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Process and production planning for sustainable reconfigurable 
manufacturing systems (SRMSs): multi‑objective exact 
and heuristic‑based approaches

Mohammad Amin Yazdani1 · Amirhossein Khezri2 · Lyes Benyoucef1

Abstract
In today’s competitive environments, companies need to be cost-effective, environmental-friendly, and social-friendly to deal 
with several challenges that exist in markets. In this context, reconfigurable manufacturing systems (RMSs) have emerged to 
fulfil these requirements. RMS is one of the attractive manufacturing paradigms. Machine components, software, or material 
handling units can be added, removed, modified, or interchanged as needed and imposed by the necessity to react rapidly 
and cost-effectively to changing. A multi-objective multi-product process and production planning problem in a sustainable 
reconfigurable manufacturing environment (SRMS) is considered in this paper. Three pillars of sustainability, respectively 
social, environmental, and economic are formulated and optimised. First, a linear mixed-integer model is proposed. Second, 
a Lagrangian relaxation-based approach is developed to solve the problem on the large scales, where an exact method is 
used to solve the problem in small and medium cases with GAMS software. To illustrate the applicability of the proposed 
approaches, some numerical examples and analyses are presented. Finally, a sensibility study of the problem according to 
some parameters is performed.

1 � Context and motivations

In today’s world, a manufacturing system must be cost-
effective and environmentally harmless to acquire sustainability 
and compete with other rivals in the market. According to a 
visionary report of Manufacturing Challenges 2020 conducted 
in the USA, this trend will continue. One of the six grand 
challenges of this visionary report is “the ability to reconfigure 
manufacturing systems rapidly in response to changing needs 
and opportunities” [1]. Moreover, due to the escalation in fuel 
prices, the higher tariff for electrical use, and environmental 

legislation, the reduction in energy consumption and carbon 
footprint has become the need of the hour in the manufacturing 
sector. Through the latest decades, manufacturing technologies 
have evolved, and several terms have been introduced. In 
this regard, the term “industry 4.0” appeared in 2011 for 
the first time. And then [2] introduced nine decisive keys to 
implementing industry 4.0 in the manufacturing systems. In 
the concept of industry 4.0, they will work together to optimise 
several aspects of the production that can be seen in Fig. 1. 
As a result, advanced manufacturing solutions play a pivotal 
role in acquiring the industry 4.0 environment. It suggested 
that autonomous, cooperating industrial robots, and numerous 
integrated sensors and standardised interfaces are the main 
concepts of the advanced manufacturing solutions [3].

Reconfigurable manufacturing system (RMS) is one of 
the attractive manufacturing paradigms that can be helpful 
to combine with other methods to enable industry 4.0 [5, 6]. 
In this paradigm, machine components, machine software’s, 
or material handling units can be added, removed, modi-
fied, or interchanged as needed and when imposed by the 
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necessity to react and respond rapidly and cost-effectively 
to changing requirements. RMS is recognised as a conveni-
ent manufacturing paradigm for various productions and a 
flexible enabler for this variety [7]. RMS’s concept is also 
introduced as a cost-effective response to markets’ demands 
for responsiveness and customisation. This definition makes 
it easier to consider this system as a customised flexibility 
provider to prevent replacing by continuous improvement, 
upgrading, and reconfigured [1]. Therefore, it can be con-
cluded that RMS can be one of the efficient factors to imple-
ment industry 4.0 in manufacturing plants.

Nowadays, manufacturing systems and RMSs have three 
main legs: cost, quality, and responsiveness, as noted in Fig. 2. 
The primary usage of responsiveness is that they enable the 

system to react toward the market changes. Two significant 
changes in the markets are product demand changes and new 
products produced on existing manufacturing systems. To 
acquire rapid responsiveness and diminish reconfiguration 
time, every RMS has six main characteristics: scalability, 
convertibility, diagnosability, modularity, integrability, and 
customisation. Besides, the main features of the RMSs are 
modularity, changeability, and intelligent assembly systems 
that lead to contemplating them in this category. Hence, it 
indicates that RMSs are enablers of implementing the industry 
4.0 environment now and in the future [8].

A sustainable future is the most crucial concern of human 
beings in today’s world. This ability comprises happiness, 
health, education, job satisfaction, and so on. It relies on most 
aspects of human race life, such as social, environmental, and 
economical. Nowadays, numerous restrictions and laws are 
set pointing companies to lower the damage caused to the 
environment. Furthermore, they have to consider their operators’ 
health condition and the effects of harmful materials and 
remnants on their bodies. Besides, sustainable manufacturing 
is used to improve human life in terms of satisfaction and other 
lifestyle matters. RMS can meet these challenges due to its 
flexibility and integrability. Moreover, it is thought to be one of 
the most suitable paradigms with sustainability requirements [9]. 
Therefore, we can define SRMS rely on as “a RMS system that 
can transform materials without (i) greenhouse gas emissions 
and (ii) use of unsustainable or toxic materials or (iii) produce 
waste and (iv) respect the human being social life”.

Fig. 1   Industry 4.0 in the manufacturing systems [4]

Fig. 2   Three goals of manufacturing systems [7]



Currently, RMS is an attractive researching field for both 
researchers and industrials. Hence, many works of art in 
such fields as process planning, production planning, layout 
optimisation, design, and production schedule can be seen. 
In this paper, new approaches toward the sustainable multi-
objective RMS are considered, where the first results are 
presented [10]. The combination of process planning and 
production planning in the sustainable area happened for 
the first time in this work. In the production planning area 
of working, it is crucial to answering the market’s demands 
by considering the limits of the whole system. In the pro-
cess planning part, the best sequences for the production of 
several products are considered. The aim is to minimise the 
total cost function, minimise the harmful effects of the gases 
and liquids on the human body and maximise social benefits 
as social sustainability. This study’s innovations consider 
both process planning and production planning in a recon-
figurable environment, involving all sustainability facets and 
several product production sequences. More specifically, the 
main contributions of the paper are:

1. Consider social sustainability factors in a reconfigurable
manufacturing environment.

2. Consider environmental sustainability factors in a recon-
figurable manufacturing environment.

3. Consider production and process planning together in a
reconfigurable manufacturing environment.

4. Propose a linear multi-objective mixed-integer math-
ematical formulation.

5. Develop exact and heuristic solving approaches and
compare them.

6. Address sensitivity analyses of the problem according
to some parameters.

The rest of the paper is organised as follows: Section 2 
reviews some related sustainability works in manufacturing 
systems, process planning in manufacturing systems, and 
production planning in manufacturing systems. Section 3 
describes the problem under consideration and its math-
ematical formulation. Section 4 presents the proposed exact 
and heuristics-based approaches. Section 5 illustrates some 
numerical examples and analyses the obtained results in dif-
ferent scales. Section 6 shows the sensibility of the problem 
according to some parameters. Section 7 concludes the paper 
and outlines some future work directions.

2 � Literature review

As one of the newest paradigms, RMS has demonstrated 
outstanding potential for further researches. This sec-
tion briefly reviews some research works in sustainability, 

process planning, and production planning in manufacturing 
systems and RMS.

2.1 � Sustainability and RMS

In the RMS concept, several different facets of sustainability, 
as social, environmental, and economic, are considered to stay 
competitive from the decision maker’s perspective. Although 
the RMS’s first definition appeared in 1994, the correlation 
between an RMS production plan and the sustainable area is 
novel. It is easy to find many research works in economics and 
the relationship between RMS and sustainable working areas; 
however, few surveys concentrated on the quantitative manners 
of social impacts on a sustainable RMS. Besides, most of the 
research works that focus on the environmental aspects of the 
RMS ignore other aspects [11].

A significant portion of papers focuses on the costs, objective 
functions or added value of economic sustainability objectives. 
Therefore, it is essential to recognise different costs in the manu-
facturing system. Raw materials, manufacturing, transportation, 
and operations are the most critical costly elements in manufac-
turing systems [12]. Besides, operators’ salary and cost can con-
sider separately from the costs of final products. In the RMS, the 
more reconfigurability, the more economical and environmental 
sustainability can achieve. It means, if a workshop can elevate 
this matter for the machines, they will be able to increase their 
final profit and reduce final costs [13].

Several optimisation methods have been used in the multi-
objective scenario to find the best sequences of the process plans’ 
operations. In the concept of sustainable RMS, Touzout and 
Benyoucef [14] proposed a multi-objective MILP model with 
two adapted versions of the well-known non-dominated sorting 
genetic algorithm (NSGA-II) and archived multi-objective 
simulated annealing (AMOSA). Greenhouse gases and the 
amount of harmful gas emissions, and the cost of manufacturing 
are minimised. Khezri et al. [15] used augmented ε-constraint 
(AUGECON) to minimise the total production costs, the total 
completion time, and the total energy consumption during the 
manufacturing process. Moreover, Khezri et al. [16] developed 
a sustainable RMS that responds to customer demands cost-
effectively and environmentally friendly. In this paper, the 
authors provide a multi-objective problem where production 
cost, production time, and manufacturing liquid hazardous and 
energy consumption are studied and minimised. In this regard, 
an AUGECON method and adapted versions of NSGA-II and 
SPEA-II are used and compared to solve the problem.

Nevertheless, designing reconfigurable manufacturing sys-
tems can have several elements of social sustainability. Such 
elements as being user-friendly and ergonomics can be consid-
ered the machines using matters, and some other social aspects 
such as the job opportunity created by the systems for the people 
in the neighbourhood of the company are considered system 



matters. If the system is simple for the operator to program and 
support manual operations, we can call it user-friendly. Moreo-
ver, the operation environment, layout, and so on, can affect the 
operators’ mental and physical health condition in the long term 
is considered ergonomics [17].

2.2 � Sustainability in manufacturing systems

The Cambridge dictionary defines a sustainable manufactur-
ing system as: “the idea that goods and services should be 
produced in ways that do not use resources that cannot be 
replaced and that do not damage the environment”. Another 
useful definition of sustainability by [18] is: “is not an abso-
lute, independent of human conceptual frameworks. Rather 
it is always set in the context of decisions about what type 
of system is to be sustained and over what spatiotemporal 
scale”. Therefore, it is possible to mention that sustainabil-
ity is a leading force in the industries in the twentieth-first 
century, according to the world changes during centuries.

Sustainability is considered an essential facet for future 
manufacturing, so many papers and reviews are dedicated to 
sustainable manufacturing. According to Malek and Desai 
[19], developing countries had significant progress in imple-
menting sustainability through their automobile industries. 
Moreover, one of the best choices for today's companies 
and market owners is sustaining their market existence in 
social, environmental, and economic aspects. The hopeful 
prospect is that by implementing sustainability for all the 
elements mentioned above, they can balance their market 
and achieve their goals. Another review study proposed an 
analytical framework of the life cycle sustainability in the 
manufacturing systems [20]. Besides, the authors tried to 
find the relationship between socio-economic reciprocation 
and social exchange theories in a sustainable environment.

For the sustainable manufacturing paradigm, the deci-
sion-maker can play a pivotal role in several aspects, so it 
is essential to pay the way for the decision-maker. For sup-
porting decision-making, it is essential to provide a holistic 
understanding of advanced scientific analysis methodolo-
gies in all aspects of sustainability [21]. Moreover, the lack 
of knowledge to understand the differences between social, 
environmental, and economic sustainability can impede the 
future growth of sustainability and make decision-making 
harder at the unit process and enterprise levels. Therefore, 
using some methods that clarify the border of sustainability 
matters from each other in manufacturing systems will help 
us solve the complicated decision-making problems [22]. 
Environmental factors are considered as the emissions of 
greenhouse gases and other harmful materials in the envi-
ronment. Wastes of the production sites can be considered 
one of the most important factors of environmental sustain-
ability. It is possible to reuse some parts of the production 

part’s waste, but it is essential to set the tools in the appro-
priate path and save the critical part of the materials before 
being completely unusable [23].

From the manufacturing and service point of view, it is 
essential to design products that rely on sustainability mat-
ters. Moreover, business development sustainability is cru-
cial in the manufacturing sustainability perspective [24]. 
They are two other factors in environmental sustainability. 
They are management and organisational culture and energy 
consumption. The management and organisational culture 
indicators are the authorities' roles on the final manufactur-
ing system sustainability [25]. Besides, for energy consump-
tion, the energy consumption from the vehicles' usage in 
the working environment can be an example of this matter 
[13]. In the multi-objective context, Zahiri et al. [26] tried 
to maximise job opportunities in the considered zone for 
unemployed people.

Moreover, the area with the maximum chance of get-
ting more operators to employ is selected as the optimal 
one. Some other papers in the multi-objective area consider 
this procedure to bring social sustainability matters in the 
mathematical formulation [27]. Finally, we can conclude 
that manufacturing sustainability is the most critical part of 
sustainability implementation in today's world [28].

2.3 � Process and production planning 
in manufacturing

A process plan is a bridge between product and resources 
and operations paths to achieve the final products. There-
fore, it is essential to find the best operations sequences for 
every single unit in the manufacturing environment [29]. 
Moreover, it is essential to consider other aspects of the 
production plan to perform operations and sequences bet-
ter. Such aspects as scheduling units or production plan-
ning can be helpful [30].

Musharavati and Hamouda [31] proposed simulated 
annealing (SA)-based algorithms to deal with the process 
planning problem in a reconfigurable environment. They 
developed several variants of the SA algorithms, a variant 
of the basic SA algorithm, a variant of the SA algorithm 
coupled with auxiliary knowledge, and a variant of the SA 
algorithm implemented in a quasi-parallel architecture. The 
obtained experimental results showed the superiority of the 
variants in comparison to a basic SA algorithm. Maniraj 
et al. [32] proposed a two-phase-based ant colony optimisa-
tion approach to solve a single product flow line's process 
plan generation problem in a reconfigurable context. In the 
first phase, the priority-based encoding technique is applied 
to find feasible operation clusters. In the second phase, the 
ant colony technique is used to minimise the total cost of the 
RMS. A case study is presented to demonstrate the applica-
bility of the developed approach.



In a multi-objective context, Chaube et  al. [30] and 
Bensmaine et al. [33] proposed an evolutionary-based approach 
to solve the single unit process plan generation problem. 
Chaube et al. [30] adapted the NSGA-II, where two objectives 
are minimised, respectively, the total completion time and 
the total manufacturing cost. Bensmaine et al. [33] integrated 
the process plan generation with the design problem using 
the same approach. Haddou Benderbal et al. [34] proposed 
a new flexibility metric to generate efficient process plans by 
integrating unavailability constraints of the selected machines. 
The resulting multi-objective problem is solved using an adapted 
version of NSGA-II. Recently, Khettabi et al. [35] addressed 
the reconfigurable machines and tools selection in the case of a 
single unit process plan generation. A non-linear multi-objective 
integer program (NL-MOIP) is presented first, where four 
objectives are minimized respectively, the total production cost, 
the total production time, the amount of the greenhouse gases 
emitted by machines, and the hazardous liquid wastes. Second, 
to solve the problem, they proposed four adapted versions of 
NSGA-II, NSGA-III, weighted genetic algorithms (WGA), and 
random weighted genetic algorithms (RWGA). Furthermore, 
three metrics, respectively hypervolume, spacing metric, and 
cardinality of the mixed Pareto fronts, were used to demonstrate 
the performances of the four approaches. The results showed the 
superiority of NSGA-III in solving the problem.

Production planning links several segments in a manufactur-
ing environment, such as operations scheduling, output capac-
ity, final product quality, etc. Furthermore, quality control and 
process planning can play a decisive role in quantitative matters' 
decision-making [36]. In this context, few research works have 
considered multiple production systems' implications to produce 
a specific final product. Liu et al. [37] presented a mixed-integer 
stochastic programming model for manufacturing systems. They 
introduced an effective tool for optimising the production plans 
rely on the decision-maker’s point of view.

Recentely, Kaltenbrunner et al. [38] considered the production 
planning for highly automated pallet production. They proposed 
a heuristic solution approach to solve the cutting stock problem 
with a constraining open stack problem occurring at the 
beginning of pallets’ production, the saw, and the downstream 
stacking robots. The objective is to minimise the waste of material 
and ensure a continuous production flow at the pallet production 
site. Okpoti and Jeong [39] presented a reactive, decentralized 
coordination mechanism facilitating collaborative production 
planning decisions. More specifically, the mechanism determines 
a plan before the start of production, which is re-optimized in 
case any dynamic events occur after the production horizon. To 
demonstrate the applicability of the developed mechanism, they 
designed and implemented a cyber-physical production system 
prototype that incorporates all the existing fundamental elements 
of the smart factory. The obtained results are promising in terms 
of work-in-process, delayed demand, system throughput on 
average in dynamic environments.

2.4 � Research split

From the above literature review, it is probable to find some 
gaps in this moot point. In the prior studies of RMS, the 
authors just focused on the production cycles of the RMS. It 
is noted that none of the previous researchers concentrated 
on the several visions of the sustainability indicators such 
as social, environmental, and economic in tandem. Besides, 
the process planning methods were not combined with the 
production planning aspects in a sustainable environment. 
Moreover, we can conclude that the combination of pro-
cess and production planning in a sustainable environment 
is an exciting and new RMS topic. Therefore, the gap can 
be named as implementing all aspects of sustainability in an 
RMS environment and discovering the best production quan-
tity and process sequences rely on the innovations (Table 1). 
The main innovations of the article according to the men-
tioned problem are depicted as follows:

• We address the harmful impacts of the machines and
materials on the environment.

• We consider the social impact of RMS.
• We consider a multi-product production cycle in the pre-

sented period.
• We model and propose a multi-objective mathematical

formulation of an SRMS.
• We develop exact and heuristic solving approaches and

compare them.
• We address sensitivity analyses of the problem according

to some parameters.

3 � Problem description and formulation

3.1 � Problem description

Regarding the research gap found in the previous sections, 
this problem considers all sustainability matters in an RMS 
environment. Three different objectives contain social, envi-
ronmental, and economic aspects. For economic sustainabil-
ity, a cost function is proposed. The cost function includes 
RMS’s production cost during activities on the raw material 
to make the final specific part families and related produc-
tion costs. For environmental sustainability, harmful gasses 
and liquids remnants from the machines during production 
are considered. For social sustainability, the local considered 
employment rate and the social benefit associated with the 
generation of employment in the RMS environment zone 
are maximised.
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In our case, the final products are from the same part 
families, and the manufacturing process involves receiving 
raw materials and turning them into final products. We try 
to determine the best process and production planning. Pro-
cess planning aims to obtain the optimum sequences of the 
machines, configurations, and operations during manufactur-
ing. Moreover, production planning aims to determine the 
optimum quantities of products that should be produced. 
Figure 3 shows the graphical abstract of the problem.

As depicted in Fig. 3, the raw materials come to the man-
ufacturing system. Several activities regarding the process 
planning and production planning have to be done to pro-
vide specific final part families. The machines can process 
multiple products, subject to configuration changes. Never-
theless, during this process, machines will emit dangerous 
gases and liquids. In our case, each product from the part 
family can have several process plans; however, each part 
family will have the same optimal sequences of operations. 
The final products’ quantities have to satisfy the markets’ 
demands in the considered time window. Furthermore, dur-
ing the production process, the operators have to stay near 
the machines to visually inspect the machines’ work and 
prevent any possible risks and failure. To maximise the util-
ity of the company zone, in the social objective, it tries to 
employ operators from the neighbourhood to elevate job 
opportunities in the company’s zone.

As mentioned previously, reconfigurable machines can 
manufacture multiple products from the same part family. 

During the production time, there can be some changes, 
such as configuration changes. Moreover, other produc-
tion orders can intervene to answer the market demands 
to find the most profitable and cost-effective process and 
production plans during a one-time horizon. There is no 
shortage of raw materials, and the final products have no 
inventory costs. For each product, the process plan is a 
matrix with n columns (number of operations) and three 
rows (operations, machines, and configurations). Table 2 
presents examples of process plans of products P1 and P2 
from the same part family that should be read from left 
to right. It represents the sequence of operations to be 
performed, where each column illustrates the performed 
operation, machine, and configuration. For example, to 
manufacture P1, operation 2 denoted by Op12 is realized 
by machine M1 using configuration H3.

The system can use the optimal operations sequences 
and deploy the production plans to answer market 
demands of products P1 and P2 (Fig. 4). Moreover, P1 
and P2 have the same number of operations (five opera-
tions) related by the same precedence graph of Fig. 4 (i.e. 
same part family). However, Op11, Op12, Op13, Op14, 
and Op15 of P1 are a little bit different from Op21, Op22, 
Op23, Op24, and Op25 of P2. The differences between 
products are due to the operation functionalities, which 
are related to machines and configurations.

Fig. 3   Graphical abstract of the problem



3.2 � Model assumptions

The proposed model is based on the following assumptions:

Assumption 1: Operators check the machine's processing 
and do visual examinations for the final products.
Assumption 2: Operators use special equipments and are 
protected from harmful gases during the visual examina-
tions.
Assumption 3: Multiple products can be produced.
Assumption 4: Each product can follow several process 
plans using several reconfigurable machines.
Assumption 5: The market demands are deterministic.
Assumption 6: During the process, no failure will happen.
Assumption 7: It is necessary to produce more than the 
markets’ demands.
Assumption 8: There is no storage cost of the products.
Assumption 9: During the production, the harmful gases 
emit and affect the operator’s bodies’ health.
Assumption 10: The problem is considered in a one-time 
window.

3.3 � Mathematical formulation

The following notations are used:

Parameters

i, i' Index of operations

j, j' Index of positions in the  
processing sequence

p Index of products in part families
m, m' Index of machines
h, h' Index of configurations
op Number of operations
con Number of configurations
prod Number of part family products
mac Number of machines
pos Number of positions
BM A big number
Tmp Average cycle time of machine m 

to operate on product p
CAPmp Maximum capacity of machine m 

to operate on product p

Table 2   Simple examples of 
generated process plans

P1 Operations Op11 Op12 Op14 Op13 Op15
Machines M1 M1 M1 M2 M2

Configuration H2 H3 H2 H1 H1

P2 Operations Op21 Op23 Op22 Op24 Op25
Machines M2 M2 M2 M1 M1
Configuration H3 H1 H1 H2 H2

Fig. 4   An illustrative products schemas and operations precedence graph



Parameters

i, i' Index of operations

PCAP Production capacity
DEMp Demand of part family products p 

in the considered period
TPp Total production time of part  

family products p
ACph Assignment cost of part family 

products p in configuration h
CMjj

′
m Changeover cost from position j′ 

to position j in machine m per 
time unit

PCijp Processing cost of operation i on 
the part family products p at 
position j per time unit

TMjj
′
m Changeover time from position j′ 

to position j in machine m
PTijp Processing time of operation i 

on the part family products p at 
position j

PRi Set of predecessors of operation i
QCph Production cost of part family 

products p in configuration h
ELi,j Harmful liquid remnants of the 

operation i at position j
EGi,j Harmful gases emission of the 

operation i at position j
li,j Required liquid for operation i at 

the position j
L Total available liquid
URm Rate of unemployed that can work 

on machine m in the potential 
location

SL Operators' average salary
Decision variables
x
p

ijh
= 1 if operation i is processed  

at position j, to produce part 
family product p, using the 
configuration h

= 0 otherwise
y
mp

jh
= 1 if machine m is at the position 

j, to produce part family product 
p, using the configuration h

= 0 otherwise
v
mp

jj
′

= 1 if there is a change in machine 
number m between the position 
j
′ and j, to produce part family 

product p
= 0 otherwise

wm Number of assigend operators to 
machine m

Parameters

i, i' Index of operations

Qp Production quantity of product p
ASph Assignment matrix of part family 

product p to configuration h
Z1 Cost function
Z2 Environmental pollution function
Z3 Social sustainability function

The following multi-objective model is used to select the 
best process and production planning according to sustain-
ability indicators. The objective functions and constraints 
are defined as follows:

Subject to:

(1)

MinZ1 =

op∑

i=1

pos∑

j=1

prod∑

p=1

con∑

h=1

PTijp × PCijp × x
p

ijh
+

pos∑

j=1

pos∑

j
�
=1

mac∑

m=1

prod∑

p=1

v
mp

jj
�

× TMjj
�
m × CMjj

�
m +

con∑

h=1

prod∑

p=1

Qp × QCph +

con∑

h=1

prod∑

p=1

ASph

× ACph +

mac∑

m=1

wm × SL

(2)MinZ2 =

op∑

i=1

pos∑

j=1

prod∑

p=1

con∑

h=1

PTijp × (ELi,j + EGi,j) × x
p

ijh

(3)Max Z3 =

∑mac

m=1
(URm × wm)∑mac

m=1
URm

(4)
op∑

i=1

prod∑

p=1

x
p

ijh
= 1

∀j ∈ [1,… , pos]

∀h ∈ [1,… , con]

(5)
pos∑

j=1

prod∑

p=1

x
p

ijh
= 1

∀i ∈ [1,… , op]

∀h ∈ [1,… , con]

(6)
con∑

h=1

x
p

ijh
× |PRi| ≤

op∑

i
�
=1

pos∑

j
�
=1

con∑

h
�
=1

x
p

i
�
j
�
h
�

∀i ∈ [1,… , op]

∀j ∈ [1,… , pos]

∀p ∈ [1,… , prod]

(7)
con∑

h=1

y
mp

jh
= 1

∀j ∈ [1,… , pos]

∀m ∈ [1,… ,mac]

∀p ∈ [1,… , prod]

(8)y
mp

jh
≥ x

p

ijh
∀i ∈ [1,… , op]∀j ∈ [1,… , pos]∀m ∈ [1,… ,mac]∀p ∈

[
1,… , prod

]
∀h ∈ [1,… , con]



Equation (1) is the cost function. Equation (2) is the 
environmental sustainability function. Equation (3) is the 
social sustainability function that is a normalized equation. 
The denominator of each term in the equation is the sum of 
parameters representing the maximum possible value. For
example, 

∑
m URm corresponds to the sum of add value factor

for the rate of employment. Constraint (4) ensures that all the 
configurations can have access to all the positions. Constraint 
(5) indicates that each operation is processed once for part 
families in each configuration. Constraint (6) states that each 
operation is processed if all of the predecessors’ operations are 
already finished. Constraint (7) illustrates that each configuration 
contains machines and part families. Constraint (8) ensures 
that if operation i performed at position p, machine m, and 
configuration h are required. Constraint (9) shows that if there 
is a change in the machines between the positions or not during 

(9)

op∑

i=1

(x
p

ijh
+ x

p

ij−1h
) ≤ v

mp

jj
�
+ 1

∀j, j
�

∈ [1,… , pos] ∀m ∈ [1,… ,mac] ∀p ∈

[
1,… , prod

]
∀h ∈ [1,… , con]

(10)
op∑

i=1

pos∑

j=1

x
p

ijh
× ASph × con ≥ qp

∀p ∈

[
1,… , prod

]

∀h ∈ [1,… , con]

(11)Qp = DEMp ∀p ∈

[
1,… , prod

]

(12)Qp × Tmp ≤ CAPmp

∀p ∈

[
1,… , prod

]

∀m ∈ [1,… ,mac]

(13)

ASph − ASph� +
(
1 − v

mp

jj
�

)
BM − 1 ≥ 0

∀j, j
�

∈ [1,… , pos]∀m ∈ [1,… ,mac]

∀p ∈

[
1,… , prod

]
∀h, h

�

∈ [1,… , con]

(14)
prod∑

p=1

Qp × TPp ≤ PCAP

(15)wm ≥ 1 ∀m ∈ [1,… ,mac]

(16)
op∑

i=1

pos∑

j=1

prod∑

p=1

con∑

h=1

x
p

ijh
× PTijp × li,j ≤ L

(17)

x
p

ijh
∈ {0, 1} y

mp

jh
∈ {0, 1} v

mp

jj
�
∈ {0, 1}

∀i ∈ [1,… , op] ∀j ∈ [1,… , pos] ∀m ∈ [1,… ,mac]

∀p ∈

[
1,… , prod

]
∀h ∈ [1,… , con]

the production. Constraint (10) claims that the number of final 
products in each part families are according to configurations 
assignment. Constraint (11) indicates that it is crucial to answer 
all customer demands. Constraint (12) introduces the production 
capacities. Constraint (13) uses to prevent the backward direction 
of production flows. Constraint (14) indicates that the amount of 
production time should not exceed the available time. Constraint 
(15) shows that each machine should have assigned to at least 
one operator. Constraint (16) considers the limitation of the total 
required liquid during the production process. Constraint (17) 
determines the types of variables.

4 � Proposed approaches

In this section, we discuss several approaches proposed to 
solve the developed mathematical model. According to the 
Lp-metric objective functions and constraints in the math-
ematical formulation, we can solve our problem as a single-
objective mathematical formulation by baron solver [51] 
using GAMS Solver. Besides, it helps the decision-maker 
to choose between several objectives according to his pref-
erence. Furthermore, to implement a Lagrangian relaxation 
(LR) based approach, abounded objective approach is devel-
oped. We used the Lp-metric-based approach in the first step 
because there will be no choices between the weights of the 
objective functions for the decision-maker in the bounded 
objective function in the managerial point of view. However, 
in the Lp-metrics-based approach, the decision-maker can 
have a pivotal role in choosing each objective’s weight. The 
LR-based approach is a heuristic method that approximates a 
problematic model with several constraints optimise solution 
relies on a more straightforward relaxed problem. In the last 
part of this section, we used a sub-gradient based-method to 
update the LR-based approach co-efficiency.

4.1 � Lp‑metric based approach

There are many multi-objective programming ways to 
consider the decision-maker’s point of view and solve the 
problems. For instance, ε-constraint and goal programming 
comprises programming (Yousefi et al., 2017). In this paper, 
we prefer programming because of a couple of reasons. First 
of all, the primary purpose of using weighted sum program-
ming is that it is possible to give the decision-maker enough 
freedom to consider each weight he wants to the objective 
functions that are improbable in other procedures. Further-
more, according to Babbar and Amin [52], the final answer 
can be more exact for our paper with this method.

For the proposed model, three objective functions are, 
respectively Z1 , Z2 , and Z3 . The model is solved separately 
for each of the three objectives with the LP-metrics base 



approach. The optimum value of each objective function is 
Z∗

1
 , Z∗

2
 , and Z∗

3
 . The mentioned single objective function can 

now be formulated as follows (18):

where the weights are related by Eq. (19):

4.2 � Bounded objective function

In this paper, the bounded objective function method 
is used to make the multi-objective method into the 
objective function. There are two reasons to choose this 
method in this part of the paper. First of all, it will pay 
for implementing the LR-based approach in the next sec-
tion. Furthermore, this method makes the solving method 
more manageable, and it is not practical enough as the 
decision-maker's point of view comprises programming. 
In this method, one of the objective functions is consid-
ered the primary objective function, and the other ones 
are considered the constraints with assigned upper and 
lower bounds [53].

In our problem, the most critical objective function is 
the cost function. The payoff table calculates the upper and 
lower bounds of the other objectives in the constraint. The 
bounded objective function is as follows:

Subject to:

EQS (4-17) (4-17)

where Z1 is the first objective function and LBi and UBi are 
the bounds of the ith objective function. Moreover, it will 
be solved with the rest of the objective functions as a single-
objective model.

4.3 � Lagrangian relaxation‑based approach

It is possible to solve small- and medium-scale problems 
with GAMS solver. Nevertheless, solving large-scale  
problems, such as our problem, can be so time-consuming 

(18)

Min Z4 = weight1 ×

(
Z1 − Z∗

1

Z∗

1

)
+ weight2

×

(
Z2 − Z∗

2

Z∗

2

)
− weight3 ×

(
Z3 − Z∗

3

Z∗

3

)

(19)
3∑

i=1

weighti = 1

(20)Min Z1

(21)LBi ≤ Zi ≤ UBi i = 2, 3

for the GAMS to solve our problem. The Lagrangian  
relaxation-based method has been extensively adopted in 
different fields such as manufacturing and supply chain 
management to solve large-scale problems and complex  
mathematical formulation. Zheng et  al. [54], Heidari- 
Fathian and Pasandideh [53], and Yousefi-Babadi et al.  
[55] are some examples of the usage of the Lagrangian 
relaxation based method in supply chain management.  
Hong et al. [56] adopted this method in the manufactur-
ing systems. Regarding the efficiency of this approach in  
the several problems, it has been adapted to our problem.

The proposed mathematical formulation is a mixed-
integer programming model for an NP-hard problem 
[5]. As mentioned above, commercial mathematical 
programming software cannot solve an NP-hard model 
like our RMS model on large scales, so it is essential 
to implement an algorithm to solve the problem. In the 
LR-based approach, it is so important to choose the best 
constraint for the relaxation part. In this paper, we started 
to relax the constraints that can be more time-consuming 
than the others separately. Constraints (4), (5), and (10)  
are relaxed one by one, and the model ran to show the 
best one for selecting as the relaxed constraint. Besides, 
to compare them, the CPU time has been obtained as 
illustrated in Table 3.

As it is noted in Table 3, constraint (5) has been selected 
for the relaxation part in this approach. Therefore, the math-
ematical formulation can be written as follows:

subject to:

Eqs. (4), (6–17) (4), (6–17)

where �ih is the LR-based approach coefficients and its'  
value is free and Z4 is the objective function.

(22)

Z4 = MinZ1 −

op∑

i=1

con∑

h=1

�ih

[
pos∑

j=1

prod∑

p=1

x
p

ijh
− 1

]
∀i ∈ [1,… , op]

∀h ∈ [1,… , con]

(23)LB2 ≤ Z2 ≤ UB2

(24)LB3 ≤ Z3 ≤ UB3

Table 3   Results of constraints 
selection approach

Relaxed  
constraint  
number

CPU time

4 1.470
5 1.365
10 1.480
Without  

relaxation
1.580



4.4 � Sub‑gradient based‑method

Several methods such as sub-gradient, coefficients correc-
tion, bundle and cutting plane, and column generation can 
help update the LR-based approach coefficient. Accord-
ing to Fisher [57] and literature review, the sub-gradient 
is a suitable method with a high-performance level for 

our model. This method starts with a given value of the 
LR-based approach coefficients and tries to update the 
algorithm’s repetitive run until getting the best amount of 
the LR-based approach coefficients. The best amount hap-
pens when it has been possible to maximise the LR-based 
approach lower bound. The method can be summarised as 
follows:

Fig. 5   Flowchart of the algorithm



Step 1: The upper bound of the first objective is calcu-
lated by a heuristic method ( UB1 ). Then, an initial value 
is assigned to the LR-based approach coefficient ( �initiate).
Step 2: Solve the problem with Step 1 values to find the 
lower bound ( LB1 ) of the problem and decision variable 
(in the proposed mathematical formulation, we will find 
x
p

ijh
 by running the algorithm in Step 2).

Step 3: Define a sub-gradient factor for the relaxed con-
straint ( Gammaih)

Step 4: Define step size factor (STS) to find the best direc-
tion of the algorithm for achieving the best LR based 
approach coefficient as follows:

It is important to note that � is a parameter with a value of 
2 at step 1. It can be chosen from the decision maker’s point 
of view. Furthermore, its value changed to obtain a better 
answer in each repetitive run.

Step 5: In each run, the value of �ih is updating in Eq. 
(27). After each run, it will go back to step 2.

Besides, we consider 50 iterations to stop the algorithm 
and reach the best value. Figure 5 presents the flowchart of 
the developed algorithm.

5 � Computational study

In this section, the applicability of the LR-based approach 
is demonstrated in a numerical example. The example is 
implemented in GAMS 31.2.0 on a laptop with the following 

(25)Gammaih =

pos∑

j=1

prod∑

p=1

x
p

ijh
− 1 ∀i ∈

[
1,… , op

]
∀h ∈ [1,… , con]

(26)STS =

�(UB1 − LB1)∑op

i=1

∑con

h=1
Gammaih

2

(27)�ih = Max
(
0, �ih + Gammaih × STS

)
∀i ∈

[
1,… , op

]
∀h ∈ [1,… , con]

configuration: Core i7 and 2.20 GHz processor (ii) 8 GB 
RAM.

5.1 � Computational experiments

Different problem sizes in small, medium, and large sizes 
have been generated to evaluate the LR-based approach. In 
the small and medium size of the problem, the LR-based 
approach results have been compared with the GAMS 
software. Moreover, it is essential to note that the GAMS 
software cannot show the results for the large scale of the 
problem in a logical run time. Therefore, it is essential to 
compare the gap between the LR-based approach results 

Table 4   Data generation of parameters

Parameter Value Parameter Value

Tmp Uniform (0.75, 1.5) TMjj
′
m Uniform (0.2, 0.8)

CAPmp Uniform (100, 150) PTijp Uniform (1, 6)
PCAP Uniform (300, 400) PCijp Uniform (1, 5)
VCAP Uniform (10, 15) PRi Uniform (1, 5)
DEMp Uniform (10, 20) QCph Uniform (2, 5)
Distpd Uniform (7, 15) ELi,j Uniform (0.1, 0.2)
EMF Uniform (0.5, 1) EGi,j Uniform (0.1, 0.2)
FV Uniform (0.6, 1) li,j Uniform (0.2, 0.5)
CMjj

′
m Uniform (0.5, 4) L Uniform (40, 60)

TPp Uniform (0.75, 2) UR Uniform (30, 50)
ACph Uniform (1, 5) SL Uniform (60, 90)

Table 5   Notations used to find 
the Pareto answers

Notations

op pos prod mac con

5 5 3 3 3

Table 6   Pareto answers

Number of 
answers

Economic  
sustainability

Environmental 
sustainability

Social  
sustainability

1 2309.58 31.34 180
2 2267.23 32.25 186
3 2224.89 33.16 192
4 2251.92 31.59 187
5 2491.92 31.59 190
6 2282.54 34.06 198
7 2309.57 32.5 193
8 2340.20 34.97 204
9 2789.57 32.5 199
10 2607.23 33.4 202
11 2197.85 35.88 210
12 2224.88 37.31 205
13 2347.23 33.4 205
14 2402.54 35.22 210
15 3087.23 33.40 208
16 2455.51 36.78 216
17 2460.19 36.12 216
18 2482.54 35.22 211
19 3144.88 34.31 214
20 2513.16 37.69 222
21 2962.54 35.22 217
22 4229.57 32.5 217
23 2570.81 38.6 228
24 2628.47 39.5 234
25 2713.15 38.84 235
26 2686.12 40.4 240
27 2743.78 41.3 246
28 2801.40 42.2 252
29 2859.09 43.13 258
30 2921.43 43.37 264



with the GAMS software in the small and medium cases to 
investigate the proposed LR-based approach’s efficiency. In 
this paper, Uniform distribution has been used to generate 
data to solve the test problem. The values of the parameters 
are shown in Table 4.

It is essential to note that according to the problem’s 
parameters and solving test problems, the maximum number 
of iterations of the LR-based approach is 50.

5.2 � Pareto solutions

We can find the trade-off between three different objective 
functions relies on the LP-metrics method. Table 5 shows 
the data used to obtain Pareto solutions.

Relying on the previous section parameters’ data and the 
above notations, it is possible to find Pareto frontier solu-
tions and payoff tables of the problem to help the decision-
maker select an answer between several possible solutions. 
Table 6 and Fig. 6 depict the Pareto solutions of the problem 
in 30 different possible answers.

The trade between the answers and the payoff table can 
be achieved by the Pareto solutions in Table 7, where the 
bolded values indicate the best amount of each objective 
function.

According to the results, the best economic sustainability 
is 2197.85 when the other two objective functions are 35.88 
and 210. The best environmental sustainability is 31.34, 
when the economic sustainability is 2309.58, and the social 

sustainability is 210. In the end, the best amount of social 
sustainability is 264, when the others are 2912.43 and 43.37. 
Therefore, the decision-maker can choose each one of them 
according to his preference.

5.3 � LR‑based approach performances

For investigating the applicability of the proposed algorithm, 
the results of the GAMS software have been compared with 
the results of LR-based approach in the small and medium 
scales. The notations of the examples are generated in 
Table 8 for small, medium, and large scales.

There are two elements to compare the LR-based 
approach with the GAMS software. The first one is 
the Gap between the heuristic approach and the exact 
approach. The second one is the CPU time of the LR-based 
approach and GAMS software. The results are depicted 
in Table 9. Moreover, the notation “n/a” means that no 

Fig. 6   Pareto solutions

Table 7   Payoff table

Economic  
sustainability (Z1)

Environmental  
sustainability (Z2)

Social  
sustainability 
(Z3)

2197.85 35.88 210
2309.58 31.34 180
2921.43 43.37 264



feasible solutions result from the solving model by GAMS 
in the allowed time (5000 s).

According to Table 9, the average percentage of the gap 
between the LR-based approach and GAMS is 0.032524, and 
the maximum percentage of the gap between results happens 
in problem number 11 that is 0.089899 when the total number 
of nodes is 31 as a medium case. Moreover, the minimum 
percentage of gap between results happens in problem numbers 
1, 2, and 3, which is zero because the small case is easier to 
solve and find the best possible solution for our heuristic 
method (LR-based approach). These results help us conclude 
that the LR-based approach has reliable performance because 
the results of the proposed heuristic method are so close to the 
exact method, and the gap between them is negligible.

Moreover, the results show a significant advantage in 
CPU time by using the LR algorithm. The average CPU time 
by GAMS in the small and medium case is 362.49, while 
this amount is 9.62 in the heuristic approach. For instance, 
the gap between them at problem number 2 is 0.2 while this 
gap is 420.3 in problem number 15. According to Table 9 
and Figs. 7 and 8, it is clear that LR has less run time, and 
the objective functions are approximately similar.

Besides, it is possible to analyse the algorithm’s reliability for 
large-scale problems using statistical hypothesis testing. The values 
of the objective functions are considered in this manner. The null 
hypothesis is the equality of the mean of the LR-based approach’s 
objective function with GAMS. On the other hand, the other 
hypothesis is inequality of them. It is possible to see the results of 
P value in Table 10. Moreover, the confidence level is 95%.

The amount of P value is greater than 0.05, so the null 
hypothesis is acceptable. Therefore, the LR-based approach 
results are approximately equal to the GAMS results rely on 
the table. Furthermore, it is possible to implement the LR 
algorithm for large-scale problems and consider the answers 
as the optimum amount of real problems.

5.4 � Process and production plan

After solving the problem and obtaining Pareto solutions, 
finding the optimal process plan for each product is pos-
sible. According to Table 8, the model’s final process plan  
is generated in Table 11.

Table 8   Generated examples Problem 
number

Scale Notations

op pos prod mac con Total 
number of 
notations

1 Small 2 2 2 2 2 10
2 2 2 2 2 2 10
3 2 2 3 3 2 12
4 3 3 2 2 2 12
5 4 4 2 2 2 14
6 3 3 3 3 3 15
7 5 5 3 2 2 17
8 5 5 3 3 2 18
9 Medium 6 6 3 3 2 20
10 7 7 4 3 3 24
11 8 8 4 3 4 27
12 9 9 4 4 4 30
13 9 9 5 5 5 33
14 10 10 5 5 4 34
15 10 10 5 5 5 35
16 11 11 6 6 5 39
17 12 12 7 7 6 44
18 Large 14 14 7 7 6 48
19 15 15 7 7 7 51
20 15 15 8 8 8 54
21 16 16 8 8 8 56
22 16 16 9 9 9 59
23 17 17 9 9 9 61
24 18 18 10 10 10 66



Table 9  Results of the 

generated examples

**The final value has been rounded in the large cases

Problem number Value of the objective function CPU time (seconds)

GAMS LR GAP% GAMS LR

1 1761.618 1761.618 0 1.24 1.09
2 3133.192 3133.192 0 1.3 1.1
3 2757.291 2757.291 0 1.45 1.18
4 1858.391 1859.803 0.000759 1.4 1.25
5 1782.82 1788.556 0.003207 1.18 1.1
6 4217.257 4246.896 0.006979 2.49 1.5
7 1912.568 1946.692 0.017529 1.51 1.31
8 2088.7 2109.186 0.009713 1.7 1.6
9 2830.356 2945.179 0.038987 8.31 2.7
10 6202.434 6563.198 0.054968 31.65 9.65
11 10,663.432 11,716.76 0.089899 55.4 21.78
12 10,886.628 11,786.628 0.076358 143.96 27.73
13 20,397.957 21,540.327 0.053034 200.81 30
14 20,581.24 20,815.181 0.053034 190.13 26.81
15 22,451.34 23,324.42 0.037432 450.3 30
16 25,689.771 27,676.202 0.071774 1270 43.78
17 45,549.95 49,566.47 0.081033 3800 85.68
Average 10,868.52618 11,502.21171 0.032524 362.4941176 9.624117647
18 n/a 98,000** - 5000 190.12
19 n/a 102,000** - 5000 204.19
20 n/a 160,000** - 5000 360.46
21 n/a 220,000** - 5000 654.36
22 n/a 250,000** - 5000 895.68
23 n/a 400,000** - 5000 951.23
24 n/a 680,000** - 5000 1027.6

Fig. 7   Changes of objective 
functions according to the total 
number of nodes



Furthermore, in the proposed process plan, the system wants 
to answer market demands and produce three different products 
P1, P2, and P3. Moreover, product P1, product P2, and product 
P3 have the same number of operations (five operations). 
However, operations of product P1 are different from operations 
of product P2 and product P3 as well. To discuss more in detail 
about reconfigurability of the system, as illustrated in Table 11, 
for product P2 the first operation Op21 will be performed on 
machine M2 using configuration H1, afterwards, to perform 
the following operation Op23 on the machine M2, the system 
will be reconfigured using configuration H2. The differences of 
the operations are due to the used machines and configurations. 

Fig. 8   Changes of CPU time 
according to the total number 
of nodes

Table 10   Results of the 
statistical hypothesis testing in 
small and medium scale

Element P value

Objective function 0.58

Table 11   Optimal process plan P1 Operations Op11 Op12 Op13 Op15 Op14
Machines M2 M2 M2 M3 M3

Configuration H1 H1 H1 H3 H3

P2 Operations Op11 Op12 Op13 Op15 Op14
Machines M2 M2 M3 M3 M1
Configuration H1 H2 H2 H2 H2

P3 Operations Op11 Op12 Op13 Op15 Op14
Machines M3 M3 M1 M1 M1
Configuration H2 H2 H3 H3 H3

Table 12   Changes of DEMp DEMp Lp-metrics

5 0.098
10 0.092
15 0.087
20 0.083
25 0.079
30 0.076
35 0.073
40 0.070
45 0.067
50 0.065
55 0.063
60 0.061
65 0.059



For the production planning part, the optimum quantity of 
production of each product has been discovered. For instance, 
for the example mentioned above, the optimum quantity of P1 
is 10, P2 is 15, and P3 is 20.

6 � Sensitivity analyses and discussions

By analysing the sensitivity of various parameters on  
the developed model, it is possible to find the effects of  
each one of them separately. This sensitivity analysis can 
affect different parts of the model as follows:

Fig. 9  Changes of DEMp 
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Table 13   Results of changing the weights

Weight 1 Weight 2 Weight 3 LP-metrics

0.8 0.1 0.1 0.092
0.2 0.3 0.5 0.451
0.2 0.4 0.4 0.361
0.3 0.5 0.2 0.181
0.3 0.3 0.4 0.391
0.4 0.3 0.3 0.271
0.5 0.3 0.2 0.195
0.5 0.2 0.3 0.215
0.6 0.2 0.2 0.124

Fig. 10   Comparison of weight 1 
and weight 2



6.1 � Changes of DEMp

According to Table 12 and Fig. 9, it can be inferred that the 
more increase in the amount of the demand, the more reduc-
tion in the final value of the Lp-metrics-based approach can 
be seen. These changes depict the validity of the proposed 
model. Because in the real world, when demand increases, 
a system can have better performances from before when 
there is no shortage. In the proposed model for the RMS, the 
shortage is not considered; the value of the objective is get-
ting better by the increases of demand, so the model is valid.

6.2 � Changes of weight1, weight2, and weight3

The changes of the weights can have a significant impact on 
the LP-metrics-based approach objective function. There-
fore, a reasonable chance of them discovering the value 
of the LP-metrics-based approach and plotting them in a 
three-dimensional graph can show the problem’s sensitivity 
to them better than the other ways. Table 13 with Figs. 10, 
11 and 12 show the results of changing the weights on the 
problem.

Fig. 11   Comparison of weight 1 
and weight 3

Fig. 12   Comparison of weight 2 
and weight 3



Although in most cases of todays’ world problem, the 
cost function and economic issues are the most critical part 
of the world, our problem shows great respect to the envi-
ronmental and social sustainability manners. The weight of 
economic sustainability has the most critical impact on the 
LP-metrics-based approach objective function, but the dif-
ferences between this impact and other objective impacts 
are not significant.

6.3 � Discussions

It is important to note that one of the most critical process 
planning roles is to reduce the total cost of process 
machining. Besides, optimising this kind of problem and 
compare the results of an algorithm with another type of 
method is vital. Rely on these points of view; it is possible 
to use an algorithm with good performance and prove 
the application of the proposed model [58]. In this paper, 
the GAMS solver is used to show the application of the 
proposed model. We were able to find the optimum solutions 
of the objective functions, process planning, and production 
planning in the several examples. The GAMS solver is not 
able to solve the proposed model on a large scale. Therefore, 
to show the appliance of the model on large scales and find 
the values close to the optimal solutions, we implemented 
LR based approach. The implemented approach was reliable 
for the proposed model, and it performed well. Besides, the 
logical behaviour of the proposed model is presented by 
changes in the parameters.

We presented several options for the managers and decision-
makers to select between various sustainability factors. The 
manager can choose the different weights for each aspect of 
sustainability and decide more widely according to the solv-
ing procedure and results. For example, in some countries, the 
most critical aspect of sustainability is to respect the environ-
ment. Therefore, they can choose the maximum possible weight 
of environmental sustainability relying on other constraints in 
the real world. In some other countries, the costs are the only 
and important limitation of the production. Therefore, they can 
focus on the economic sustainability of the proposed problem. 
Besides, we presented the behaviour of the problem on a large 
scale, which helps the decision-maker have a better view of the 
consequences of a decision and its effects on other aspects of 
people's lives.

7 � Conclusions and future works directions

In this paper, the whole elements of sustainability like social, 
environmental, and economic are combined with the process 
and production planning in a reconfigurable manufacturing 
environment. The sustainability indicators include the harmful  
liquids and gases emission during the production and its effects  

on the operator’s body and the social manners of operators and  
people in the neighbourhood. The work is aimed to minimise  
economic and environmental sustainability and tried to maximise  
social sustainability. Hence, the addressed problem is modeled 
in a multi-objective point of view and solved by the Lp-metric 
and LR-based approach heuristic algorithm. Therefore, the main  
contribution can be named as implementing all aspects of sus-
tainability in an RMS environment and discovering the best pro-
duction quantity and process sequences rely on the innovations.

Forward future work directions, metaheuristic such as 
NSGA-II, AMOSA, WGA, etc., implementations and com-
parisons with both results, are expected. Moreover, the 
integration of production planning and scheduling can be 
addressed. Finally, different production and process planning 
concepts for multiple contexts can be considered, such as 
dynamic, stochastic, and smart manufacturing.
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