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Rayleigh-Bénard convection of a viscoplastic liquid in a trapezoidal
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The objective of this paper is to clarify the role of sloping walls on convective heat transport in Rayleigh-Bénard
convection within a trapezoidal enclosure filled with viscoplastic fluid. The rheology of the viscoplastic fluid
has been modeled with Bingham fluid model. The system of coupled nonlinear differential equations was solved
numerically by Galerkin's weighted residuals scheme of finite element method. The numerical experiments are
carried out for a range of parameter values, namely, Rayleigh number (5.10° < Ra < 10°), yield number (0 < Y
< Y,), and sidewall inclination angle (¢ = 0, =/6, x/4, x/3) at a fixed Prandtl number (Pr = 500). Effects of
the inclination angle on the flow and temperature fields are presented. The results reveal that inclination angle
causes a multicellular flow and appears as the main parameter to govern heat transfer in the cavity, The heat
transfer rate is found to increase with the increasing angle of the sloping wall for both Newtonian and yield stress
fluids. On the other hand, the plug regions also found to increase with increasing ¢, which is unusual but perhaps
not unexpected behavior, In the yield stress fluids, the flow becomes motionless above a critical yield number Y,
because the plug regions invade the whole cavity, The critical yield number Y, is also affected by the change of

inclination angle and increases significantly with the increase of .

1. Introduction

Rayleigh-Bénard convection is a type of natural convection where
fluid motion is driven by vertical thermal gradients, i.e., by buoyancy
forces. This problem has been studied by many researchers during the
past several decades owing to their wide applications in a number of
industrial processes, such as heat exchangers, electronic cooling, solar
collectors, etc. Over this period, numerous studies related to Newto-
nian fluids have been documented in the literature, e.g., see the exten-
sive studies of Bodenschatz et al. [1]. A subsequent more detailed study
has been done by Ouertatani et al. [2] where the steady-state condition
of two-dimensional Rayleigh-Bénard convection was analyzed numeri-
cally by using the finite volume method. There are also some experimen-
tal works such as Maystrenko et al. [ 3] research about measurements of
the temperature distribution in the upper (cold) boundary layer of a rect-
angular Rayleigh-Bénard cell. The problems related to Rayleigh-Bénard
convection in porous media, nanofluids and non-Newtonian power-law
fluids have been considered by several researchers in the last years and
a good amount of work can be found in the literature. The interested
reader is referred to [4-8] for more complete coverage.

Rayleigh-Bénard convection of viscoplastic fluids has also received
extensive attention in the past decades. However, most of the research
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works in this field are substantially oriented toward the study of rect-
angular enclosures. The effects of a fluid yield stress on the classical
Rayleigh-Bénard instability in the cavity have been investigated by
Zhang et al. [9] and Vikhansky [10]. Turan etal. [11] analyzed the effect
of yield stress on laminar Rayleigh-Bénard convection in a square enclo-
sure filed with a Bingham fluid and showed that the value of heat trans-
fer decreases with increasing yield stress. It means that yield stress has a
stabilizing effect, reducing the convection intensity. Study of Rayleigh-
Bénard convection of viscoplastic material extended to the Herschel-
Bulkley fluids by Hassan et al. [12] and Aghighi and Ammar [13]. Re-
cently, Rayleigh-Bénard convection of viscoplastic fluids obeying the
Casson model has been investigated by Aghighi et al. [14], Many more
studies related to the natural convection of viscoplastic fluids can be
found in the literature. The interested reader is referred to [15-18] for
more complete coverage.

Natural convection of fluid contained in a trapezoidal enclosure is
one of the most extensively analyzed configurations because of its ap-
plicability in various fields such as ventilation of building, electronic
cooling, geothermal problems, solar energy collector, etc. Whereas there
exists an overwhelming number of fundamentally important studies of
the natural convection within trapezoidal enclosure in Newtonian and
power-law fluids, to the best of our knowledge, there is no research deal-
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specific heat capacity, kJ kg™! K1
acceleration due to gravity, m s
reference value of length, m
thermal conductivity, Wm~! K-’
length of the cavity, dimensionless
Papanastasiou regularization parameter, dimensionless
local Nusselt number, dimensionless
average Nusselt number, dimensionless
outward unit normal vector to the sidewall, dimension-
less
pressure, dimensionless
reference value of pressure, Pa
Prandt] number (= ”/pu ) . dimensionless
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temperature of fluid, K
reference temperature, K
velocity component in x direction, dimensionless
reference velocity, ms™!
velocity component in y direction, dimensionless
Cartesian coordinates, dimensionless
yield number (= m ). dimensionless
Y, critical yield number, dimensionless

Greek symbols

thermal diffusivity of fluid, m?s~"
coefficient of thermal expansion, K-
rate of strain tensor, dimensionless
temperature, dimensionless
kinematic viscosity, m? s~!
penalty parameter, dimensionless
palstic viscosity, Pas

density of fluid, kgm~?

stress tensor, dimensionless

yield stress of fluid, dimensionless
side wall inclination angle
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ing with this problem in viscoplastic liquid. One of the first numerical
and experimental works about the natural convection of Newtonian flu-
ids in a trapezoidal enclosure has been done by Lee [19]. After that,
Karyakin [20] analyzed the transient natural convection of Newtonian
fluids in this geometry by using the implicit finite-difference method.
Their studies showed that the heat transfer rate increased as the an-
gle of the side wall increased. Natural convection of Newtonian fluid
in a trapezoidal cavity heated from below has been investigated by
Basak et al. [21] using finite element method. This problem extended
to porous materials by Varol et al. [22]. One of the first investigations
related to natural convection of nanofluids in a trapezoidal cavity was
performed by Saleh et al. [23]. A more detailed study about the effect
of nanoparticles on natural convection heat transfer in this geometry
has been done by Al-Weheibi et al. [24]. In the recent years a number
of investigations have been conducted to obtain an understanding of
the behavior of the more complex fluid flows in this geometry. Gibano
et al. [25] and Miroshnichenko et al. [26] analyzed natural convection

of a micropolar fluid in a trapezoidal cavity. Convective heat trans-
fer in trapezoidal cavity with nonuniformly heated bottom wall under
the influence of magnetic field was investigated by Hossain and Alim
[27] and MHD natural convection of ferrofluid in an open trapezoidal
cavity filled with a porous medium was studied by Astanina et al. [28].
Entropy generation on natural convection has also been scrutinized in
this study. After that, Al-Sayegh [29] extended the previous problem to
three-dimensional flow patterns of nanofluids., A numerical analysis of
convective heat transfer for non-Newtonian (power-law) nanofluid was
reported by Alsabery et al. [30]. Recently, Al-Mudhaf et al, [31] investi-
gated the Soret and Dufour effects on the unsteady double-diffusive nat-
ural convection inside trapezoidal enclosures filled with isotropic porous
medium.

On the basis of literature reviewed as above, it can be concluded
that despite a large number of numerical studies on natural convection
within a trapezoidal cavity, which have been reported in the literature,
there is a serious lack of information regarding the problem of fluid flow
and heat transfer enhancement of viscoplastic materials in this geome-
try. Therefore, the aim of the present investigation is to study the effect
of sloping wall on Rayleigh-Bénard convection of a viscoplastic fluid in
a trapezoidal cavity.

2. Mathematical formulation

The system considered in this study is a trapezoidal cavity of height H
with the side wall inclined at an angle ¢ = 0, #/6, x/4, x/3 with y axis.
The schematic diagram of the physical model and coordinate system is
given in Fig. 1. The cavity is filled with a yield stress fluid obeying the
Bingham model. The bottom wall is heated isothermally with tempera-
ture T, and the top wall is cooled isothermally with temperature T, and
the remaining sloping walls are considered adiabatic. Thermo-physical
properties of the fluid are assumed to be constant except for the density
variation, which is determined based on the Boussinesq approximation.
Basis of the assumptions mentioned above and using the characteristic

scales H for length, u, = (gﬂHA'I')I"Z for the velocity and p, = (pu) for
the pressure, the governing equations describing the Rayleigh-

Bénard convection of viscoplastic fluid in their nondimensionalized
form can be written as:

du de
T + i 0
1 ZLsa dr,
g o = 2y prIRa (—’-‘-‘--*4)
dx dy dax ax Ay (l)
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Where u, v, @, and p are dimensionless horizontal velocity, vertical
velocity, temperature, and pressure respectively.

The relevant boundary conditions of velocity are considered as no-
slip on solid boundaries:

w=v=0o0nall walls. (2)

Adiabatic conditions are written at side walls and imposed temper-
atures at horizontal walls:

L. Oatside walls
an,
f=05aty=0 3)

f=-05aty=

where n, is the outward unit normal vector to the sidewall.
The dimensionless temperature @ is defined by:
T-T,
0= — 4
T )

where T, is a reference temperature: T, = (Ty + T)/2.
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Fig. 1. Schematic diagram of the physical model and coor-
dinate system. (x,y):main coordinate system, x,: x-coordinate
along the bottom wall, x,,: x-coordinate along the horizontal
mid-plane , x,: x-coordinate along the top wall.
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The stress-deformation behavior of viscoplastic materials based on follows:
Bingham model is given by:
Bn A
. =1+ — (]l —exp(~ 8
o= (1+(5) )y foriel> o, = (1 () - emem i ®

and (5)
y=0for|r| < 1,

Fori, j = 1, 2 with (x,, x3) = (x, ¥), where r is the viscous stress, Bn

is Bingham number, y = éy‘,m) and r = }r‘} T, -
The rate-of-strain tensor 7, is defined by:
du 3",
¥, =—+ — (6)
Yoo ax, o ax,

J

The Prandtl number, Pr, Rayleigh number, Ra, and Bingham number,
Bn, defined by:

Pr= ﬁ
3
Ra = _'m:"-” (7)

oy

-1 -1
Bn=(Pr/fRa) "2 =(PrfRa) 2Y

- mlgATH

with Y the yield number which corresponds to the ratio between the
yield stress and the buoyancy effects ¥ = m. It is worth noting
that the yield number Y does not depend on Ra and Pr contrary to Bn.
The various dimensional quantities above are defined as follows: u
is the dynamic viscosity, C, is specific heat capacity, k is the thermal
conductivity, g is the acceleration due to gravity, fi is the coefficient of
thermal expansion, « is the thermal diffusivity, AT is the temperature
difference between hot and cold walls, and v is the kinematic viscosity.
As one can see, there is a discontinuity between yielded and un-
yielded regions since the stress tensor is indeterminate when |¢| < ¢,
and the viscosity tends to infinity when y 0. To circumvent this dif-
ficulty, the Papanastasiou regularization of the constitutive equation is
employed [32]. Based on this regularization, Eq. (5) can be rewritten as

where m is regularization parameter and controls the exponential rise
in the stress at low rates of strain.

The heat flux averaged over the hot and cold walls is defined via the
Nusselt number:

_ 1
o 08

— L4 dx 9)
0 9y ly=a,

3. Numerical analysis
3.1. Method of solution

The set of coupled partial differential equations and boundary con-
ditions described in the previous section are solved by an iterative
algorithm implemented in house under MATLAB and based on the
Galerkin weighted residual method of finite element formulation [33].
The nonuniform unstructured triangular elements are considered to fill
the entire domain. The advantages of unstructured meshing are mani-
fold, the main being that it gives a more accurate solution of the gov-
erning equations in the vicinity of the walls.

The numerical method described in [14] has been used to solve the
system of nonlinear coupled partial differential equations (Eq. (1)). The
advantages posed by such an approach are accuracy, stability and sim-
ulation performances (CPU time) which makes it suitable for analyz-
ing coupled non-linear systems in different configurations by using both
structured [13,14] and unstructured [17,18] grids. Based on this way,
to solve the nonlinear system of equations (Eq. (1)), a penalty formu-
lation of the incompressibility constraint has been considered [33]. So,
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Fig. 3. Contours of non-dimensional temperature #(at the top) and stream functions with unyielded plug regions (at the bottom) for different values of yield number

at Ra =5.10" and ¢ = x/6.
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Fig. 4. Contours of non-dimensional temperature # (at the top) and stream functions with unyielded plug regions (at the bottom) for different values of yield number

at Ra =5.10" and ¢ = /4.

the governing equations will be rewritten in the following form:

v du P
dx dy A =0

oW, pot ?'(dr" ar,,
Up 3y +“Pu,4 e T PriRa? o T ay J,

- 10)
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where 4 is a large enough constant. In these equations, the subscript p
denotes previous (initial) values of velocity and stress (the stress can also
be computed based on u, and v,). The velocity distribution of Newto-
nian fluids can be considered as the initial values of u, and v,. Based on

this way, previous (initial) values of velocity are imposed in the nonlin-
ear convective terms, then the shear rate and shear stress are evaluated.
From the momentum and energy equations, new values of velocity and
temperature can be computed. These steps are repeated until the conver-
gence of velocity and temperature fields. Further details of the method
can be found in [14].

3.2. Numerical method validation

In order to assess the validity of the developed code, grid inde-
pendent tests were conducted for both Newtonian and Bingham fluids
(Ra = 10° and 0 < Bn < Bn,,,) and based on the results of velocity and
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heat transfer it was found that the mesh consisting of 7003 nodes guar-
antees a grid independent solution within the relative tolerance level of
1074, The convergence of the solutions was also checked by varying the
regularization (m) and penalty (4) parameters defined in Eq. (8) and
Eq. (10), respectively. It is found that the Nu value converges within
0.1% by varying m and 4 from 107 to 10%. Hence, in this study, both the
regularization and penalty parameters are chosen to be 10*,

On the other hand, the numerical code was validated against the
results of other numerical studies for natural convection in a cavity.
Among them, natural convection of Newtonian fluid in a trapezoidal
enclosure which compared with the similar study done by Basak [21].
Fig. 2(a) shows the comparison of mean Nusselt number Nu with those
results reported by Basak for different values of Ra at Pr = 0.7. The code
is also verified with Rayleigh-Bénard convection of Bingham fluids in a
square enclosure that is done by Turan [11] and very good accordance
is obtained (Fig. 2(b)).

4. Results and discussion

Numerical study has been conducted at the following values of the
governing parameters: side wall angle (p = 0, x/6, x/4, x/3), yield
number (0 < Y £ Y,), and Rayleigh number (5.10° < Ra < 10°) at a
constant value of the Prandtl number (Pr = 500). The effects of these

parameters on heat and momentum transport have been discussed in
detail.

4.1. Streamlines and isotherm contours

Figs. 3-5 show the effects of side wall angle (¢ = 0, x/6, x/4, x/3)
and yield number (0 < Y < Y,) on streamlines and isotherm contours
at Ra = 5.10* and Pr = 500. As one can see, the main feature of trape-
zoidal geometry is that the prevalent convective flow structure consists
of two convection rolls while in a square cavity (¢ = 0) there is only
one convection roll. This is due to the fact that with an increase in angle
of inclined walls the length of the top cold wall increases compared to
the bottom hot wall. As a result, warm fluid rises near the middle of the
bottom wall towards the top wall and cold fluid descends near the side
walls. Therefore, two symmetric rolls with clockwise and anti-clockwise
rotations are formed in the right and left sides of the cavity, respectively.
On the other hand, due to the significant convection force, the temper-
ature contour lines start getting deformed and pushed towards the top
wall and then shifted downward along the side walls.

The results obtained from different side wall angles (@) show that the
thermal gradient near the walls increases with increasing ¢ and hence
plume region extends and the values of stream functions increase. In
these figures, the gray shades represent the unyielded (plug) regions.
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Fig. 7. Variations of non-dimensional velocity v with yield number Y along the horizontal mid-plane (y = 0.5) for different values of sidewall inclination angle

(= x/6, x/4, x/3) at Ra = 10*(top) and Ra = 10°(bottom).

Two types of plug regions can be observed in the region: The Truly Un-
yielded Regions (TUR) and the Apparently Unyielded Regions (AUR)
[34]. The Truly Unyielded Regions (TUR) move with a plug velocity
profile (no deformation). The Apparently Unyielded Regions (AUR) are
located in the corners of the cavity and also in the zone of the stagna-
tion points (middle of the horizontal walls). The unyielded plugs tend
to accumulate at the top corners (acute angles) of the cavity where the
velocities are very small and no deformation occurs. Comparing the un-
yielded region between the present trapezoidal geometry and square
cavity (¢ = 0) [11] shows that AUR in trapezoidal enclosure occupy
more space in spite of the fact that the convective thermal transport
strengthens. In other words, the heat transfer rate increases with increas-
ing @ due to the larger cold wall length and the plug regions increase
with increasing ¢ because of acute angle corners. It is interesting to note
that in other geometries when the heat transfer rate increased the plug
regions generally decreased.

Results show that the isothermal lines become smoother and plug
regions increase with increasing Y because of stronger viscosity effects.
In other words, by moving from Y = 0 toward Y = Y, reduction in the
isotherm’s density near the horizontal walls decreases the heat transfer
rate in viscoplastic fluids. It is observed that increasing the yield stress
(Y) decreases the magnitude of stream function, which confirms the sta-
bilizing effect of the yield stress. As a result, plug regions increase with
increasing Y and eventually, those inside the Apparently Unyielded Re-
gions (AUR) are joined together with those in the convective area (TUR),
forming a solid plug for high Y values.

The effects of Ra on streamline and isotherm contours for the fixed
side wall inclination angle (¢ = x/4) and yield number (Y = 0.0078)
are presented in Fig. 6, It is observed that as Ra increases, the isotherms
become closer to the hot surface and the thermal gradient increases that
leads to higher heat transfer rates. Also, the magnitude of stream func-
tions increases by increasing Ra due to the strengthening of convective
transport in the enclosure. However, a closer look at the results reveals
that contrary to expectation, the unyielded regions increase with in-
creasing Ra (except for Ra = 5.10%), In order to explain this behavior,

the distribution of the second invariant of the shear rate tensor is also
represented in this figure. The dark blue regions in this figure correspond
to values of j which converge to zero, leading to unyielded regions. As
expected, larger Rayleigh numbers lead to larger 7 values in the cav-
ity but, in some areas the values of shear rate can even be reduced. In
other words, an increase in Ra gives rise to strengthening of convection
and hence plume region extends. As a result, the Apparently Unyielded
Regions (AUR) decrease monotonically as Ra increases, but on the con-
trary, the Truly Unyielded Regions (TUR) start to increase at the domain
because more space is available for them. However, it is worth to note
that at low Rayleigh numbers (Ra < 10%), the unyielded regions (both
AUR and TUR) increase due to weak convection current,

This behavior is in contrast to what is observed for the Rayleigh-
Bénard convection of yield stress fluids in the square cavity.

4.2. Velocity and temperature

Variations of non-dimensional vertical component of velocity v with
Y along the horizontal mid-plane (y = 0.5) of the cavity for Ra = 10%,10°
and ¢ =0, x/6, x/4, x/3 are depicted in Fig. 7. The variations of tem-
perature profile for the same conditions and configurations are repre-
sented in Fig. 8. As mentioned before, due to the hot bottom wall and
cold top wall, warm fluid rises near the center of the cavity and cold fluid
descends near the sloping walls. Existence of maximum and minimum
points in velocity and temperature profiles is in accordance with the
behavior observed in Figs 3-6. While the effect of side wall inclination
angle ¢ is seen to be weak at the center of cavity, it exerts much more
influence on velocity and temperature profiles near the side walls. One
can see that the temperature decreases in this area with the increase of
@ due to the effect of wider top cold wall. The results show that despite
the fact that the strength of the convection currents increases with ¢, the
vertical velocity profile decreases. This is due to the effect of side wall
inclination angle ¢ on the streamline patterns. In other words, sloping
wall decreases the absolute magnitude of vertical velocity but increases
the absolute magnitude of horizontal velocity.
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Fig. 9. Variations of local Nusselt number (along the bottom hot wall N, ) with yield number Y for different values of sidewall inclination angle (¢ = x/6, x/4, x/3)

at Ra = 10*(top) and Ra = 10°(bottom),

Results show that, as Ra increases, the magnitude of velocity in-
creases and temperature distribution becomes fairly non-linear due
to stronger convection force. On the other hand, opposite trends
are observed when the yield number increases which causes the
fluid flow to decelerate and the strength of convection to reduce,

number.

hence flow leads to an almost motionless conductive regime. Results
show that the value of Y, (yield number of the rest state) increases
with increasing ¢ and/or Ra due to the stronger buoyancy effects,
which can overcome the flow resistance up to greater values of yield
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4.3. Local heat transfer

The effects of side wall inclination angle ¢, yield number ¥, and
Rayleigh number Ra on the local heat transfer at the bottom hot wall
Nuy, have been presented in Fig. 9. Variations of local heat transfer rates
at the top cold wall Nu, for the same conditions and configurations are
represented in Fig. 10. Fig. 9 shows that the local Nusselt number is
maximum at the bottom corner of side walls where the temperature
gradients are largest. Then it progressively decreases from its maximum
value all the way to the mid-width (L, = 0.5) where there is no flow at
the lower stagnation point. On the contrary, the Nusselt number is seen
to be maximum at the central region of the top wall in the zone of the
upper stagnation point where the hot fluid approaches the top cold wall
and hence the isotherms are closely packed, whilst the heat transfer rate
reduces toward the edges where the local Nusselt number converges to
approach 0 (Fig. 10). However, similar to that observed for velocity and
temperature profiles the effect of side wall inclination angle ¢ on local
Nusselt number is seen to be much stronger in the vicinity of the sloping
walls.

On the other hand, it can be observed that as Ra increases, the mag-
nitude of the local Nusselt number enhances notably and its distribution
becomes more non-linear due to the stronger convection effects. In other

words, the gradient of temperature on the hot and cold walls augments
with the rise of Ra and hence increases the local heat transfer. Results
show that the maximum of the local heat transfer and nonlinearity of
its distribution decrease as Y increases due to viscous effects. In the case
of yield stress fluids, sinusoidally varying Nusselt distribution can be
observed in the zone of the upper stagnation point which can be inter-
preted as a decrease in temperature gradients of upper stagnation point
due to the plug region.

4.4. Mean heat transfer

Figs. 11-14 show the effect of the side wall inclination angle (¢ = 0,
x/6, x/4, x/3) on the mean Nusselt number for different values of
yield number (0 < Y < Y,) at Rayleigh numbers Ra = 5.10% — 10%, re-
spectively. Based on the previous discussions, the side wall inclination
angle () is predicted to have significant effects on the behavior of the
average Nusselt number which increases as the side wall inclination an-
gle increases, In other words, the increase in ¢ strengthens the intensity
of convection. Here it is observed that the average Nusselt number may
increase by 90% as ¢ increases from 0 to x/3. On the other hand, it is
seen that the average Nusselt number may increase to more than 100%
as Ra increases from 5.10% to 10°,



0 2.6833 8.0498 0 28510 57020 85530

<107 ¥ <107

5.3666
Vv

Re = 10 4f Ra = 104
3s5r Pr=500 Pr=500
o=/4 35} Pl
al
- .: 3 -
= -,
25
25}
2 -
2 -
0 0.0037 0.0 0 0.0042 00085 0.0127

0.0074
Y ¥

Fig. 12. Variations of mean Nusselt number Nu with yield number Y along the hot bottom wall for different values of sidewall inclination angle (¢ = 0, £/6, 7/4,

#/3) at Ra = 10*.

Ra = 5.107 sF Re = 510"
3 Pr=500 Pr=500
O ) O /6
25 i
= -
2 3 -
15 N
0 0,004 00097 00146 0 00046 00092 0.0139%
¥ Y

Ra = 5.10¢
Pr=500

0 00054 0.0108 00162 0 0.0064 00127 0019
Y ¥

Fig. 13. Variations of mean Nusselt number Nu with yield number ¥ along the hot bottom wall for different values of sidewall inclination angle (¢ = 0, /6, =/4,

x/3) at Ra = 5.10%,

Ra = 10° &F Ro = 107 4
35 Pr=500 Pr=50
o= 1) L Qe /6
3 5
Z 25 Zaf
2 ar
15 ot
0 0.0055 00110 0.0165 0 0.0050 0.0099 0.0149
Y Y

7 Ra = 10°

6 [':u;u 7
E 6

- s -
=y =°
4
3 3
2 2

0 0.0060 0.0120 0.0180 0 0.0070 0.0140 0.0210
Y Y

Fig. 14. Variations of mean Nusselt number Nu with yield number Y along the hot bottom wall for different values of sidewall inclination angle (@ = 0, /6, 7/4,

#/3) at Ra = 10°,

0.016 T T

Lines: correlation
Circles: numerical

Aok A

0.008

0.001 .
5.10° 10

5.10% 10°

Ra

Fig. 15. The variations of critical yield number ¥, with Rayleigh number Ra.
for different values of sidewall inclination angle (@ = 0, /6, #/4, 5/3).

Results show that the heat transfer is maximal for Newtonian flu-
ids (¥ = 0). But, the increase in yield number leads to reduce the heat
transfer since Nu decreases with increasing Y. Furthermore, whatever
the value of ¢ and Ra, convection finally stops at sufficiently large yield
number (Y = Y,) and the heat transfer corresponds only to a conductive

regime (Nu = N_u( ). This is due to the fact that the plug region invades
the whole space leading finally to a motionless state, It is observed that,
interestingly, the increasing trend of Y, (with increasing Ra) is more
pronounced in square cavity, As a result, at high Rayleigh numbers, the
critical yield number Y, of square cavity (¢ = 0) is larger than that with
¢ = x/6. This trend is more clearly shown in Fig. 15, This is due to the
fact that, as mentioned earlier, in trapezoidal cavities the plug regions
increase as Rayleigh number increases and, as a consequence, affect the
critical yield number Y_.

A correlation for the critical yield number Y, can be estimated by
fitting our numerical results as follows:

Ye = (a. In(Ra) = b)Ra™ 916
a = 0005565 exp(—4.417¢) + 00148 exp(0.4314¢) (1)
b = 0.08935 exp(~1.439¢@) + 0.0399 exp(0.916¢)

This correlation leads to a mean relative difference with our numer-
ical results which is less than 2% for 5.10° < Ra <10° and 0 < @ < #/3
as depicted in Fig. 15.

5. Conclusions

The objective of this work was to analyze the phenomena of natu-
ral convection in a trapezoidal enclosure filled with a yield stress fluid
obeying the Bingham model. For this purpose, a finite element numeri-
cal code based on the unstructured triangular grid has been developed.
The bottom wall is heated and the top wall is cooled isothermally while
the sloping walls are considered adiabatic.



Various inclination angles of the sloping wall (¢ = 0, /6, =/4,
x/3), yield numbers (0 < Y < Y,), and Rayleigh numbers (5.10% < Ra
< 10%) have been considered and the flow and temperature fields as
well as the heat transfer rate have been investigated. It is found that
when the Inclination angle was increased from ¢ = 0 it causes a mul-
ticellular flow, which appears as the main parameter to govern heat
transfer in the cavity. Results obtained generally show spectacular heat
transfer enhancement capabilities when compared to the square cavity
(¢ = 0). On the other hand, the results reveal that, the mean heat trans-
fer rate increases with increasing Ra due to stronger convection effects
and decreases with increasing yield number (V) because of strengthen-
ing viscous forces.

Contrary to what is expected, it is found that the unyielded regions
increase with increasing ¢ despite the fact that the convective thermal
transport strengthens. On the other hand, results show that increasing
the yield stress (Y) is also accompanied by the increase in the plug re-
gions, reducing the convection intensity in all cases. Above a certain
value of Y, the convection does not occur, and the heat transfer is only
due to conduction. Results show that the values of critical yield num-
ber (Y,) depend on @ and generally increase with increasing ¢ due to
stronger convection effects. Finally, it is of interest to note here that in
trapezoidal enclosure (@ > 0) the plug regions may increase with in-
crease in Ra while in square enclosure (¢ = 0) the plug regions always
decrease when Ra is increased.
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