To ensure that the process ends satisfactorily,
a maximum number of iterations can be defined (e v'). Numerous
stop criteria could be used depending on the objective being
maximized. The measurement quality and overlap are prioritized
over the number of points (g v, n v). If only the overlap is
being maximized, a ratio between the total area of the surface
and the total size of the remaining holes can be considered.
Moreover, it could be verified if the newly generated viewpoints
add new information (e.g. area of holes not seen previously) to
avoid unnecessary iterations.

The method of Sadaoui et al. [28] was slightly more unique
in that it combined laser scanning and probing. The calculated
viewpoints were a set of orientations for the scanner and the
probe. The set of orientations and positions for the scanner was
defined according to the method of Souzani et al. [39] (m v/, n v').
The orientations for the probe were calculated using the method
proposed by Cho et al. [45]. These orientations corresponded to
particular orientations defined using the touch probe approach
orientation (PAO) method for features such as cylinders, spheres,
planes, and cones. The viewpoints were selected using an ac-
cessibility function for the scanner and probe. The advantage of
combining the two measurement techniques was that the entire
surface to be measured was ensured to be reachable. However,
the inspection time reduced through optical measurement was
lost owing to the time spent performing measurements using the
probe. In addition, the data processing using the two techniques
could not be identical, and thus, the data was required to be
processed separately. Specifically, the touch probe considers only
a few extremely precise points on the surface to be inspected,
while the scanner measures thousands of points with a lower
accuracy. Moreover, the two devices do not work in the same
reference frame, and a registration with the ICP algorithm cannot
be realized to reconstruct the entire model later.

Most of these methods used generalizable and configurable
viewpoints for any type of sensor, as indicated by Souzani et al.
[39], Shi et al. [42], Germani et al. [31,43], Raffaeli et al. [35],
Lartigue et al. [29], Bircher et al. [41], Wu et al. [37] and Koutecky
et al. [30], who defined, for each viewpoint, a position and an ori-
entation in a global reference frame (a v). Certain methods took
into account the particularity of the laser scanner, and instead of
defining a position for the sensor, a scan direction associated with
a distance from the surface was defined. Although this method is
not entirely generic, it can be easily adapted to a higher general-
ization by dividing the scan path into several positions along the
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path direction, depending on the orientation of the sensor and
the distance to the surface, as indicated by Lee et al. [32,38] and
Son et al. [33] (a ~). Ding et al. [40] also used viewpoints with
a sensor specific orientation and scan direction (a ~). However,
the information regarding how the distance to the surface is
calculated, or whether the surface is within the sensor’s field
of view is not unclear. If these aspects cannot be verified, the
method can be applied only for small objects, for which all the
surfaces with the same direction are within the scanner’s field
of view. The method of Phan et al. [36] does not define a real
viewpoint, but a trajectory composed of a set of couples of piloted
points/orientations for a given direction. The direction of the
trajectory is defined by the length of the rectangle of the 2D
surface, and the point pairs are sampled on each edge of the mesh
along the defined scan path. This type of definition is therefore
not generalizable to all types of sensors. Another method that
cannot be generalized in this manner is that of Sadaoui et al. [28],
which takes into account two types of viewpoints, one of which
is specific to the CMM probe.

One of the advantages of the approaches based on coverage
optimization is that, since the viewpoints are calculated and
optimized directly according to the surface, the methods are a
priori adaptable to all object sizes (b v'), except the approach of
Ding et al. [40], for which the information is not available (b?).

3.2.3 Scan number computation methods

The methods described in this section do not seek to mini-
mize the number of scans at all costs, but rather, to maximize
the surface coverage. Consequently, many methods consider that
defining a scan by a patch is a sufficient solution. Lee et al. [38],
Germani et al. [31,43], Phan et al. [36], Souzani et al. [39], Bircher
et al. [41] and Wu et al. [37] adopted this type of solution (g v').

Certain other methods initially define a scan for each patch
and later adapt the viewpoints, or the segmentation of the sur-
face, according to the parts observed or not observed. Lee et al.
[32], Son et al. [33] and Ding et al. [40] computed a viewpoint
for each patch and evaluate all the viewpoints. If the entire
surface of the patch was not visible, the position and orientation
of the viewpoint were changed. If this step was insufficient, a
new viewpoint was added (g v'). Shi et al. [42] re-evaluated the
viewpoints of each patch at each iteration with a cost function
and added or modified the viewpoints according to the result
obtained. The use of such a function allowed the easy addition
or removal criteria according to the needs (d v'), similar to the
methods involving the transposition to the SCP or search based
methods. Lartigue et al. [29] and Koutecky et al. [30] also defined
a viewpoint per patch and directly modified the segmentation of
the model according to the result to ensure maximum coverage
of the surface (g v').

Raffaeli et al. [34,35] segmented the surface into patches and
computed the combined visibility maps of each patch; conse-
quently, one viewpoint per patch was calculated. The viewpoints
were evaluated and ranked in ascending order of the number
of points covered on the surface. Subsequently, the views at the
bottom of the list and those that did not add new points to be
covered were deleted. Later, a new iteration of the process was
launched with all the points that had not been covered. This pro-
cess is repeated until it was no longer possible to add new view-
points that covered the unseen points on the surface (g v'). Using
this method, the list of viewpoints was continuously optimized by
adding better viewpoints and removing the less effective view-
points. However, the process was stopped after a number of
iterations, because certain points could never be accessed, ren-
dering the algorithm to loop endlessly. Raffaeli et al. [34,35] did
not use the information from visibility maps to predetermine the
completely occluded points, and, therefore, removed them from
the viewpoint coverage assessment computation.
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Fig. 19. Result of an operation sequence generation: (a) laser ability evaluation
at the first iteration, (b) after one iteration, (c) after two iterations, and (d) after
three iterations. The green and blue regions indicate the surfaces measured using
the laser sensor and touch probe, respectively, and the red region indicates the
non-measured surface [28]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Sadaoui et al. [28] established a list of viewpoints with both
sensor and probe orientations. The method ordered the list ac-
cording to the accessibility of the sensor and probe and iteratively
tested the viewpoints in the list. At each iteration, the viewpoint
was evaluated, i.e., the surfaces scanned by the laser scanner were
examined, and subsequently, the area around the surfaces that
could not be reached by the scanner but by the probe was exam-
ined. At the end of the iteration, a group of features corresponding
to this viewpoint was created. The process was repeated for the
following viewpoints until all the features were reached from one
viewpoint, as shown in Fig. 19. (g v').

All these methods involve an iterative process that can end au-
tonomously (e v'). In certain cases, if the algorithm ends when the
surface is not completely covered, new viewpoints are manually
added, as in the approaches used by Germani et al. [43] and Raf-
faeli et al. [34,35]. This aspect makes the process semi-automatic
instead of fully automatic (e ~).

After calculating the optimal number of scans, certain methods
try to minimize the total measurement time, by minimizing the
travel time between each scan. This problem is transposable
to the traveling salesman problem (TSP), another optimization
problem that involves finding the shortest Hamiltonian cycle in
a graph. In the context of the SCP, it has been demonstrated that
the problem of nonoriented Hamiltonian cycles is an NP complete
problem. In such approaches, the resolution of this problem is not
paramount, and thus, heuristics are used. Germani et al. [31,43]
and Raffaeli et al. [35] used Dijkstra’s algorithm to search for
the shortest path in a graph based on pairs of scans that have
an overlap (h v') of a high quality. Such methods attempt to
identify the absence of a small curvature in the overlap (I ~).
Koutecky et al. [30] used a modified solution of Shintyakov’s
TSP [46], which takes into account the distance between the
positions, angle between the left camera and surface normals
and angle between the x axis and surface normals (h v'). Bircher
et al. [41] attempted to solve the TSP problem by using the LKH
heuristic [44], as discussed in Section 3.2.2 (h v).

3.2.4 Algorithm validation
Most of the approaches discussed in this section correspond
to applications of inspecting the mechanical parts. Compared to
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Fig. 20. Firefly UAV equipped with the VI sensor [41].

other methods, the coverage optimization approaches validate
the algorithms on industrial parts with rather complex geome-
tries. Specifically, Koutecky et al. [30], Sadaoui et al. [28], Germani
et al. [31,43] and Ding et al. [40] validated their methods on
such parts (p v). Raffaeli et al. [34,35] validated their method
considering the inside of a car door, and Shi et al. [42] performed
the validation considering a part from the inside of a car with
certain small variations (p v'). Lartigue et al. [29] worked on a
crankshaft using the approach of Zuquete Guarato [47] (p v'). This
validation demonstrated that the developed algorithms can be
industrialized. In each case, the accuracy of the resulting point
cloud was considered, and thus, measurements on these clouds
could be realized.

Several of the presented approaches correspond to prelimi-
nary work aimed at an application on a mechanical part, and
the validation is conducted on parts with simple geometries, for
example, on a half cylinder or planar shape with small variations
in the curvature. Lee et al. [32,38], Son et al. [33], Phan et al. [36]
and Wu et al. [37] validated their work on such academic parts.
These validations cannot be used to determine whether a specific
method can be transposed to real industrial parts with more
complex shapes.

Souzani et al. [39] validated their work on objects not intended
to be measured afterwards (e.g. small cars and figurines) (p
NA). Bircher et al. [41] developed a method to be applied to
large objects without any high precision requirements for the
reconstruction of the complete point cloud. Their method was
validated on monuments (i,p NA), and it was not clear whether
the approach could be applied to small industrial parts. The
authors developed the tool used to validate the method, which
included an UAV equipped with a sensor with two cameras (see
Fig. 20).

The main sensor types used in these methods include the
laser scanner and structured light sensor. In the case of a laser
scanner, a single line is projected, and it is necessary to move
the scanner to scan the part; therefore, the considered viewpoints
have a scan direction (or path) associated with an orientation. In
contrast, for the structured light sensor, a position is associated
with an orientation, because in this case, a single measurement
allows a point cloud to be retrieved from an entire model. The
size of this measurement is defined by the characteristics of the
field associated with the sensor. Lee et al. [32,38], Son et al. [33],
Souzani et al. [39], Ding et al. [40] and Phan et al. used such
approaches involving a laser scanner. [36]. Sadaoui et al. [28] also
used a laser scanner, although a probe was used in combination.
Lartigue et al. [29] proposed a method that could be applied
to both laser scanners and structured light sensors and validate
this method considering the two measurement means. Germani
et al. [31,43], Raffaeli et al. [34,35], Shi et al. [42], Wu et al. [37]
and Koutecky et al. [30] used the methods involving structured
light sensors, as shown in Fig. 21.

ATOS Triple
Scan
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Fig. 21. Configuration involving a KUKA robot arm and an ATOS structured light
sensor [30].

The association of a robot arm with a structured light sensor
is widely applied, because only one robot position per scan is re-
quired. In this context, the low precision positioning of the robot
does not lead to errors in the point cloud resulting from a mea-
surement. Germani et al. [31,43], Raffaeli et al. [35], Wu et al. [37]
and Koutecky et al. [30] used such a configuration to validate
their work. Laser scanners, which measure only one line at a time,
require a support to ensure the precise positioning of the scanner
to have a coherent point cloud. To this end, Phan et al. [36]
combined an optical tracker with the laser scanner/robot arm
couple, thereby allowing a more precise positioning of the scan-
ner compared to that achieved by the robotic arm. Another widely
used configuration is the laser scanner/CMM combination. The
CMM is a tool used in metrology, associated with the use of
probes to measure parts precisely. A laser scanner mounted on
a CMM is therefore an ideal configuration to reconstruct a point
cloud highly accurately. Son et al. [33], Souzani et al. [39], and
Lartigue et al. [29] employed this configuration, in which both the
laser scanner and structured light sensor were combined with the
CMM. In addition to associating the laser scanner with the CMM,
Sadaoui et al. [28] maintained the classic association of the CMM
with a probe (see Fig. 22).

3.2.5 Summary of coverage optimization methods

The so called coverage optimization approaches were de-
scribed in this section. Unlike SCP methods, these approaches do
not seek to minimize the number of viewpoints at all costs, but
rather, to optimize the covered area. A generic scheme of the four
main steps forming the core of these methods was formalized.

In the first step, as in the case of the SCP transposition ap-
proaches, a segmentation must be performed, and three methods
can be used to this end. Lartigue et al. [29], Sadaoui et al. [28],
Koutecky et al. [30] and Shi et al. [42] adaptively voxelated their
model using different methods. Lee et al. [32,38], Son et al. [33],
Raffaeli et al. [35], Souzani et al. [39] and Ding et al. [40] sam-
pled the surface and cluster it into subsurfaces by using mainly
the mesh normals. Germani et al. [31] and Bircher et al. [41]
considered one side of the mesh to represent a patch on the
surface.

The next step in this type of method was the construction
of the viewpoints. In such methods, the viewpoints were not
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Fig. 22. Configuration involving a CMM and hybrid sensor: (a) view of the CMM,
(b) scanner KA50 composed of a touch probe and laser sensor mounted on a
Renishaw PH10 head.

sampled and later selected. In fact, the viewpoints were com-
puted directly from the surface segmentation. Consequently, the
previous segmentation step was a key step in this method. The
way to define a viewpoint was highly specific to each method.
In contrast, the computation of the number of viewpoints was
common to most methods. In the approaches of Lee et al. [38],
Germani et al. [31,43], Phan et al. [36], Souzani et al. [39], Bircher
et al. [41] and Wu et al. [37], a viewpoint was optimized for each
patch. Lee et al. [32], Son et al. [33], Ding et al. [40], Lartigue
et al. [29], Koutecky et al. [30] and Raffaeli et al. [34,35] optimized
a viewpoint per patch and later adapted the segmentation if
necessary, or added a new viewpoint. Only Shi et al. [42] proposed
a method that approximated the viewpoint based on solving the
SCP.

These methods, unlike the SCP methods, are not optimized
to easily add or remove constraints. In SCP methods, the con-
straints are mainly included in the cost function. In contrast, in
these approaches, the implementation of the constraints was split
between the segmentation and optimization of the viewpoint
position.

4 Search based approaches

Search based methods do not have knowledge regarding the
model to be scanned (i NA, j NA). These algorithms are gen-
erally iterative, and within each new iteration, the algorithms
seek the next optimal scan. In each iteration, a space evaluation
is performed to determine an area in which the surface could
“probably” be the most suitable. Four main steps are common
to all these methods, which resemble those of the approaches
involving the SCP transposing. A cost function is maximized at
each iteration, albeit the stopping criterion is not the coverage of
the model, because it the model is unknown. First, a representa-
tion of the surface S°! seen from an initial viewpoint pv® and
void volume P is formulated. Subsequently, a sampling method
of the viewpoints is applied. A Ps¥! list of viewpoints is sampled
at each iteration k. A viewpoint pv is generally described with a
vector pos which represents a (x, y, z) position and an orientation
(rx, 1y, 1z), and a vector wp, which contains the patches p; of the
object surface belonging to P visible from pv. At the beginning of
the method, the vector wp, is empty. The objective function to
be optimized is established in order to maximize the set of new
patches p; seen by the view point pv and its wp, vector at the
current iteration k. A stopping criterion related to the number of
newly added patches p; is used to stop the iterative process (see
Fig. 23).

Let P be the set of surfaces of the geometric
model such as p; € P, with p; a part of the
surface called patch. P9 = @,

Initialization of the set S of the scanned
patches with S the set of patches seen from
a first viewpoint pv[°l.

Initialization of the list of viewpoints W =
{pv°}

Sampling of the list Ps[¥] of viewpoints pv
/pv € Pslkl:

pos = {x,y,z,rx,ry,rz}
B { Wpy = {P1»P2' pmp,,}
with m,,,, the number of patch p; seen from
the viewpoint pv
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Fig. 23. Formalization of the resolution steps for search based approaches.

4.1 Observed surface and void volume representation

One of the difficulties in such algorithms pertains to obtaining
an efficient representation of the volume of both the scanned and
nonscanned parts. Pito [48,49] represented the observed surface
by using a simplified mesh of the scanned parts, in which the
edges of the mesh were the original edges of the unsimplified
mesh (q v'). The nonscanned space was represented in a more
complex manner. Only the empty volume near the edges of the
scanned area was represented as a small rectangular patch. By
considering the orientation of the sensor when scanning, the
space can be divided into three types: the observed space, the
empty space around each edge, and the unknown space (see
Fig. 24). The advantage is that the void patches are in the con-
tinuity of the surface, and thus, when scanning a void patch,
the algorithm is constrained to have an overlap with the surface
already scanned (k v').

To represent the observed surface, Loriot [8] relied on the
mass vector chain (MVC) developed by Yuan [50]. The model was
considered as a convex object. The method was based on the fact
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Fig. 24. Efficient representation of the scanned and nonscanned areas: (a)
coordinate system of an edge, (b) free space map induced by the scan orientation
r [49].

that, for a convex object, the total Gaussian mass must be equal
to zero. The sum of the normals of the scanned surface provided
a vector corresponding to the SVM of the current view, and the
inverse of the vector provided the direction of the nonacquired
surfaces. This step considered the object only as a convex shape
that cannot exist autonomously. Therefore, at the end of this step,
the type of result obtained was incomplete if the part was not
convex. Consequently, in the second step of his method, Loriot
identified the “holes” in the mesh as missing data to be acquired,
and thereby, to be covered (q v'). Kriegel et al. [51] also used this
notion of holes (q v).

To represent space, voxel grids are commonly used, as in the
approaches of Kriegel et al. [51,52] and Vasquez-Gomez et al.
(r v'); even probabilistic voxelated space has been employed in
certain cases [53,54]. This voxel grid represents the probability of
a cell being occupied. At the beginning of the process, the grid
is empty, and it is filled each step. In 2009, Vasquez et al. [55]
used a voxel grid (r v); however, instead of labeling voxels
with a probability of occupancy, the voxels were directly labeled
using five states: unmarked, occupied, empty, occluded, occplane
(i.e. adjacent with none of the six faces of an empty voxel). The
authors narrowed the labels to three states in their subsequent
work in 2014 [56]: occupied, free and unknown.

By using a grid of voxels to represent the space, other objects
in the scene can be detected, thereby potentially avoiding colli-
sions with the sensor (o v'). A second advantage of this type of
method is that a nonbinary type can be assigned to a part of the
space. The areas of space represented by the voxels are not only
seen/unseen, the unseen parts are differentiated from those that
could be on the surface and are obscured by the object itself.

4.2 Viewpoint sampling methods

The viewpoint sampling methods are applied at each iteration
of the algorithm. Subsequently, the viewpoints are evaluated, and
the viewpoint that maximizes the cost function is selected as the
next optimal scan. The sampling method is therefore a key step
of the algorithm.

Pito et al. [48,49] used an intermediate positioning space di-
vided into two subspaces. The first space corresponded to the
positional space surface (PSS), which encompassed the volume
of the object to be viewed. The second space represented the
positional space directions (PSD), which encoded the directions
of the observation beams for each point of the PSS (see Fig. 25).

The viewpoints were transformed into the P(w, y, «, 8) space,
in which the PSS was represented in terms of w and y, and the

Fig. 25. Intermediate positioning space divided into two subspaces: PSS and
PSD [49].

PSD was represented in terms of & and 6. An image of each
viewpoint x; of X was computed in the PS. The viewpoints were
sampled around a circle at an angle that was a multiple of 4;
the barycenter was the center of the object, and the radius was
defined according to the parameters of the sensor used. This type
of sampling is not optimal and does not allow many degrees of
freedom; specifically, only a rotation around a single axis was
available in this case. Consequently, concave objects larger than
the focal length of the scanner cannot be scanned, and, depending
on how the scanner is mounted, the top or bottom of the part may
not be scanned. Moreover, this way of defining the viewpoints is
not generalizable to all types of sensors.

Loriot et al. [8] thus employed two steps. The first step did not
require sampling the viewpoints, because the viewpoints were
directly determined according to the VMCs at each iteration (see
Section 4.1). The second step involved filling the remaining holes.
For each identified hole, a normal was calculated, and the view-
point was fixed and oriented around this normal. If an occlusion
appeared, a sphere was sampled and centered on the hole. Each
point of the sphere included in a 60° cone around the normal of
the hole represented a potential viewpoint to scan the considered
hole. As in the previous method, although the sphere allowed
higher positioning freedom than that allowed by a circle, if the
hole to be filled in had a radius greater than the distance rec-
ommended by the scanner, the surface was likely never scanned
because the scanner in this case would be extremely far from the
surface. However, one of the advantages of this method is that
several types of solutions can be attained before trying to sample
the viewpoints to optimize the next optimal view when filling
holes. Moreover, the holes to be plugged in the case of the object
presented in the method may not be sufficiently large to present
this type of configuration (b ~).

Vasquez et al. [55,56] also used a sphere to sample viewpoints,
with the sphere centered at the barycenter of the object to
be scanned. Although this solution can be easily implemented,
it involves the same limitations as those presented above. The
solution of sampling the viewpoints around a sphere only works
in the case of objects smaller than the measurement range of the
sensor used.

Kriegel et al. [51,52] sampled viewpoints along the edges
and holes of the mesh at each new search. The advantage of
this method is that, for each potential viewpoint, there exists
a minimum overlap with the already scanned areas (k v'). The
viewpoints computed by Kriegel et al. are represented as scan
paths with a start and end point, an orientation, a direction and a
distance to the model (see Fig. 26). Subsequently, the viewpoints
are evaluated such that the scan paths are collision free (o v'),
and if the surface is occluded by an environmental obstacle,
the viewpoints around the object are rotated until the occlusion
disappears (m v ). The advantage of using this method to sample
viewpoints along the edges and holes of the mesh is that it allows
the algorithm to be applicable for objects of all sizes (b v).
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Fig. 26. Viewpoint sampling method: (left) boundaries detected in partial
meshes of the Putto statue; (right) a scan path in the direction of the largest
expansion of the hole dy, in the inverse hole normal n, direction and at the
optimal sensor distance d; [51].

Vasquez et al. [53,54] sampled viewpoints directly in the
robot’s configuration (kinematics) space (c v'). The viewpoints
were sampled randomly with a uniform distribution at each new
iteration. Subsequently, the viewpoints were evaluated to ensure
that they do not collide with the environment (o v') and that the
orientation radius of the sensor intersects the box surrounding
the object. Next, the visibility of the viewpoint was determined
(m v') to evaluate the percentage of overlap (k v'). Viewpoints
that did not meet the minimum criteria were removed from the
set of candidate viewpoints. The advantage of this method is that
the viewpoints can be generated directly according to the sensor
support, in this case, a robotic arm. This principle allows the view-
points to be determined automatically with collision free paths
between each scan, thereby helping reduce the inspection times.
However, this method only works if the support can provide
this type of information automatically. Moreover, the approach is
not generalizable to all configurations and types of sensors, and
the size of the object to be reconstructed is constrained by the
maximum extension of the robot arm (b ~).

In contrast, the methods of Loriot [8], Vasquez et al. [55,56]
and Kriegel et al. [51,52] define the viewpoints in a general way
and can thus be generalized to all types of sensors and supports
(av).

4.3 Stop criteria

The process of searching the next optimal view is iterative.
Therefore, a stop criterion must be established to maximize the
quality of the reconstruction while ensuring that the algorithm
terminates autonomously in a reasonable time (i.e. in a time com-
petitive with that of human computation). The stop criteria are
similar in most works and involve achieving a certain percentage
of surface coverage (g v'). Pito et al. [48,49] and Loriot [8] used a
so called redundancy criterion. At each iteration, the rate of the
new surface covered was calculated and, if a certain percentage of
the new surface covered was not reached, it was considered that
the algorithm could not find any new surface. Subsequently, the
algorithm terminated. (e v'). Similarly, Vasquez et al. [53-56] used
a surface factor that provided information regarding the rate of
unknown voxels observed by the viewer. If the factor was below
a certain threshold, the process was terminated. Vasquez et al.
considered that adopted a criterion based solely on the model
was insufficient. A second criterion was applied, and the process
was terminated if the robot did not identify any path between its
current position and the positions of the candidate viewpoints (e
V).

Kriegel et al. [51,52] computed a coverage index based on the
mesh and holes detected in the mesh, as well as, the average
density of the points that the algorithm was required to reach
before it terminated. If none of the criteria were satisfied, as
in most methods, the process terminated when a predefined
maximum number of scans was attained (e v).

4.4 Objective function to be minimized

The objective function (or cost function) is a key parameter
of this type of method. The principle of these methods is that,
at each iteration of the process, a viewpoint is chosen as the
best possible next scan among a set of possibilities. To this end,
the viewpoints are evaluated according to a cost function, and
the viewpoint that maximizes this function is chosen as the next
optimal scan. Each method involves its own objective function
that meets well defined criteria.

Pito et al. [48,49] established an objective function that sought
a viewpoint that maximized the coverage of the empty patches,
while maintaining a certain ratio of the area already scanned. To
this end, the rate of the new visible area was prioritized while
maintaining a ratio of the area already observed, such that an
overlap existed between each scan (k v'). The overlap between
the next optimal scan and the area already observed was also a
key criterion for the methods used by Kriegel et al. [51,52] and
Vasquez et al. [53-56] (k v).

Kriegel et al. [51,52] determined an objective function with
two components. The first component represented the “explo-
ration” part, i.e. considering the viewpoints that maximized the
number of voxels with the greatest information gain (IG). The
algorithms attempted to search for the viewpoint that maximized
the sum of the probabilities of the voxels visible from it. The
probability of a voxel represented the probability that the voxel
was occupied, thereby indicating that this part of the object
was required to be scanned. The second component represented
the “modeling” part, in which the viewpoint that could observe
the voxels with a high quality was selected. To compute the
acquisition quality of a voxel, the angle between the normal to the
surface and sensor orientation was calculated. The advantage of
this method was that the unknown regions, overlapping a surface
already scanned, could be scanned, and an area considered to
have a low quality could be rescanned (k v/, n v').

This notion of the quality of acquisition was also employed by
Vasquez et al. [55,56], whose objective function was formulated
considering four criteria. As mentioned previously, the quality of
acquisition was considered in terms of the angle between the
normal to the surface and sensor orientation (n v'). The main
criterion was a factor that considered the rate of the new surfaces
with the rate of the already observed surfaces, such that the
selected viewpoint overlapped with the already observed surface.
The third criterion corresponded to a navigation criterion, which
helped minimize the geodesic distance between the next optimal
view and the previous scan to minimize the travel time, and thus,
the inspection time (h v). The last criterion was an occlusion
factor that examined whether the surface was occluded or not
from the considered viewpoint (m v').

In 2014 and 2017, Vasquez et al. [53,54] used a completely
different objective function, for which the method viewpoints
were sampled directly in the robot workspace. This function
also considered four criteria. The first criterion ensured that the
viewpoint did not collide with the environment, and that the path
between the previous scan and the viewpoint was collision free
(o v'). The second criterion corresponded to the degree of overlap
between the area covered by the viewpoint and the area already
scanned (k v'). The third criterion corresponded to the ratio of
the new voxels not yet observed, but visible from the current
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viewpoint, to the total number of voxels not observed. The last
criterion corresponded to the distance between the previous scan
and the viewpoint, with this distance computed according to
the robot’s degrees of freedom. The weights associated with the
axes were determined experimentally such that the robot motion
time was minimized (h v'). The latter principle can be both an
advantage and disadvantage of this method. When a robot arm
support is used, this aspect can prevent the robot from conduct-
ing excessively large movements if a position with a shorter axis
movement is possible. This condition can minimize the robot
movements, thereby reducing the inspection time. However, this
method only works when using a robot arm, and therefore, the
calculation of the viewpoints cannot be generalized to any type
of support.

An advantage of the methods of Vasquez et al. and Kriegel
et al. is that the selected objective functions allow many criteria
to be considered in a modular way. The addition, modification, or
removal of new criteria is convenient in such approaches (d v').

Loriot [8] established an iterative process involving several
steps. The first step was to use the VMCs to perform an initial
reconstruction of the part. In the second step, the process at-
tempts to cover all the holes of the mesh, considering the areas
not scanned in the first step. During this step, the viewpoint is
first positioned along the normal of the hole and oriented toward
this direction. Subsequently, the viewpoint is evaluated, and if
self occlusion occurs, the viewpoint is sampled. The sampled
viewpoint that maximizes an objective function is selected (m v').
The objective function employs a single criterion to ensure the
selection of the maximum number of visible points of the hole.
One of the disadvantages of this method is that in the first stage, a
common surface may not exist between two scans. Consequently,
the alignment between scans is not ensured at this stage.

None of the algorithms of this category can evaluate the qual-
ity of the overlap between scans. Specifically, these algorithms
can assess the sufficiency of a surface in ensuring the alignment
between two scans, if the two scans share a common surface.
However, if the shared surface is extremely small, an algorithm
such as the ICP cannot be used to ensure a correct alignment, even
if the shared surface has no particular shape and is smooth. This
aspect is a key limitation of such approaches.

4.5 Algorithms validation

Several of the methods presented in this section are not based
on an input model. Therefore, no a priori knowledge regarding the
model to be scanned is available. In the industry, one of the most
important applications is reverse engineering, which consists of
scanning a part and later reconstructing the CAD model from the
point cloud.

Pito [48,49] performed tests on small simple objects such
as a telephone receiver, coffee cup and small statue. The type
of scanner used to validate this method was a laser scanner
mounted on a fixed support. The part to be scanned was placed
on a turntable, and it could thus be rotated. Pito’s work can be
seen as preliminary work, as this type of test does not allow
industrialization of the method, because the constraints of the
algorithm linked to the sensor are extremely stringent, and the
tested objects are extremely simple.

Kriegel et al. [51,52] also used a laser scanner mounted on a
robotic arm. In this work, the reconstructed objects were small
and midsized, for instance, a statuette, a cake box, and an indus-
trial valve type part. The diversity of the models tested suggests
that the method can be used for all types of objects. However, as
the result of the method is not intended to be used to perform
subsequent measurements, the accuracy of the reconstruction of
the complete point cloud is not emphasized.

(a) (b)

af v4£

Fig. 27. Stages of the Stanford Bunny reconstruction. The unknown and known
voxels are indicated in yellow and blue, respectively [57]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

In their early works, Vasquez et al. [55,56] did not vali-
date their results on a physical test platform; specifically, only
computer simulations were performed for the validation. Con-
sequently, the scanner was simulated and not attached to any
kind of support. The simulations were performed on small simple
objects such as the Stanford Bunny, a sphere or a coffee cup. This
configuration did not allow a full appreciation of the environmen-
tal constraints such as collisions or constraints induced by the
sensor used.

Nevertheless, in 2014 and 2017, Vasquez et al. [53,54] used
a Kinect device attached to a robotic arm with eight axes of
freedom. As in their previous work, the algorithm was tested
in a virtual environment on small simple objects (see Fig. 27),
although the algorithm was later tested on a real platform. The
method was validated on objects sized similar to an office chair.
As in the case of the existing studies, the objects on which the
algorithms were validated were simple, and the method could
thus not be directly industrialized.

Loriot [8] used a structured light sensor fixed on a robotic
arm to validate his work. The type of object used to validate
the method did not differ considerably from the types of objects
used in other methods. For instance, the selected objects likely
included a coffee cup, small statuettes or industrial parts such as
car rims.

Finally, in all methods, the tests performed did not provide in-
formation regarding the accuracy of the reconstruction. Without
knowledge of the real object, it is not possible to quantitatively
validate the accuracy of the reconstruction.

4.6 Synthesis of search-based approaches

The so called search based approaches traverse the surface
to be digitized without a priori knowledge regarding the model
of the object. As in the case of the previous methods, a global
operating scheme common to the algorithms was formalized.

First, an iteratively evolving representation of the space is
established. To this end, two groups of methods can be used.
Pito [48,49] divided the space into three parts: an observed part
represented by the surface, a free part represented by the edges of
the mesh and an unknown part. The same concept was employed
by Kriegel et al. [51,52] and Vasquez et al. [53-56], although in
their approaches, the time space was voxelized and later labeled.

In the second step, the viewpoints were sampled following
one the three methods. Pito [48,49], Vasquez et al. [55,56] and
Loriot [8] sampled their viewpoints on a surface such as a sphere
or circle. Kriegel et al. [51,52] sampled the viewpoints along
the borders of the mesh. Vasquez et al. [53,54] sampled the
viewpoints directly in the robot’s kinematic space.

Contrary to the approaches based on a transposition of the
SCP, the process of search based methods is iterative because at
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Table 2
Positioning of the approaches with respect to the technological criteria.

Types of References Sensor type
method

Robot type

Application type

Laser Structured
scanner light sensor

Other Turn Robot CMM
table arm

Drone AGV Small Large Small  Large

unknown unknown known known

Scott et al. 2001 [10] v
Scott 2002 [9] v
Martins et al. 2005 [19]
Scott 2009 [12] v
Loriot 2009 [8] v
SCP Krause et al. 2011 [21]
transposition Mahmud et al. 2011 [11]
Jing et al. 2016 [13]
Hepp et al. 2017 [20]
Jing 2017 [14] v
Jing et al. 2018 [15]
Jing et al. 2018 [16] v
Mohammadikaji et al. 2018 [17]
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v
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<
ENENENEN

v
Lee et al. 2000 [38] v
Lee et al. 2001 [32] v
Son et al. 2002 [33] v
Souzani et al. 2006 [39] v
Shi et al. 2007 [42]
Germani et al. 2009 [31]
Germani et al. 2010 [43]
Raffaeli et al. 2013 [35]
Lartigue et al. 2014 [29] v
Bircher et al. 2015 [41] v
Wu et al. 2015 [37]
Koutecky et al. 2016 [30]
Ding et al. 2016 [40]
Phan et al. 2018 [36]
Sadaoui et al. 2018 [28]

Covering
optimization

SNENENENEN

AN

<
NN N NN N NN ENEN

~
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Pito 1997-1999 [48,49]
Loriot 2009 [8] v
Vasquez et al. 2009 [55] v
Kriegel et al. 2012 [52]

Vasquez et al. 2014 [56]
Vasquez et al. 2014 [53]
Kriegel et al. 2015 [51]

Vasquez et al. 2017 [54] v

Search-Based

ANENENEN

<
N N N N NN

each iteration, the representation of the space evolves. There-
fore, an effective stop criterion must be established. To this
end, two main criteria can be highlighted. Pito [48,49], Vasquez
et al. [53-56] and Loriot [8] performed a check for the minimum
percentage of new surface scans at each iteration, whereas Kriegel
et al. [51,52] checked the coverage rate of the holes in the mesh.

Similar to that in the SCP transposition methods, a different
cost function was implemented for each method. The advantage
of this type of method is that the criteria used can be easily
eliminated or added.

5 Conclusion and future work

This article presents a state of the art review of the methods
used to solve the view planning problem (VPP). The goal is to
establish a scan plan to reconstruct or control a 3D object. The
choice of the method clearly depends on both the type of object
to be reconstructed and the technological means available to
implement a solution. The types of available inputs directly define
the type of method to be implemented. Overall, the methods
can be divided into two groups: methods exploiting the a priori
knowledge of the object to be scanned,

and methods that do not require such knowledge. Table 2
summarizes the evaluation techniques of these methods with
respect to the technological criteria presented in Section 2.4, and
Table 3 summarizes the positioning of the various methods with
respect to the algorithmic criteria defined in Section 2.3. The
advantages and disadvantages of each method were highlighted.

The methods involving a transposition to the set covering prob-
lem (SCP) allow the definition of a scan plan with an input model,
and constraints can be easily added or removed, as required.
The methods that tend to optimize the coverage seek to cover
the maximum surface, as specified in the input. The advantage
of these methods is that they prioritize both the quality of the
measurements and coverage of the model, and thus, accurate
measurements can be made on the resulting point cloud. These
methods are generally more industrialized than the other ap-
proaches. The advantage of search based methods is that the
model to be scanned is not known. The view planning is therefore
conducted iteratively in real time, and the point cloud can be later
used to create a model of the scanned part.

Considering the limitations of the existing approaches, as
highlighted in Tables 2 and 3, several perspectives can be em-
phasized. It can be noted that although machine learning is
widely used in the field of computer graphics, none of the studied
methods use this type of paradigm, likely because these methods
require a large amount of data. Nevertheless, if a database were
to exist in view planning, machine learning techniques can be
likely applied to solve the VPP. Recently, some works based on
this technology have been published by Mendoza et al. [58], Hepp
et al. [59] and Devrim Kaba et al. [60].

Considering the time issue and the need to reduce the inspec-
tion time, nearly all the methods can be noted to postprocess
the sensor positions to order them while solving the traveling
salesman’s problem. A future research direction can be to directly
integrate this constraint in the algorithms, thereby removing the
postprocessing step. Galceran et al. [61] and Cabreira et al. [62]
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Table 3
Characterization of the approaches with respect to algorithmic criteria.
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Scott et al. 2001 [10]
Scott 2002 [9]
Martins et al. 2005 [19] v
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propose reviews of methods solving the coverage path plan-
ning problem, which is a variant of the traveling salesman prob-
lem. The idea is to determine a path that passes through all points
of an area or volume. This kind of methods could maybe also be
studied and adapted to solve the view planning problem.

There are many papers published every day on this particular
research topic. Indeed the problem being NP-complete, a unique
solution do not exist and each applications can have its particular
solution. We can mention the recent paper of Song et al. [63] for
illustration.

Another constraint that has been highlighted in certain meth-
ods but never addressed is the quality of the overlap. When two
scans are performed, they must be aligned. Depending on the
alignment methods used, an overlap between the point clouds
is necessary, although some constraints must be implemented
on this overlap. For example, an overlap on a flat surface does
not provide sufficient information to enable a correct alignment
between the two scans, because the degree of freedom is ex-
tremely important to ensure proper registration. Thus, it can be
considered that the study of the shapes contained in the overlap-
ping areas can help further understand the remaining degrees of

freedom to improve the quality of the alignment of the scans, and
thereby, intrinsically, the quality of the final point cloud.

In the various works presented in this paper, the uncertainties
of the measures are not addressed. Their estimation as well as the
estimation of the point cloud quality could be of great interest in
further optimizing the pose of the view points.

Moreover, as we see in Sections 3.1.6, 3.2.4 and 4.5, the vali-
dation and evaluation methods are completely different for each
work, and a complete evaluation of the approaches using the
same criteria is challenging. A research on fair evaluation metrics
can be a subject of future works in this area.

Alignment methods can also be a considered in future work.
Even though different registration methods exist, in some cases,
classical methods such as the iterative closest point (ICP) can-
not find a proper solution, as several solutions may exist. For
example, asymmetric objects cannot be properly aligned using
this type of method. Consequently, new methods must be imple-
mented. For instance, the new methods could be implemented
with a singularity in the sensor field or by using photogrammetry.

In conclusion, the capabilities of the examined methods and
the foreseen prospects can help in better understanding and
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res

olving the numerous challenges associated with Industry 4.0.

Indeed, the problem of view planning can be extended to many
applications in addition to part manufacturing control: surveil-
lance, building reconstruction, underwater inspection, site ex-
ploration, etc. This type of applications can be exploited with
different varieties of robots not mentioned in this manuscript
such as mobile robots AGV and AUV.
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