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A B S T R A C T

Lamb waves (LWs) are widely used to achieve structural health monitoring of aeronautic composite structures.
Composite materials are however anisotropic and LWs propagation characteristics depend on their propagation
direction. Within one composite ply, when this direction coincides with the principal axis of the ply, they are
not coupled with shear waves (SHWs) but become coupled with SHWs for any other direction. As composite
materials are built up with layers at various orientations LWs and SHWs are coupled for some layers and
uncoupled for some others when studying an arbitrary propagation direction. Transfer Matrix Method (TMM),
Global Matrix Method (GMM), and Stiffness Matrix Method (SMM) are all methods allowing to predict guided
waves (LWs and SHWs) behavior in composite materials. However those methods suffer from an incompatibility
issue preventing them to manage cases when SHWs and LWs are coupled for some plies but uncoupled for some
other plies. This issue is particularly frequent when dealing with metallic-composite plates or with composite
plates made up with isotropic, orthotropic, and triclinic materials. In order to solve this incompatibility issue,
a hybrid matrix strategy (HMS) is proposed here on the basis of SMM. The core idea of the HMS is to re-couple
LWs and SHWs into hybrid guided waves when they are uncoupled in order to make them compatible with
the general coupled waves cases. The numerical stability of HMS is proved theoretically and its effectiveness
is validated through numerical investigations and using experimental data from the literature. The SMM-HMS
framework can thus be considered as a state of the art benchmark approach for evaluating the performance
of numerical methods dedicated to the computation of guided waves dispersion curves and can be confidently
applied to any arbitrary composite material used in aeronautic and aerospace industries.

1. Introduction

Carbon fiber reinforced plastics (CFRP) composite materials are
widely used in aeronautic and aerospace industries thanks to their high
strength-to-weight ratio [1]. However, composite materials generally
undergo complex damage mechanisms during the manufacturing or
in-service process, for instance, delamination, matrix cracking, fiber
breakage, etc. [2]. To secure the integrity and durability of compos-
ite structures, guided wave-based structural health monitoring (SHM)
techniques grow into reliable solutions in recent years to prevent
catastrophic failure of aerospace composite structures [3,4]. Akin to
the well-known Lamb waves [5,6], guided waves hold dispersion and
multi-modal properties, which describe the wave velocity dependence
on frequency and mode order [7]. Understanding the dispersion behav-
ior of guided waves is the premise for performing a guided wave-based
SHM system as it determines the choice of excitation frequency and
desired wave mode [8]. Thus, a multitude of works in the literature is
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1 𝑓𝑑 means the product of frequency 𝑓 and plate’s thickness 𝑑.

devoted to building analytical or numerical models for obtaining the
dispersion curves of multi-layered composite plates [9,10].

The analytical models mainly refer to the matrix-based methods,
containing the transfer matrix method (TMM) [11,12], global matrix
method (GMM) [13,14], and stiffness matrix method (SMM) [15,16].
The linear 3D elasticity theory is the theoretical basis of the matrix-
based methods [17], and hence this class of method becomes the
benchmark for evaluating the performance of other methods [9,10,18,
19]. Matrix-based methods usually start with the analysis of partial
waves in a single lamina by deriving the Christoffel equation. This
procedure is usually denominated as the partial wave superposition
approach (PWSA) in the literature [20–22]. For the multi-layered plate
system, PWSA is extended to the three aforementioned matrix-based
methods according to the different ways of applying the interface
continuity condition and the traction-free boundary condition [1,12].
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In contrast with TMM usually encountering the large 𝑓𝑑 prob-
lem1 [14,23], the main advantage of GMM rests on its numerical stabil-
ity even at large 𝑓𝑑 range but at the cost of increasing computational
burden [14,17]. Ramasawmy et al. employed GMM to develop the
MATLAB toolbox ElasticMatrix for computing the dispersion curves of
transversely isotropic material along its principal direction [24]. Lowe
developed the commercial software Disperse based on GMM that be-
came the pioneering computing program in the past two decades [25].
It has been proved that SMM is unconditionally stable [16], thus it is be-
coming the prevalent way of computing dispersion curves of composite
laminates in recent years [26,27]. Huber et al. adopted SMM to create
the stand-alone freeware Dispersion Calculator [28]. Notwithstanding
the unconditionally stable at large 𝑓𝑑 range, SMM becomes unstable if
the thickness of one layer of the laminate is close to zero. Tan proposed
the hybrid compliance-stiffness matrix method (HCSMM) to resolve this
issue [29–32].

There are multifarious numerical methods in the literature. The
mainstream one is the semi-analytical finite element method (SAFE),
benefiting from the flexible discretization in the cross-section of waveg-
uide, SAFE has natural advantage for modeling wave propagation in
waveguides of arbitrary cross-section [33]. Bocchini et al. developed
the freeware GUIGUW [34] based on SAFE to compute dispersion
curves of various waveguides containing composite laminate, cylinder,
circular tube, square tube and railroad tracks, etc. To take full advan-
tage of the commercial FEM software such as ANSYS, the wave finite
element method (WFEM) was developed by Mace and Manconi [35]
and Sorohan et al. [36]. Given that the wavelength changes with
frequency, the elements adopted in WFEM in the propagation direction
should be re-meshed for different frequencies to retain the consistent
accuracy [36], thus it is not as flexible as SAFE. The spectral collocation
method (SCM) based on Chebyshev polynomials [18,37] has also been
employed to model guided wave propagation, that allocates spectral
points in the thickness direction to discretize each layer of a laminate,
instead of elements in SAFE and WFEM. This method shows asset
in computing the full 3D dispersion curves of anisotropic viscoelastic
media [38] and is being developed for leaky wave characterization [39,
40].

The remaining numerical methods available from the literature are
the higher order plate theory method (HOPT) [41–43], Legendre poly-
nomial method (LPM) [44–46], Ritz-Rayleigh method [47,48], Green’s
function [49], and Green’s matrix method [50]. These methods keep the
approximation property that at larger frequency range or for the higher
order modes, they generally produce a poor accuracy of solutions.
This phenomenon has been validated by the open source software The
Dispersion Box developed by Orta et al. [10] who made a comparative
study for GMM, SMM, HCSMM, SAFE, LPM and HOPT.

In composite plate waveguides, there is a convention in the litera-
ture that two cases are separately addressed: one is for the decoupled
Lamb and shear-horizontal (SH) waves for the propagation direction
along the principal axis of composite material [21]; another is for the
coupled ones when the propagation is oriented at the off-principal axis
direction [51]. In addition to the two previously mentioned stereotypes,
for complex aerospace composite laminates having arbitrary stacking
angles, there is one special case that the wave propagation direction
of interest may coincide with the principal direction of some laminae
but could orient at the off-principal direction of other laminae due to
the varying stacking angles of layups [52]. For this particular case,
there exists an interlaminar mismatch issue in terms of fiber direction,
and hence, a mismatch issue of wave types among laminae, which
will further lead to numerical instability when implementing dispersion
curves generating algorithms [17,53]. This kind of issues become more
salient in the fiber-metal laminates given that there is a significant
difference between the Young’s modulus of the CFRP and metallic
layers [54].

As a consequence, finding a way allowing to unite the various wave
types in different laminae in order to overcome the mismatch issue

becomes an essential concern, which has not been comprehensively
studied in the literature [21,53]. In this paper, the hybrid matrix
strategy (HMS) associated with SMM is proposed to resolve this issue.
HMS means that the stiffness matrices of Lamb and SH waves will be
recast into a hybrid form to recouple the pure Lamb and SH waves. HMS
is straightforward, intuitional and numerically stable. It should be clar-
ified that HMS is original and different from Tan’s HCSMM introduced
previously, which was devoted to dealing with the instability issue of
SMM when the thickness of one layer of laminate is close to zero [30].

This paper is structured as follows. In Section 2, the guided waves
propagation in a single lamina with various anisotropic materials is
derived that defines the PWSA. In Section 3, the stiffness matrix method
is investigated to derive the dispersion equation of guided waves prop-
agation in arbitrarily stacked composite laminates. The incompatibility
issue is highlighted in Section 4 and HMS is originally proposed to
cope with this issue. Section 5 provides various numerical examples
to validate this strategy. Discussion and conclusion are presented in
sections 6 and 7, respectively.

2. Waves propagation in a lamina

2.1. Basic equations of 3D elasticity

Waves propagation in solid materials, as a typical elasticity prob-
lem, is physically characterized by the stress tensor 𝜎𝑖𝑗 , strain tensor
𝜀𝑖𝑗 and displacement tensor 𝑢𝑖. These quantities must satisfy the basic
equations of 3D elasticity, i.e. the general Hooke’s law of Eq. (1), the
geometrical equations of Eq. (2), and the elastodynamic equations of
Eq. (3).

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3) (1)

𝜀𝑘𝑙 =
1
2
(𝑢𝑘,𝑙 + 𝑢𝑙,𝑘) (𝑘, 𝑙 = 1, 2, 3) (2)

𝑐𝑖𝑗𝑘𝑙𝑢𝑙,𝑘𝑗 = 𝜌�̈�𝑖 (𝑖 = 1, 2, 3) (3)

where, 𝑐𝑖𝑗𝑘𝑙 is the fourth order elastic tensor having symmetric prop-
erty, 𝜌 is the mass density. Note that in Eqs. (1) and (3) the Einstein
summation convention is implied for the repeated indices.

Eq. (1) of the tensor form can be transformed to the Eq. (4) of the
matrix form through the Voigt notation with the one-to-one correspon-
dence 𝑖𝑗 or 𝑘𝑙 = 11, 22, 33, 23(32), 13(31), 12(21) ↔ 𝑝 or 𝑞 = 1, 2, 3, 4, 5, 6.
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(4)

where, the matrix in Eq. (4) is the elastic matrix of the material which
is symmetric and denoted by 𝐂 ∈ C6×6.

In the elastic matrix 𝐂 of Eq. (4), there are 21 prescribed indepen-
dent non-zero elements. In material science, according to the behavior
of crystal symmetry axes, materials are physically classified into six
formats, specifically, triclinic (𝐂T), monoclinic (𝐂M), orthotropic (𝐂O),
transversely isotropic (𝐂TI), cubic (𝐂C) and isotropic (𝐂I) materials [52,
55]. Mathematically, this classification is equivalent to count the dif-
ferent number of independent non-zero elements in the elastic matrix
𝐂, in other words, depending on the format of matrix 𝐂 summarized in
the second column of Fig. 1.

In this paper, we define a uniform set notation to represent the six
formats of elastic matrices, i.e.  , , ,   ,  ,  . We further
stipulate  ⊆  and   , , ⊆  as stated in the fourth column
of Fig. 1, based on the fact that  has the same property as  , and
  , , have the same property as  in terms of the coupling issue
between Lamb and SH waves, which will be investigated in detail in
the subsequent sections.



Fig. 1. Elastic matrix formats of various material classes.

2.2. Elastic matrix rotation

It is conventional that the format of 𝐂 in the second column of
Fig. 1 is defined in the respective material’s crystal axes system, for
instance, the principal axis 𝑥1 illustrated in Fig. 2(a). However, in a
single lamina, guided waves can propagate at a general off-principal
axis direction (𝑥′1 as illustrated in Fig. 2(a)). Thus, it is necessary to
study the formats of elastic matrices of the six material classes along
the off-principal axis direction 𝜃. This can be achieved by using the
matrix rotation formula [1] wrote in Eq. (5).

𝐂′ = 𝐓𝐂𝐓𝖳 → 𝐂′ = 𝚁𝚘𝚝{𝐂, 𝜃} (5)

𝐓 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑐2 𝑠2 0 0 0 2𝑐𝑠
𝑠2 𝑐2 0 0 0 −2𝑐𝑠
0 0 1 0 0 0
0 0 0 𝑐 −𝑠 0
0 0 0 𝑠 𝑐 0

−𝑐𝑠 𝑐𝑠 0 0 0 𝑐2 − 𝑠2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

where, 𝐓 is the rotation matrix; 𝑐 = cos(𝜃) and 𝑠 = sin(𝜃); 𝜃 is
the rotation angle being positive for counterclockwise direction and

negative for clockwise direction; the superscript 𝖳 denotes the matrix
transpose.

For ease comprehension, we define the notation 𝐂′ = 𝚁𝚘𝚝{𝐂, 𝜃} to
represent the elastic matrix rotation formulized in Eq. (5). Thus, for the
six material classes in Fig. 1, the property of the rotated elastic matrix
is summarized in the last column of Fig. 1. The deriving process can be
accessed from [22]. Here, we take the orthotropic material 𝐂O as the
example to illustrate the property of the elastic matrix rotation. See the
last column of Fig. 1 and focus on the row of orthotropic material.

∙ When 𝜃 ≠ 90◦, the rotated matrix of the orthotropic material 𝐂′
O

changes to the format of monoclinic material ;
∙ When 𝜃 = 90◦, the rotated matrix 𝐂′

O still keeps the format of
orthotropic one ; but note that 𝐂′

O ≠ 𝐂O according to the
study in [22]. The angle 𝜃 = 90◦ corresponds to the case that
the axis 𝑥′1 is rotated to coincide with the axis 𝑥2 in Fig. 2(a).

The property of the elastic matrix rotation in the last column of
Fig. 1 is the basis of the subsequent sections for studying the coupling
issue between Lamb and SH waves in a multi-layered composite plate.



Fig. 2. (a) The schematic of a unidirectional composite lamina, (b) wave propagation model in the lamina.

2.3. Christoffel equation

The guided wave propagating in a lamina is schematically shown in
Fig. 2(b), and the wave propagates along the 𝑥1 axis direction. In this
condition, the plane-strain state in 𝑥2 direction is implied which leads
to the displacement field being invariant to 𝑥2. Thus, the time harmonic
displacement equation can be pre-defined in Eq. (7) [1,12].

𝐮 =
⎡

⎢

⎢

⎣

𝑢1
𝑢2
𝑢3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑈
𝑉
𝑊

⎤

⎥

⎥

⎦

ei𝜉(𝑥1+𝛼𝑥3−𝑣𝑡) (7)

where, 𝜉 is the wavenumber in 𝑥1 direction and 𝛼 is the ratio of
wavenumbers between 𝑥3 and 𝑥1 direction as shown in Fig. 2(b); 𝑣
is the phase velocity; 𝑈, 𝑉 , 𝑊 are the amplitudes of displacements
along 𝑥1, 𝑥2, 𝑥3 direction, respectively. Frequency 𝜔 can be computed
as 𝜔 = 𝜉𝑣.

2.3.1. The coupled Lamb and SH waves in triclinic and monoclinic materi-
als

For general purpose, the elastic matrix of triclinic material 𝐂T in
Fig. 1 is adopted to derive the Christoffel equation. For other material
classes, all the counterparts can be simplified from the corresponding
equation of triclinic material. Substituting Eq. (7) into Eqs. (1), (2) and
(3), the Christoffel equation for the triclinic material 𝐊(𝛼)𝐔 = 𝟎 can be
derived in Eq. (8). See [12,22] for the detailed derivation process.

⎡

⎢

⎢

⎣

𝐾11(𝛼) 𝐾12(𝛼) 𝐾13(𝛼)
𝐾12(𝛼) 𝐾22(𝛼) 𝐾23(𝛼)
𝐾13(𝛼) 𝐾23(𝛼) 𝐾33(𝛼)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑈
𝑉
𝑊

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

(8)

where,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐾11(𝛼) = 𝐶11 − 𝜌𝑣2 + 2𝐶15𝛼 + 𝐶55𝛼2

𝐾22(𝛼) = 𝐶66 − 𝜌𝑣2 + 2𝐶46𝛼 + 𝐶44𝛼2

𝐾33(𝛼) = 𝐶55 − 𝜌𝑣2 + 2𝐶35𝛼 + 𝐶33𝛼2

𝐾12(𝛼) = 𝐶16 + (𝐶14 + 𝐶56)𝛼 + 𝐶45𝛼2

𝐾13(𝛼) = 𝐶15 + (𝐶13 + 𝐶55)𝛼 + 𝐶35𝛼2

𝐾23(𝛼) = 𝐶56 + (𝐶36 + 𝐶45)𝛼 + 𝐶34𝛼2

(9)

The nontrivial solution of displacement 𝐔 in Eq. (8) makes the
matrix 𝐊(𝛼) singular, namely det{𝐊(𝛼)} = 0, where det{⋅} means the
operator computing the determinant for a square matrix. The deter-
minant can be derived into a sixth order polynomial equation about
𝛼 as expressed in Eq. (10), which can be solved by applying a proper
numerical algorithm [56].

𝐴6𝛼
6 + 𝐴5𝛼

5 + 𝐴4𝛼
4 + 𝐴3𝛼

3 + 𝐴2𝛼
2 + 𝐴1𝛼 + 𝐴0 = 0 (10)

where, the seven polynomial coefficients are presented in Appendix A
derived by using the software Mathematica.

For each root 𝛼𝑟 (𝑟 = 1,… , 6), there will be a corresponding solution
vector of displacement amplitudes 𝐔𝑟 =

[

𝑈𝑟, 𝑉𝑟, 𝑊𝑟
]𝖳 based on Eq. (8).

For instance, by assigning 𝑈𝑟 = 1, 𝑉𝑟 and 𝑊𝑟 are found from the resulted
equations as stated in Eq. (11).
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈𝑟 = 1

𝑉𝑟 =
𝐾11(𝛼𝑟)𝐾23(𝛼𝑟)−𝐾12(𝛼𝑟)𝐾13(𝛼𝑟)
𝐾13(𝛼𝑟)𝐾22(𝛼𝑟)−𝐾12(𝛼𝑟)𝐾23(𝛼𝑟)

𝑊𝑟 =
𝐾11(𝛼𝑟)𝐾23(𝛼𝑟)−𝐾12(𝛼𝑟)𝐾13(𝛼𝑟)
𝐾12(𝛼𝑟)𝐾33(𝛼𝑟)−𝐾13(𝛼𝑟)𝐾23(𝛼𝑟)

(11)

The displacement field 𝐮 in Eq. (7) now is written as the super-
position of the six solutions in Eq. (12), in which each term within
the summation represents a partial wave. Therefore, the denomination
partial wave superposition approach (PWSA) is chosen.
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1 =
(

∑6
𝑟=1 𝜂𝑟𝑈𝑟ei𝜉𝛼𝑟𝑥3

)

ei𝜉(𝑥1−𝑣𝑡)

𝑢2 =
(

∑6
𝑟=1 𝜂𝑟𝑉𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

𝑢3 =
(

∑6
𝑟=1 𝜂𝑟𝑊𝑟ei𝜉𝛼𝑟𝑥3

)

ei𝜉(𝑥1−𝑣𝑡)

(12)

where, 𝜂𝑟 is the participation factor of a partial wave to be determined.
The linear summation form of Eq. (12) can be rearranged to the matrix
form of Eq. (13).

⎡

⎢

⎢

⎣

𝑢1
𝑢2
𝑢3

⎤

⎥

⎥

⎦

⏟⏟⏟
𝐮3×1

=
⎡

⎢

⎢

⎣

𝑈1 𝑈2 𝑈3 𝑈4 𝑈5 𝑈6
𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6
𝑊1 𝑊2 𝑊3 𝑊4 𝑊5 𝑊6

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐔3×6

×
⎡

⎢

⎢

⎣

ei𝜉𝛼1𝑥3
⋱

ei𝜉𝛼6𝑥3

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜦6×6(𝑥3)

⎡

⎢

⎢

⎣

𝜂1
⋮
𝜂6

⎤

⎥

⎥

⎦

⏟⏟⏟
𝜼6×1

ei𝜉(𝑥1−𝑣𝑡) (13)

where, the subscript 𝑚 × 𝑛 designates the matrix dimension.
The PWSA can be also applied to the stress tensor 𝜎𝑖𝑗 . Herein, only

the three terms 𝜎33, 𝜎23, 𝜎13 are extracted in Eq. (14)2 given that the
three terms appertain to the traction free boundary condition that is
used to derive dispersion equation in the sequel [12,22].
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎33 =
(

∑6
𝑟=1 𝜂𝑟𝛽1𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

𝜎23 =
(

∑6
𝑟=1 𝜂𝑟𝛽2𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

𝜎13 =
(

∑6
𝑟=1 𝜂𝑟𝛽3𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

(14)

where, 𝛽𝑖𝑟 is the amplitude of stress field of a partial wave defined in
Eq. (15). Eq. (14) is further rearranged to the matrix form of Eq. (16).

⎧

⎪

⎨

⎪

⎩

𝛽1𝑟 = (𝐶13 + 𝐶35𝛼𝑟)𝑈𝑟 + (𝐶36 + 𝐶34𝛼𝑟)𝑉𝑟 + (𝐶35 + 𝐶33𝛼𝑟)𝑊𝑟

𝛽2𝑟 = (𝐶14 + 𝐶45𝛼𝑟)𝑈𝑟 + (𝐶46 + 𝐶44𝛼𝑟)𝑉𝑟 + (𝐶45 + 𝐶34𝛼𝑟)𝑊𝑟

𝛽3𝑟 = (𝐶15 + 𝐶55𝛼𝑟)𝑈𝑟 + (𝐶56 + 𝐶45𝛼𝑟)𝑉𝑟 + (𝐶55 + 𝐶35𝛼𝑟)𝑊𝑟

(15)

2 During deriving Eq. (14), a common factor i𝜉 is suppressed for the sake
of simplicity as adopted in many Refs. [26,54,57].



Fig. 3. Christoffel equations, displacement and stress fields of the coupled or pure Lamb and SH waves.

⎡

⎢

⎢

⎣

𝜎33
𝜎23
𝜎13

⎤

⎥

⎥

⎦

⏟⏟⏟
𝝈3×1

=
⎡

⎢

⎢

⎣

𝛽11 𝛽12 𝛽13 𝛽14 𝛽15 𝛽16
𝛽21 𝛽22 𝛽23 𝛽24 𝛽25 𝛽26
𝛽31 𝛽32 𝛽33 𝛽34 𝛽35 𝛽36

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜷3×6

×
⎡

⎢

⎢

⎣

ei𝜉𝛼1𝑥3
⋱

ei𝜉𝛼6𝑥3

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜦6×6(𝑥3)

⎡

⎢

⎢

⎣

𝜂1
⋮
𝜂6

⎤

⎥

⎥

⎦

⏟⏟⏟
𝜼6×1

ei𝜉(𝑥1−𝑣𝑡) (16)

It is noteworthy that the Christoffel equation of triclinic material,
Eq. (8), leads to the coupled displacement variables among 𝑢1, 𝑢2 and
𝑢3 in Eq. (13), and the coupled stress variables among 𝜎33, 𝜎23 and 𝜎13
in Eq. (16). This phenomenon characterizes the coupled Lamb and SH
waves in the literature [21,51,53].

For monoclinic material, its Christoffel equation can be directly ob-
tained from Eqs. (8) and (9) by making the parameters 𝐶14, 𝐶15, 𝐶24, 𝐶25,
𝐶34, 𝐶35, 𝐶46, 𝐶56 = 0. The resulted displacement and stress fields equa-
tions 𝐮3×1 and 𝝈3×1 are summarized in the first column of Fig. 3 for
the sake of conciseness, which still implies the field equations of the
coupled Lamb and SH waves with different elements in the matrices
𝐔3×6 and 𝜷3×6 [12,21,28]. This is the reason that, in the fourth column
of Fig. 1, we stipulate  ⊆  considering that  induces the same
property as  in terms of the coupling issue between Lamb and SH
waves.

2.3.2. The pure Lamb and SH waves in orthotropic material
The Christoffel equation of orthotropic material can be simplified

from Eq. (8) by assigning these parameters to be zero, 𝐶14, 𝐶15, 𝐶16, 𝐶24,
𝐶25, 𝐶26, 𝐶34, 𝐶35, 𝐶36, 𝐶45, 𝐶46, 𝐶56 = 0, which makes the decoupled
Christoffel equation, Eqs. (17) and (18). In literature, Eq. (17) produces
the field variables of the pure Lamb wave (𝑢1, 𝑢3, 𝜎33, 𝜎13), and Eq. (18)
sets off the field variables of the pure SH wave (𝑢2, 𝜎23). Their comput-
ing formulae already appear in many Refs. [1,12,21,22]. We summarize
them in the second and third column of Fig. 3 for brevity. It is evident
that the pure Lamb and SH waves are composed with four and two
partial waves, respectively. To avoid any confusion, the two partial
waves of pure SH mode are numbered as 5 and 6, as implied in the
third column of Fig. 3.
[

𝐶11 − 𝜌𝑣2 + 𝐶55𝛼2 (𝐶13 + 𝐶55)𝛼
(𝐶13 + 𝐶55)𝛼 𝐶55 − 𝜌𝑣2 + 𝐶33𝛼2

] [

𝑈
𝑊

]

=
[

0
0

]

(17)

(𝐶66 − 𝜌𝑣2 + 𝐶44𝛼
2)𝑉 = 0 (18)

It should be noted that Eqs. (17) and (18) are directly suitable for
transversely isotropic, cubic and isotropic materials. One only needs to
substitute the specific elements of elastic matrices of the three materials
into Eqs. (17) and (18) to get the corresponding field equations. This
is the reason that we stipulate   , , ⊆  in the fourth column of
Fig. 1, since   , , have the same property as  in terms of the
pure Lamb and SH waves derived.



Fig. 4. Guided wave propagation model in a 𝑛-layered composite laminate.

3. Stiffness matrix method

SMM is adopted in this section to derive the dispersion equation
of guided waves propagation in arbitrarily stacked composite lami-
nates thanks to its numerical stability and popularity in the academic
world [16,27,28].

3.1. The multi-layered composite plate model

We consider a general 𝑛-layered laminate with arbitrary stacking
angles of layups

[

𝜙1∕𝜙2∕⋯ ∕𝜙𝑛
]

and the wave propagation direction of
interest at angle 𝜃, as illustrated in Fig. 4(a). The profile section of the
laminate along the wave propagation direction is cut into Fig. 4(b). For
a general layer 𝑙𝑘, its rotation angle becomes (𝜃 −𝜙𝑘), thus the rotated
elastic matrix of this layer becomes 𝐂′

𝑘 = 𝚁𝚘𝚝{𝐂𝑘, 𝜃 − 𝜙𝑘}, where 𝐂𝑘 is
the elastic matrix of layer 𝑙𝑘 in its principal direction, and the operator
𝚁𝚘𝚝{⋅, ⋅} is defined in Eq. (5).

According to the study in Sections 2.3.1 and 2.3.2, the different
matrix format of 𝐂′

𝑘 will lead to different wave type in the layer 𝑙𝑘.
If 𝐂′

𝑘 is triclinic or monoclinic format, the resulted waves are the
coupled Lamb and SH waves in layer 𝑙𝑘 (see Section 2.3.1); if 𝐂′

𝑘 is
orthotropic format, the guided waves are decoupled into the pure Lamb
and pure SH waves in layer 𝑙𝑘 (see Section 2.3.2). No matter which
wave type is considered, the displacement and stress fields in Fig. 3
can be consistently written as Eqs. (19) and (20).

𝐮𝑞×1 = 𝐔𝑞×𝑝𝜦𝑝×𝑝(𝑥3)𝜼𝑝×1ei𝜉(𝑥1−𝑣𝑡) (19)

𝝈𝑞×1 = 𝜷𝑞×𝑝𝜦𝑝×𝑝(𝑥3)𝜼𝑝×1ei𝜉(𝑥1−𝑣𝑡) (20)

where, 𝑞 = 𝑝∕2 and 𝑝 is the number of partial waves involved in
different wave types, specifically, 𝑝 = 6 for the coupled Lamb and SH
waves, 𝑝 = 4 for the pure Lamb wave and 𝑝 = 2 for the pure SH wave.

3.2. Lamina stiffness matrix

By tentatively ignoring the matrix dimension of 𝐮 and 𝝈 in Eqs. (19)
and (20), the field variables are evaluated at the top side (𝑥𝑘3 = 0 in the
local coordinate system) and bottom side (𝑥𝑘3 = 𝑑𝑘) of layer 𝑙𝑘, which
results in Eqs. (21) and (22), respectively. Refer to Fig. 4(b) for easy
understanding.
{

𝐮T𝑘 = 𝐔𝑘𝜦𝑘(0)𝜼𝑘ei𝜉(𝑥1−𝑣𝑡)

𝝈T
𝑘 = 𝜷𝑘𝜦𝑘(0)𝜼𝑘ei𝜉(𝑥1−𝑣𝑡)

(21)

{

𝐮B𝑘 = 𝐔𝑘𝜦𝑘(𝑑𝑘)𝜼𝑘ei𝜉(𝑥1−𝑣𝑡)

𝝈B
𝑘 = 𝜷𝑘𝜦𝑘(𝑑𝑘)𝜼𝑘ei𝜉(𝑥1−𝑣𝑡)

(22)

where, the subscript 𝑘 denotes that the associated terms belong to a
general layer 𝑙𝑘; the superscript 𝑇 and B represent the top and bottom
side of layer 𝑙𝑘, respectively; 𝑑𝑘 is the thickness of layer 𝑙𝑘.

The derivation of SMM starts with collecting the displacement vari-
ables at both top and bottom sides into Eq. (23), meanwhile collecting
the stress variables at both top and bottom sides into Eq. (24).
[

𝐮T𝑘
𝐮B𝑘

]

=
[

𝐔𝑘𝜦𝑘(0)
𝐔𝑘𝜦𝑘(𝑑𝑘)

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜿𝑢𝑘

𝜼𝑘ei𝜉(𝑥1−𝑣𝑡) (23)

[

𝝈T
𝑘

𝝈B
𝑘

]

=
[

𝜷𝑘𝜦𝑘(0)
𝜷𝑘𝜦𝑘(𝑑𝑘)

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜿𝜎𝑘

𝜼𝑘ei𝜉(𝑥1−𝑣𝑡) (24)

where, 𝜿𝑢
𝑘 ∈ C𝑝×𝑝 and 𝜿𝜎

𝑘 ∈ C𝑝×𝑝 are the lamina matrices of displace-
ment and stress of layer 𝑙𝑘, respectively.

It should be noted that the matrices 𝐔𝑘, 𝜷𝑘, 𝜦𝑘(0), 𝜦𝑘(𝑑𝑘) may
possess different dimensions as manifested in Fig. 3. That makes the
lamina matrices 𝜿𝑢

𝑘 and 𝜿𝜎
𝑘 carry different formats and dimensions

for different wave types. To intuitively observe this phenomenon, the
formulae computing these lamina matrices corresponding to different
wave types are deduced [26,28] and exhibited in Fig. 5.

Eliminating the common term 𝜼𝑘ei𝜉(𝑥1−𝑣𝑡) in Eqs. (23) and (24) leads
to Eq. (25).
[

𝝈T
𝑘

𝝈B
𝑘

]

= 𝜿𝜎
𝑘
(

𝜿𝑢
𝑘
)−1

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜿𝑘

[

𝐮T𝑘
𝐮B𝑘

]

(25)

where, 𝜿𝑘 ∈ C𝑝×𝑝 is defined as the lamina stiffness matrix of layer 𝑙𝑘,
and it is usually divided as blocks in Eq. (26).

𝜿𝑘 =

[

𝜿TT
𝑘 𝜿TB

𝑘

𝜿BT
𝑘 𝜿BB

𝑘

]

(26)

One should keep in mind that 𝜿𝑘 remains the same dimension as 𝜿𝑢
𝑘

and 𝜿𝜎
𝑘 . Specifically, 𝜿𝑘 ∈ C6×6 for the coupled Lamb and SH waves,

𝜿𝑘 ∈ C4×4 for the pure Lamb wave, and 𝜿𝑘 ∈ C2×2 for the pure SH
wave.

3.3. Dispersion equation derived from SMM

The lamina stiffness matrix 𝜿𝑘 in Eq. (25) plays the role of linking
the stress (𝝈T

𝑘 ,𝝈
B
𝑘 ) and displacement variables (𝐮T𝑘 ,𝐮

B
𝑘 ) at the top and

bottom sides of layer 𝑙𝑘. This idea can be generalized to define the tran-
sitional stiffness matrix 𝐊𝑘 in Eq. (27) that links the stress (𝝈T

1 ,𝝈
B
𝑘 ) and



Fig. 5. Lamina matrices of displacement and stress fields for different wave types.

displacement variables (𝐮T1 ,𝐮
B
𝑘 ) at the top side of layer 𝑙1 and bottom

side of a general layer 𝑙𝑘. Refer to Fig. 4(b) for easy understanding.
[

𝝈T
1

𝝈B
𝑘

]

=

[

𝐊TT
𝑘 𝐊TB

𝑘

𝐊BT
𝑘 𝐊BB

𝑘

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐊𝑘

[

𝐮T1
𝐮B𝑘

]

(27)

In Appendix B, it is proved that 𝐊𝑘 is computed by using Eq. (28).
This proof succeeds from some classical references pertaining to SMM
[1,15,16,58].

𝐊𝑘 =

[

𝐊TT
𝑘−1 +𝐊TB

𝑘−1(𝜿
TT
𝑘 −𝐊BB

𝑘−1)
−1𝐊BT

𝑘−1 −𝐊TB
𝑘−1(𝜿

TT
𝑘 −𝐊BB

𝑘−1)
−1𝜿TB

𝑘

𝜿BT
𝑘 (𝜿TT

𝑘 −𝐊BB
𝑘−1)

−1𝐊BT
𝑘−1 𝜿BB

𝑘 − 𝜿BT
𝑘 (𝜿TT

𝑘 −𝐊BB
𝑘−1)

−1𝜿TB
𝑘

]

(28)

where, the matrices (𝜿TT
𝑘 ,𝜿TB

𝑘 ,𝜿BT
𝑘 ,𝜿BB

𝑘 ) are the block matrices of 𝜿𝑘
defined in Eq. (26), and the matrices (𝐊TT

𝑘−1,𝐊
TB
𝑘−1,𝐊

BT
𝑘−1,𝐊

BB
𝑘−1) are the

block matrices of 𝐊𝑘−1 defined in Eq. (29) characterizing the transi-
tional stiffness matrix from layer 𝑙1 to 𝑙𝑘−1.
[

𝝈T
1

𝝈B
𝑘−1

]

=

[

𝐊TT
𝑘−1 𝐊TB

𝑘−1

𝐊BT
𝑘−1 𝐊BB

𝑘−1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐊𝑘−1

[

𝐮T1
𝐮B𝑘−1

]

(29)

Note that 𝐊1 = 𝜿1. Eq. (28) is a recursion formula, which can be
evaluated from layer 𝑙2 to the last layer 𝑙𝑛, that finally reaches the
terminative stiffness matrix 𝐊𝑛 in Eq. (30).
[

𝝈T
1

𝝈B
𝑛

]

=

[

𝐊TT
𝑛 𝐊TB

𝑛

𝐊BT
𝑛 𝐊BB

𝑛

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐊𝑛

[

𝐮T1
𝐮B𝑛

]

(30)

Recall the traction free boundary condition at the top- and bottom-
most surfaces of the laminate illustrated in Fig. 4(b), that is 𝝈T

1 = 𝟎
and 𝝈B

𝑛 = 𝟎, Eq. (30) evolves to the homogeneous equation in Eq. (31),
which finally generates the dispersion equation in Eq. (32) given that
the displacement variables (𝐮T1 ,𝐮

B
𝑛 ) are non-vanished.

[

𝐊TT
𝑛 𝐊TB

𝑛

𝐊BT
𝑛 𝐊BB

𝑛

][

𝐮T1
𝐮B𝑛

]

=
[

𝟎
𝟎

]

(31)

𝑆 (𝑣, 𝜉) ≜ det

{

|

|

|

|

|

𝐊TT
𝑛 𝐊TB

𝑛

𝐊BT
𝑛 𝐊BB

𝑛

|

|

|

|

|

}

= 0 (32)

where, the subscript 𝑆 denotes that the dispersion equation is built with
SMM.

The dispersion equation 𝑆 (𝑣, 𝜉) = 0 can be numerically solved
by using bisection method or phase change method [57] to yield the
dispersion curves in 𝑣 − 𝜉, 𝜔 − 𝜉 and 𝜔 − 𝑣 domains through the
relation 𝜔 = 𝜉𝑣. By summarizing the derivation above, we can attain
the following three cases corresponding to three wave types.

∙ If all layers’ 𝜿𝑘 ∈ C6×6, 𝐊𝑛 ∈ C6×6 characterizes the coupled
Lamb and SH waves in the laminate system.

∙ If all layers’ 𝜿𝑘 ∈ C4×4, 𝐊𝑛 ∈ C4×4 characterizes the pure Lamb
wave in the laminate system.

∙ If all layers’ 𝜿𝑘 ∈ C2×2, 𝐊𝑛 ∈ C2×2 characterizes the pure SH
wave in the laminate system.

Actually, the three wave types result from the three different for-
mats of laminae’s rotated elastic matrices, which are concisely listed in
the branch 1 and 2 of Algorithm 1. The pseudo-codes for processing the
three wave types are presented in Algorithm 2, 3 and 4, respectively.
But before running the three algorithms, Algorithm 1 should be run to
determine the correct wave type existing in the laminate system.

Algorithm 1 Judge wave type according to the laminae’s rotated elastic
matrix format.
Input: Each layer’s material properties (𝐂𝑘, 𝜌𝑘, 𝑑𝑘, 𝜙𝑘) for (𝑘 =

1,… , 𝑛);
The wave propagation angle of interest 𝜃;
The minimum and maximum wavenumber of interest (𝜉min,

𝜉max);
The minimum, maximum and incremental velocity of interest

(𝑣min, 𝑣max, 𝛥𝑣).
1: Compute the rotated elastic matrix 𝐂′

𝑘=Rot{𝐂𝑘, 𝜃 − 𝜙𝑘} for (𝑘 =
1,… , 𝑛).

2: if All 𝐂′
𝑘 ∈  then % Branch 1

3: Call Algorithm 2 to process the coupled Lamb and SH waves.
4: else if All 𝐂′

𝑘 ∈  then % Branch 2
5: Call Algorithm 3 and 4 to process the pure Lamb and SH waves.
6: else if Some 𝐂′

𝑘 ∈  and other 𝐂′
𝑘 ∈  then % Branch 3

7: Call Algorithm 5 to process the hybrid Lamb and SH waves.
8: end if

4. Hybrid matrix strategy

4.1. The incompatibility issue of dimension of lamina matrices

In addition to the three cases inferred at the end of Section 3.3,
there is one special case that some layers’ 𝜿𝑘 ∈ C6×6 and other layers’
𝜿𝑘 ∈ C4×4 or 𝜿𝑘 ∈ C2×2. For this case, one question is immediately
raised out what is the dimension of 𝐊𝑛 and what kind of wave type 𝐊𝑛
characterizes in the whole laminate system? Recalling Eq. (28), there
is an implied requirement that all layers’ lamina stiffness matrices 𝜿𝑘
should have the same dimension C𝑝×𝑝 in order to proceed the recursion
process to produce 𝐊𝑛 ∈ C𝑝×𝑝, otherwise the incompatibility issue
in terms of the mismatched dimension among the laminae’s stiffness
matrices is encountered.

Physically, this issue corresponds to the condition that the wave
propagation direction of interest in the global coordinate system is just
right along the principal direction of one layer (producing the pure



Algorithm 2 Process the coupled Lamb and SH waves via SMM.
Input: Parameters (𝐂′

𝑘, 𝜌𝑘, 𝑑𝑘) for (𝑘 = 1,… , 𝑛) from Branch 1 of
Algorithm 1.

1: for 𝑣0 = 𝑣min ∶ 𝛥𝑣 ∶ 𝑣max do % Solve the dispersion equation at
each fixed 𝑣0.

2: for 𝑘 = 1 ∶ 1 ∶ 𝑛 do % Loop through each layer.
3: Compute (𝛼𝑟, 𝑈𝑟, 𝑉𝑟,𝑊𝑟, 𝛽1𝑟, 𝛽2𝑟, 𝛽3𝑟) for (𝑟 = 1,… , 6) via the

first column of Fig. 3 using the data (𝐂′
𝑘, 𝜌𝑘, 𝑣0).

4: Compute the lamina matrices 𝜿𝑢
𝑘,𝜿

𝜎
𝑘 ∈ C6×6 in the first

column of Fig. 5.
5: Compute the lamina stiffness matrix 𝜿𝑘 ∈ C6×6 via Eq. (25).
6: end for
7: Compute the terminative stiffness matrix 𝐊𝑛 ∈ C6×6 via Eq. (28)

in the recurrent manner.
8: Solve 𝑆 (𝑣0, 𝜉) = 0 in Eq. (32) to get multiple roots

(

𝜉1, 𝜉2,…
)

∈
[

𝜉min, 𝜉max
]

.
9: end for
Output: All solution points (𝑣𝑖, 𝜉𝑖) in the range

[

𝑣min, 𝑣max
]

×
[

𝜉min, 𝜉max
]

.

Algorithm 3 Process the pure Lamb wave via SMM.
Input: Parameters (𝐂′

𝑘, 𝜌𝑘, 𝑑𝑘) for (𝑘 = 1,… , 𝑛) from Branch 2 of
Algorithm 1.

1: for 𝑣0 = 𝑣min ∶ 𝛥𝑣 ∶ 𝑣max do % Solve the dispersion equation at
each fixed 𝑣0.

2: for 𝑘 = 1 ∶ 1 ∶ 𝑛 do % Loop through each layer.
3: Compute (𝛼𝑟, 𝑈𝑟,𝑊𝑟, 𝛽1𝑟, 𝛽3𝑟) for (𝑟 = 1,… , 4) via the second

column of Fig. 3 using the data (𝐂′
𝑘, 𝜌𝑘, 𝑣0).

4: Compute the lamina matrices 𝜿𝑢
𝑘,𝜿

𝜎
𝑘 ∈ C4×4 in the second

column of Fig. 5.
5: Compute the lamina stiffness matrix 𝜿𝑘 ∈ C4×4 via Eq. (25).
6: end for
7: Compute the terminative stiffness matrix 𝐊𝑛 ∈ C4×4 via Eq. (28)

in the recurrent manner.
8: Solve 𝑆 (𝑣0, 𝜉) = 0 in Eq. (32) to get multiple roots

(

𝜉1, 𝜉2,…
)

∈
[

𝜉min, 𝜉max
]

.
9: end for
Output: All solution points (𝑣𝑖, 𝜉𝑖) in the range

[

𝑣min, 𝑣max
]

×
[

𝜉min, 𝜉max
]

.

Algorithm 4 Process the pure SH wave via SMM.
Input: Parameters (𝐂′

𝑘, 𝜌𝑘, 𝑑𝑘) for (𝑘 = 1,… , 𝑛) from Branch 2 of
Algorithm 1.

1: for 𝑣0 = 𝑣min ∶ 𝛥𝑣 ∶ 𝑣max do % Solve the dispersion equation at
each fixed 𝑣0.

2: for 𝑘 = 1 ∶ 1 ∶ 𝑛 do % Loop through each layer.
3: Compute (𝛼𝑟, 𝑉𝑟, 𝛽2𝑟) for (𝑟 = 5, 6) via the third column

of Fig. 3 using the data (𝐂′
𝑘, 𝜌𝑘, 𝑣0).

4: Compute the lamina matrices 𝜿𝑢
𝑘,𝜿

𝜎
𝑘 ∈ C2×2 in the third

column of Fig. 5.
5: Compute the lamina stiffness matrix 𝜿𝑘 ∈ C2×2 via Eq. (25).
6: end for
7: Compute the terminative stiffness matrix 𝐊𝑛 ∈ C2×2 via Eq. (28)

in the recurrent manner.
8: Solve 𝑆 (𝑣0, 𝜉) = 0 in Eq. (32) to get multiple roots

(

𝜉1, 𝜉2,…
)

∈
[

𝜉min, 𝜉max
]

.
9: end for
Output: All solution points (𝑣𝑖, 𝜉𝑖) in the range

[

𝑣min, 𝑣max
]

×
[

𝜉min, 𝜉max
]

.

Algorithm 5 HMS to process the hybrid Lamb and SH waves via SMM.
Input: Parameters (𝐂′

𝑘, 𝜌𝑘, 𝑑𝑘) for (𝑘 = 1,… , 𝑛) from Branch 3 of
Algorithm 1.

1: for 𝑣0 = 𝑣min ∶ 𝛥𝑣 ∶ 𝑣max do % Solve the dispersion equation at
each fixed 𝑣0.

2: for 𝑘 = 1 ∶ 1 ∶ 𝑛 do % Loop through each layer.
3: if 𝐂′

𝑘 ∈  then % This layer has the coupled Lamb and SH
waves.

4: Compute (𝛼𝑟, 𝑈𝑟, 𝑉𝑟, 𝑊𝑟, 𝛽1𝑟, 𝛽2𝑟, 𝛽3𝑟) for (𝑟 = 1,… , 6) via
the first column of Fig. 3 using the data (𝐂′

𝑘, 𝜌𝑘, 𝑣0).
5: Compute the lamina matrices 𝜿𝑢

𝑘,𝜿
𝜎
𝑘 ∈ C6×6 in the first

column of Fig. 5.
6: Compute the lamina stiffness matrix 𝜿𝑘 ∈ C6×6 via

Eq. (25).
7: else if 𝐂′

𝑘 ∈  then % This layer has the hybrid Lamb and
SH waves.

8: Compute (𝛼𝑟, 𝑈𝑟,𝑊𝑟, 𝛽1𝑟, 𝛽3𝑟) for (𝑟 = 1,… , 4) via the
second column of Fig. 3 using the data (𝐂′

𝑘, 𝜌𝑘, 𝑣0).
9: Compute the lamina matrices 𝜿𝑢

𝑘,𝜿
𝜎
𝑘 ∈ C4×4 in the second

column of Fig. 5.
10: Compute (𝛼𝑟, 𝑉𝑟, 𝛽2𝑟) for (𝑟 = 5, 6) via the third column

of Fig. 3 using the data (𝐂′
𝑘, 𝜌𝑘, 𝑣0).

11: Compute the lamina matrices 𝜿𝑢
𝑘,𝜿

𝜎
𝑘 ∈ C2×2 in the third

column of Fig. 5.
12: Compute the hybrid lamina matrices �̃�𝑢

𝑘 ∈ C6×6 using the
obtained 𝜿𝑢

𝑘 ∈ C4×4 and 𝜿𝑢
𝑘 ∈ C2×2 based on Eq. (37).

13: Compute the hybrid lamina matrices �̃�𝜎
𝑘 ∈ C6×6 using the

obtained 𝜿𝜎
𝑘 ∈ C4×4 and 𝜿𝜎

𝑘 ∈ C2×2 based on Eq. (38).
14: Compute the hybrid lamina stiffness matrix �̃�𝑘 ∈ C6×6 via

Eq. (39).
15: end if
16: end for
17: Compute the hybrid terminative stiffness matrix �̃�𝑛 ∈ C6×6 via

Eq. (28) in the recurrent manner.
18: Solve 𝑆 (𝑣0, 𝜉) = 0 in Eq. (32) to get multiple roots

(

𝜉1, 𝜉2,…
)

∈
[

𝜉min, 𝜉max
]

.
19: end for
Output: All solution points (𝑣𝑖, 𝜉𝑖) in the range

[

𝑣min, 𝑣max
]

×
[

𝜉min, 𝜉max
]

.

Lamb and SH waves in this layer) but along the off-principal direction
of another layer (producing the coupled Lamb and SH waves in that
layer). This issue is very common and usually presents in anisotropic
composite laminates owing to various stacking angles of layups. How-
ever, such a fundamental problem has not been systematically tackled
in the literature.

Pant et al. (2014) adopted a pseudo correction measure to circum-
vent the incompatibility issue. They optionally changed the stacking
angles of layups with a minor angle 1◦ to secure that all layers have
the (virtually) coupled Lamb and SH waves [17]. The pseudo correction
measure is doable from the numerical way but not orthodox from the
mathematical perspective. Barazanchy and Giurgiutiu (2016) proposed
an unified method based on eigenvectors sorting and orthogonality
principle to bypass the incompatibility issue. But this method was
interpreted only for isotropic material, and failed to pass the benchmark
test for a 50-layered composite plate [53].

In this paper, we propose a novel hybrid matrix strategy (HMS) to
resolve the incompatibility issue, which is effective for various material
classes. The most important aspect of HMS is that it is directly derived
from the layer-wise PWSA similar to the coupled Lamb and SH waves in
Section 2.3.1. Thus, HMS is logically straightforward, mathematically
rigorous and numerically stable.



4.2. Hybrid lamina stiffness matrix of pure Lamb and SH waves

The process of deriving HMS is to re-couple some layer’s 𝜿𝑘 ∈ C4×4

and 𝜿𝑘 ∈ C2×2 to yield a hybrid lamina stiffness matrix �̃�𝑘 ∈ C6×6,
which is compatible with other layer’s 𝜿𝑘 ∈ C6×6 in terms of matrix
dimension such that the recursion process in Eq. (28) can be proceeded
to produce �̃�𝑛 ∈ C𝑝×𝑝. The displacement fields 𝐮2×1 = [𝑢1, 𝑢3]𝖳 and
𝐮1×1 = 𝑢2 in Fig. 3 can be combined in Eq. (33) for the partial wave
superposition form like in Eq. (12).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1 =
(

∑4
𝑟=1 𝜂𝑟𝑈𝑟ei𝜉𝛼𝑟𝑥3

)

ei𝜉(𝑥1−𝑣𝑡)

𝑢2 =
(

∑6
𝑟=5 𝜂𝑟𝑉𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

𝑢3 =
(

∑4
𝑟=1 𝜂𝑟𝑊𝑟ei𝜉𝛼𝑟𝑥3

)

ei𝜉(𝑥1−𝑣𝑡)

(33)

Rewrite Eq. (33) as the matrix form in Eq. (34).

⎡

⎢

⎢

⎣

𝑢1
𝑢2
𝑢3

⎤

⎥

⎥

⎦

⏟⏟⏟
𝐮3×1

=
⎡

⎢

⎢

⎣

𝑈1 𝑈2 𝑈3 𝑈4 0 0
0 0 0 0 𝑉5 𝑉6
𝑊1 𝑊2 𝑊3 𝑊4 0 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�3×6

×
⎡

⎢

⎢

⎣

ei𝜉𝛼1𝑥3
⋱

ei𝜉𝛼6𝑥3

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜦6×6(𝑥3)

⎡

⎢

⎢

⎣

𝜂1
⋮
𝜂6

⎤

⎥

⎥

⎦

⏟⏟⏟
𝜼6×1

ei𝜉(𝑥1−𝑣𝑡) (34)

where, �̃�3×6 is used to distinguish 𝐔3×6 defined in Fig. 3, and it is
regarded as the hybrid version of 𝐔2×4 and 𝐔1×2 in Fig. 3. The tilde
‘∼’ represents the hybrid sense. Physically, the zero elements in �̃�3×6
indicate the zero amplitudes of the corresponding partial waves.

The stress fields 𝝈2×1 = [𝜎33, 𝜎13]𝖳 and 𝝈1×1 = 𝜎23 in Fig. 3 can be
also combined in Eq. (35) and are further rewritten as the matrix form
in Eq. (36).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎33 =
(

∑4
𝑟=1 𝜂𝑟𝛽1𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

𝜎23 =
(

∑6
𝑟=5 𝜂𝑟𝛽2𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

𝜎13 =
(

∑4
𝑟=1 𝜂𝑟𝛽3𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

(35)

⎡

⎢

⎢

⎣

𝜎33
𝜎23
𝜎13

⎤

⎥

⎥

⎦

⏟⏟⏟
𝝈3×1

=
⎡

⎢

⎢

⎣

𝛽11 𝛽12 𝛽13 𝛽14 0 0
0 0 0 0 𝛽25 𝛽26
𝛽31 𝛽32 𝛽33 𝛽34 0 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�3×6

×
⎡

⎢

⎢

⎣

ei𝜉𝛼1𝑥3
⋱

ei𝜉𝛼6𝑥3

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜦6×6(𝑥3)

⎡

⎢

⎢

⎣

𝜂1
⋮
𝜂6

⎤

⎥

⎥

⎦

⏟⏟⏟
𝜼6×1

ei𝜉(𝑥1−𝑣𝑡) (36)

where, �̃�3×6 is used to distinguish 𝜷3×6 defined in Fig. 3, and it is
regarded as the hybrid version of 𝜷2×4 and 𝜷1×2 in Fig. 3.

In the hybrid context, the hybrid lamina matrices of displacement
and stress of layer 𝑙𝑘 can be derived and presented in Eqs. (37) and
(38). The derivation is detailed in Appendix C.

�̃�𝑢
𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈1 𝑈3 0 𝑈1ei𝜉𝛼1𝑑𝑘 𝑈3ei𝜉𝛼3𝑑𝑘 0
0 0 𝑉5 0 0 𝑉5ei𝜉𝛼5𝑑𝑘

𝑊1 𝑊3 0 −𝑊1ei𝜉𝛼1𝑑𝑘 −𝑊3ei𝜉𝛼3𝑑𝑘 0
𝑈1ei𝜉𝛼1𝑑𝑘 𝑈3ei𝜉𝛼3𝑑𝑘 0 𝑈1 𝑈3 0

0 0 𝑉5ei𝜉𝛼5𝑑𝑘 0 0 𝑉5

𝑊1ei𝜉𝛼1𝑑𝑘 𝑊3ei𝜉𝛼3𝑑𝑘 0 −𝑊1 −𝑊3 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(37)

�̃�𝜎
𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽11 𝛽13 0 𝛽11ei𝜉𝛼1𝑑𝑘 𝛽13ei𝜉𝛼3𝑑𝑘 0
0 0 𝛽25 0 0 −𝛽25ei𝜉𝛼5𝑑𝑘

𝛽31 𝛽33 0 −𝛽31ei𝜉𝛼1𝑑𝑘 −𝛽33ei𝜉𝛼3𝑑𝑘 0
𝛽11ei𝜉𝛼1𝑑𝑘 𝛽13ei𝜉𝛼3𝑑𝑘 0 𝛽11 𝛽13 0

0 0 𝛽25ei𝜉𝛼5𝑑𝑘 0 0 −𝛽25
𝛽31ei𝜉𝛼1𝑑𝑘 𝛽33ei𝜉𝛼3𝑑𝑘 0 −𝛽31 −𝛽33 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(38)

The hybrid lamina stiffness matrix �̃�𝑘 is computed as Eq. (39) that
follows the form of Eq. (25).

�̃�𝑘 = �̃�𝜎
𝑘
(

�̃�𝑢
𝑘
)−1 ∈ C6×6 (39)

It is evident that any two rows of �̃�𝑢
𝑘 in Eq. (37) are linearly indepen-

dent, so being full rank, which secures the numerical stability of HMS.
With the compatible lamina stiffness matrices between �̃�𝑗 ,𝜿𝑖 ∈ C6×6,
the hybrid terminative stiffness matrix �̃�𝑛 ∈ C6×6 can be computed
based on Eq. (28) in the recurrent manner.

The HMS is programmatically interpreted in Algorithm 5, which is
logically accompanied by Algorithm 1 to make sure that the current
guided wave type correctly corresponds to the hybrid case. Specifically,
the branch 3 of Algorithm 1 should be targeted. In correspondence with
the HMS, the wave solutions obtained via Algorithm 5 are artificially
classified as the hybrid Lamb and SH waves to distinguish the termi-
nology of the coupled waves in Algorithm 2 and the pure waves in
Algorithm 3 and 4.

5. Numerical validation

5.1. Case of a quasi-isotropic laminate

In this subsection, a carbon-fiber epoxy laminate is used to vali-
date the developed HMS. The laminate consists of eight unidirectional
laminae with stacking angles of layups [0∕90∕45∕ − 45]s, indicating the
quasi-isotropic property of this plate. The material properties of the
carbon-fiber epoxy lamina are cited from [17] and listed in the follow-
ing for convenience. This material is commonly used in the aeronautic
and aerospace industry. One can check that the elastic matrix 𝐂 in
Eq. (40) which is along the principal direction of itself belongs to the
transversely isotropic class, and thereby orthotropic class.

∙ Stacking sequence is [0∕90∕45∕ − 45]s;
∙ Thickness of each lamina is 0.17 mm;
∙ Material density is 1650 kg∕m3;
∙ Elastic matrix 𝐂 is presented in Eq. (40).

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

145.38 3.96 3.96 0 0 0
10.11 3.11 0 0 0

10.11 0 0 0
3.5 0 0

sym 4.8 0
4.8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GPa (40)

The quasi-isotropic stacking sequence of layups results in that there
is not a common principal axis among the laminae and thus no pure
Lamb or SH waves present in the plate for any propagation angle. For
the specific stacking angles [0∕90∕45∕ − 45]s, when the wave propaga-
tion angle of interest just coincides with one layer’s private principal
direction, i.e. 𝜃 ∈ {0◦, 45◦, 90◦,−45◦}, the incompatibility issue is just
encountered. This subsection demonstrates in detail the HMS to resolve
this issue.



5.1.1. The hybrid Lamb and SH waves when 𝜃 = 0◦, 45◦ or 90◦

Fig. 6(a) illustrates the process of elastic matrix rotation and the
determination of wave type existing in the laminate at the current
propagation angle 𝜃 = 0◦. From the conceptual diagram, it can be
seen that, after rotation of Eq. (40), the rotated elastic matrices of
the 𝑗th layer 𝐂′

𝑗 (𝑗 = 1, 2, 7, 8) belong to the set  but the 𝑖th layer
𝐂′
𝑖 (𝑖 = 3, 4, 5, 6) belong to the set . According to the Algorithm 1,

branch 3 is targeted that corresponds to the case of the hybrid Lamb
and SH waves.

For the rotated 𝐂′
𝑗 ∈ , there exists two kinds of lamina matrices

𝜿𝑢
𝑗 ,𝜿

𝜎
𝑗 ∈ C4×4 and 𝜿𝑢

𝑗 ,𝜿
𝜎
𝑗 ∈ C2×2 according to the second and third

column of Fig. 5, which corresponds to the pure Lamb and SH waves in
these layers, respectively. But for another rotated 𝐂′

𝑖 ∈ , they have
only the lamina matrices 𝜿𝑢

𝑖 ,𝜿
𝜎
𝑖 ∈ C6×6 according to the first column

of Fig. 5, corresponding to the coupled Lamb and SH waves in these
layers.

Immediately, we are encountering the matrix incompatibility issue
between the lamina matrices 𝜿𝑢

𝑖 ,𝜿
𝜎
𝑖 ∈ C6×6, 𝜿𝑢

𝑗 ,𝜿
𝜎
𝑗 ∈ C4×4 and 𝜿𝑢

𝑗 ,𝜿
𝜎
𝑗 ∈

C2×2. The HMS developed in Section 4 is devoted to resolve this issue,
which is achieved by reconstructing 𝜿𝑢

𝑗 ∈ C4×4,𝜿𝑢
𝑗 ∈ C2×2 to the

hybrid matrix �̃�𝑢
𝑗 ∈ C6×6 based on Eq. (41), meanwhile, reconstructing

𝜿𝜎
𝑗 ∈ C4×4,𝜿𝜎

𝑗 ∈ C2×2 to another hybrid matrix �̃�𝜎
𝑗 ∈ C6×6 based on

Eq. (42).
(

𝜿𝑢
𝑗 ∈ C4×4,𝜿𝑢

𝑗 ∈ C2×2
) Eq. (37)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ �̃�𝑢

𝑗 ∈ C6×6 (41)

(

𝜿𝜎
𝑗 ∈ C4×4,𝜿𝜎

𝑗 ∈ C2×2
) Eq. (38)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ �̃�𝜎

𝑗 ∈ C6×6 (42)

Then, the hybrid matrices �̃�𝑢
𝑗 , �̃�

𝜎
𝑗 ∈ C6×6 are used to compute

the hybrid lamina stiffness matrix �̃�𝑗 ∈ C6×6 (𝑗 = 1, 2, 7, 8) based
on Eq. (39), which is compatible to the lamina stiffness matrix 𝜿𝑖 ∈
C6×6 (𝑖 = 3, 4, 5, 6) obtained from Eq. (25) for 𝜿𝑢

𝑖 ,𝜿
𝜎
𝑖 ∈ C6×6. To this

step, all layers’ lamina stiffness matrices are now compatible and they
are assembled together to yield the hybrid terminative stiffness matrix
�̃�8 ∈ C6×6 in the recurrent manner based on Eq. (28).

The elaborated process above has been vividly illustrated in the last
two columns of Fig. 6(a). Furthermore, it is logically and program-
matically encrypted in Algorithm 1 and 5. The computed dispersion
curves of the hybrid Lamb and SH waves are depicted in Fig. 7(a)
corresponding to the current propagation angle 𝜃 = 0◦.

The incompatibility issue is still occurring at 𝜃 = ±45◦ and 90◦

due to the stacking angles of layups [0∕90∕45∕ − 45]s, and it can be
qualitatively analyzed akin to the conceptual diagram of 𝜃 = 0◦ in
Fig. 6(a). To avoid redundancy, we only illustrate the angle 𝜃 = 45◦

in Fig. 6(c). It shows that, after rotation, the elastic matrices of the 3rd

to the 6th layer keep the orthotropic format, i.e. 𝐂′
𝑗 ∈  (𝑗 = 3, 4, 5, 6),

which is conjugated with Fig. 6(a) in the graphical sense. Thus, the
HMS should be applied to these layers. After running Algorithm 1 and
5, the dispersion curves of the hybrid Lamb and SH waves are depicted
in Fig. 7(c) and (d) for 𝜃 = 45◦ and 𝜃 = 90◦, respectively.

5.1.2. The coupled Lamb and SH waves when 𝜃 = 30◦

When the wave direction of interest does not coincide with any
principal axis of all layers, i.e. 𝜃 ∉ {0◦, 45◦, 90◦,−45◦}, the rotated
𝐂′
𝑖 of all layers shall belong to the set , which gives rise to the

unified lamina stiffness matrix 𝜿𝑖 ∈ C6×6 (𝑖 = 1,… , 8) between all layers
according to the branch 1 of Algorithm 1. Here, we take a typical angle
𝜃 = 30◦ to present the process of determining the coupled type of
Lamb and SH waves as illustrated in Fig. 6(b). For the coupled case,
Algorithm 2 should be adopted to compute the dispersion solutions.
After computation, the dispersion curves of the coupled Lamb and SH
waves are depicted in Fig. 7(b) for the current angle 𝜃 = 30◦.

Note that the experimental data points in Fig. 7 are extracted
from [17], and they are used in Fig. 7 for the comparison purpose
from the experimental perspective. The good agreement between the

theoretically computed curves and the experimental data points shown
in Fig. 7, as a consequence, validates the feasibility and effectiveness
of the combined SMM and HMS methodology.

If a certain wave propagation angle 𝜃 leads to the incompati-
bility issue, we artificially define this angle as the singular angle of
the laminate. To intuitively observe all the singular angles of the
quasi-isotropic laminate, the polar plot of wave velocities are cre-
ated in Fig. 8 for 𝑓𝑑 = 0.1MHz mm and 𝑓𝑑 = 0.4MHz mm. In
this figure, the eight singular angles are indicated, they are 𝜃 ∈
{0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}.

5.1.3. Illustration of the pseudo correction measure
Pant’s pseudo correction measure to alleviate the incompatibility

issue is presented in [17]. We conceptually illustrate it in Fig. 9 for the
angle 𝜃 = 0◦ which has been discussed in Fig. 6(a) using the HMS. The
core idea of this measure is detailed in the right-most two columns of
Fig. 9. By additionally rotating the 𝐂′

𝑗 ∈  (𝑗 = 1, 2, 7, 8) with a minor
angle 𝛥𝜃 = −1◦, all the rotated elastic matrices now belong to the set
 that produces the (virtually) coupled Lamb and SH waves.

As 𝛥𝜃 = −1◦ is relatively small, this pseudo correction has very little
effect on the overall stiffness of the laminate. Thus, it is doable from
the numerical way but not orthodox from the mathematical viewpoint.
In metallic-composite laminates, this pseudo correction measure is
invalid since the elastic matrix of the metallic layer always remains the
isotropic format irrespective of the rotation angle. We will demonstrate
this case in Section 5.2.3.

5.2. Case of a metallic-composite laminate

In this subsection, HMS is applied to a metallic-composite laminate
composed of three aluminum layers and four glass fiber layers with
stacking angles of layups [Al∕0∕90∕Al∕90∕0∕Al], where Al means the
aluminum layer. The material properties of the two materials are
cited from [17] and listed in the following for convenience. Thanks to
the isotropic property of aluminum material, there exist two common
principal axes between the aluminum and glass fiber layers at 0◦ and
90◦.

∙ Stacking sequence is [Al∕0∕90∕Al∕90∕0∕Al];
∙ Ply thicknesses of aluminum and glass fiber layers are 0.33 mm

and 0.127 mm, respectively;
∙ Densities of aluminum and glass fiber are 2780 kg∕m3 and 1980
kg∕m3, respectively;

∙ Elastic matrices of aluminum and glass fiber along their respec-
tive principal axis direction are 𝐂Al of Eq. (43) and 𝐂GF of
Eq. (44);

∙ The set relation is 𝐂Al ∈  and 𝐂GF ∈   ⊆ .

𝐂Al =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

108.31 53.35 53.35 0 0 0
108.31 53.35 0 0 0

108.31 0 0 0
27.48 0 0

sym 27.48 0
27.48

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GPa (43)

𝐂GF =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

53.77 4.95 4.95 0 0 0
11.49 3.99 0 0 0

11.49 0 0 0
3.75 0 0

sym 3.70 0
3.70

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GPa (44)

5.2.1. The pure Lamb and SH waves when 𝜃 = 0◦ or 90◦
Fig. 10(a) illustrates the process of determining wave type when

one principal axis direction 𝜃 = 0◦ is concerned. At this direction,
the rotated elastic matrices of aluminum layers remain the isotropic



Fig. 6. Conceptual diagram of determining the wave type existing in the quasi-isotropic laminate [0∕90∕45∕−45]s at the wave propagation angle (a) 𝜃 = 0◦, (b) 𝜃 = 30◦, (c) 𝜃 = 45◦.

property 𝐂′
𝑖 ∈  (𝑖 = 1, 4, 7), and the rotated elastic matrices of glass

fiber layers keep the orthotropic property 𝐂′
𝑗 ∈  (𝑗 = 2, 3, 5, 6). Recall

the set relation  ⊆  in Fig. 1, we can also dictate 𝐂′
𝑖 ∈  (𝑖 =

1, 4, 7). As such, all the rotated elastic matrices now belong to the
orthotropic class that finally produces the pure Lamb and SH waves
present in each lamina, thereby in the whole laminate, for the specific
angle 𝜃 = 0◦. For another principal axis direction 𝜃 = 90◦, the same
outcome of the pure case can be anticipated. The dispersion curves
of the pure Lamb and SH waves at the two principal axes directions
are retrieved in Fig. 11(a)(e) after running Algorithm 1, 3 and 4. The

good agreement between the computed curves and the experimental
data points certifies the high accuracy of SMM in processing the pure
waves of the metallic-composite laminate.

5.2.2. The hybrid Lamb and SH waves when 𝜃 = 20◦, 45◦ or 70◦
There are many singular angles that invoke the incompatibility issue

in the metallic-composite laminate. Fig. 10(b) illustrates the process of
determining wave type when 𝜃 = 45◦. At this direction, the elastic
matrices of aluminum layers are rotated to 𝐂′

𝑖 ∈  ⊆  (𝑖 =
1, 4, 7) due to the rotation invariance property of isotropic material,
whereas the elastic matrices of the glass fiber layers are rotated to



Fig. 7. Dispersion curves of the hybrid or coupled Lamb and SH waves of the quasi-isotropic laminate. The experimental data points are extracted from [17].

Fig. 8. Polar plot of wave velocity (unit: m/s). Eight singular angles 𝜃 ∈ {0◦ , 45◦ , 90◦ , 135◦ , 180◦ , 225◦ , 270◦ , 315◦} present in the quasi-isotropic laminate. The experimental data
points are extracted from [17].



Fig. 9. Conceptual diagram of pseudo correction measure to deal with the incompatibility issue of the quasi-isotropic laminate when 𝜃 = 0◦.

𝐂′
𝑗 ∈  (𝑗 = 2, 3, 5, 6). The inconformity of elastic matrix classes

between aluminum and glass fiber layers at the current angle 𝜃 = 45◦

makes the requirement that only the hybrid �̃�𝑖 ∈ C6×6 (𝑖 = 1, 4, 7) of
the aluminum layers are compatible with the 𝜿𝑗 ∈ C6×6 (𝑗 = 2, 3, 5, 6)
of the glass fiber layers as illustrated in Fig. 10(b). Correspondingly,
the hybrid type of Lamb and SH waves is determined according to the
branch 3 of Algorithm 1. For another two angles 𝜃 = 20◦ and 70◦, the
same hybrid wave type can be analyzed. After running Algorithm 5, the
dispersion curves at the three angles 𝜃 = 20◦, 45◦, 70◦ are retrieved in
Fig. 11(b), (c), (d), respectively. The reason of exhibiting the dispersion
curves of 𝜃 = 20◦ and 70◦ in Fig. 11 is that the experimental data of
the two angles are available from [17]. The good agreement between
the computed curves and the experimental data points validates the
feasibility of HMS in processing the metallic-composite laminate.

In the quasi-isotropic laminate [0∕90∕45∕−45]s of Section 5.1, there
are only eight singular angles 𝜃 ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,
315◦} as implied in Fig. 8. However, in the metallic-composite laminate,
any propagation angle is singular except 𝜃 ∈ {0◦, 90◦, 180◦, 270◦}. This
is the major difference between the polar plot of the quasi-isotropic
laminate in Fig. 8 and the polar plot of the metallic-composite laminate
in Fig. 12.

5.2.3. Superiority of HMS over the pseudo correction measure
Fig. 10(c) illustrates the ineffectiveness of pseudo correction mea-

sure for processing the incompatibility issue of metallic-composite lami-
nate. It shows that the additionally rotated elastic matrices of aluminum
layers still remains isotropic property, 𝐂′′

𝑖 ∈  (𝑖 = 1, 4, 7), due to the
rotation invariance of isotropic material. In consequence, the two kinds
of lamina stiffness matrices of aluminum layers

(

𝜿𝑖 ∈ C4×4,𝜿𝑖 ∈ C2×2)

(𝑖 = 1, 4, 7) are still incompatible with the 𝜿𝑗 ∈ C6×6 (𝑗 = 2, 3, 5, 6) of
glass fiber layers if without using the hybrid ones �̃�𝑖 ∈ C6×6 (𝑖 = 1, 4, 7)
employed in Fig. 10(b). This illustration proves that pseudo correc-
tion measure fails to deal with the incompatibility issue of metallic-
composite laminate, while HMS is the effective solution to address this
issue.

6. Discussion

6.1. Lamina stiffness matrix of triclinic material

To apply SMM to triclinic material, the lamina matrices of displace-
ment and stress of this material is reported in Eqs. (45) and (46)3 whose

derivation starts with Eqs. (12) and (14) and follows the procedures of
Fig. C.13. As such, the lamina stiffness matrix of triclinic material can
be computed by 𝜿

𝑘 = 𝜿𝜎
𝑘
(

𝜿𝑢
𝑘
)−1 ∈ C6×6 based on Eq. (25), where the

superscript  denotes the triclinic material. In this case, 𝜿
𝑘 ∈ C6×6

is compatible with 𝜿6×6
𝑘 of monoclinic material and the hybrid �̃�6×6

𝑘 .
This fact makes the SMM-HMS framework be able to deal with guided
waves propagation in the most inhomogeneous composite plates that
are made up of the simplest isotropic, commonly used orthotropic and
fully anisotropic triclinic materials.

𝜿𝑢
𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈1 𝑈3 𝑈5 𝑈2e−i𝜉𝛼2𝑑𝑘 𝑈4e−i𝜉𝛼4𝑑𝑘 𝑈6e−i𝜉𝛼6𝑑𝑘

𝑉1 𝑉3 𝑉5 𝑉2e−i𝜉𝛼2𝑑𝑘 𝑉4e−i𝜉𝛼4𝑑𝑘 𝑉6e−i𝜉𝛼6𝑑𝑘

𝑊1 𝑊3 𝑊5 𝑊2e−i𝜉𝛼2𝑑𝑘 𝑊4e−i𝜉𝛼4𝑑𝑘 𝑊6e−i𝜉𝛼6𝑑𝑘

𝑈1ei𝜉𝛼1𝑑𝑘 𝑈3ei𝜉𝛼3𝑑𝑘 𝑈5ei𝜉𝛼5𝑑𝑘 𝑈2 𝑈4 𝑈6

𝑉1ei𝜉𝛼1𝑑𝑘 𝑉3ei𝜉𝛼3𝑑𝑘 𝑉5ei𝜉𝛼5𝑑𝑘 𝑉2 𝑉4 𝑉6

𝑊1ei𝜉𝛼1𝑑𝑘 𝑊3ei𝜉𝛼3𝑑𝑘 𝑊5ei𝜉𝛼5𝑑𝑘 𝑊2 𝑊4 𝑊6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(45)

𝜿𝜎
𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽11 𝛽13 𝛽15 𝛽12e−i𝜉𝛼2𝑑𝑘 𝛽14e−i𝜉𝛼4𝑑𝑘 𝛽16e−i𝜉𝛼6𝑑𝑘

𝛽21 𝛽23 𝛽25 𝛽22e−i𝜉𝛼2𝑑𝑘 𝛽24e−i𝜉𝛼4𝑑𝑘 𝛽26e−i𝜉𝛼6𝑑𝑘

𝛽31 𝛽33 𝛽35 𝛽32e−i𝜉𝛼2𝑑𝑘 𝛽34e−i𝜉𝛼4𝑑𝑘 𝛽36e−i𝜉𝛼6𝑑𝑘

𝛽11ei𝜉𝛼1𝑑𝑘 𝛽13ei𝜉𝛼3𝑑𝑘 𝛽15ei𝜉𝛼5𝑑𝑘 𝛽12 𝛽14 𝛽16
𝛽21ei𝜉𝛼1𝑑𝑘 𝛽23ei𝜉𝛼3𝑑𝑘 𝛽25ei𝜉𝛼5𝑑𝑘 𝛽22 𝛽24 𝛽26
𝛽31ei𝜉𝛼1𝑑𝑘 𝛽33ei𝜉𝛼3𝑑𝑘 𝛽35ei𝜉𝛼5𝑑𝑘 𝛽32 𝛽34 𝛽36

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(46)

6.2. HMS in cross-ply laminate and sandwich plate

In Fig. 10(a), we can further recast each layer’s 𝜿4×4
𝑖 , 𝜿2×2

𝑖 into
�̃�6×6
𝑖 (𝑖 = 1,… , 7) based on Eqs. (41) and (42). As such, the hybrid

�̃�6×6
7 is computed, which simultaneously characterizes the pure Lamb

and SH waves. This tactful manipulation is very useful for handling
cross-ply laminate, e.g. the woven fabric panel [0∕90]3 in [59], where
the two principal directions 𝜃 = 0◦ and 90◦ produce the pure Lamb
and SH waves that can be simultaneously processed via HMS to reduce
computational time. In this sense, HMS is an unified approach able to
process the pure case in addition to the hybrid one.

3 During deriving Eqs. (45) and (46), all the six partial waves’ solutions of
triclinic material have to be undertaken, since there is no the pair relation of
𝛼2 in Eq. (10) like the counterpart of monoclinic material.



Fig. 10. Conceptual diagram of determining the wave type existing in the metallic-composite laminate [Al∕0∕90∕Al∕90∕0∕Al] at the wave propagation angle (a) 𝜃 = 0◦, (b) 𝜃 = 45◦

and (c) 𝜃 = 45◦ for pseudo correction measure.

Multi-layered sandwich plate is generally made up of arbitrarily
oriented CFRP skins and aluminum alloy honeycomb core, where the
core layer is considered as isotropic material. For instance, the IFS plate
of A380 nacelle in [60] having stacking angles [0/-45/45/0/Al/0/45/-
45/0]. For such a complex structure, when 𝜃 = 0◦, both the honeycomb
core and the 0◦ CFRP layers should be handled with HMS. This case is
different from Fig. 10(b) where the hybrid manipulation is conducted
only for aluminum layers. Using the conceptual diagram to determine
which layers should be manipulated via HMS is intuitional but cumber-
some. The developed Algorithm 1 and 5, however, can automatically
identify the singular angles and deploy the peculier layers need to be
handled with HMS. This fact shows the practical value of HMS that it
is able to handle the arbitrarily oriented multi-layered sandwich plate
which is widely used in aeronautic and aerospace industry.

6.3. Comparison between SMM-HMS and other methods

The TMM and GMM versions of HMS were established in [22].
Different from the counterpart of SMM, the hybridization of the pure
Lamb and SH waves in TMM and GMM is directly exerted on �̃�3×6 of
Eq. (34) and �̃�3×6 of Eq. (36), which is simpler than the hybridization
in SMM imposed on �̃�𝑢

𝑘 of Eq. (37) and �̃�𝜎
𝑘 of Eq. (38). This attributes

to the conceptual simplicity of TMM and GMM.
It is worth noting that some numerical methods such as SAFE and

SCM are intrinsically immune to the incompatibility issue of metallic-
composite laminates [18,33]. This is because most numerical methods
do not exploit partial waves, and usually end up with solving an
eigenvalue problem which can be easily realized by calling existing
programming subroutines such as the MATLAB function eig. In this



Fig. 11. Dispersion curves of the hybrid or pure Lamb and SH waves of the metallic-composite laminate. The experimental data points are extracted from [17].

regard, numerical methods is superior to the matrix-based methods.
Nevertheless, one cannot wipe out the contribution of HMS to the state
of the art solely based on this factor. Being theoretical approaches,
GMM and SMM acted as the benchmark to evaluate the performance
of various numerical methods [9,10]. Furthermore, HMS meticulously
treats the interaction of guided waves with the metal–matrix interface,

which is promising for studying the delamination issues of fiber-metal
laminates [61]. Indeed, the occurrence of delamination at the metal–
matrix interface usually gives rise to the reduction of interlaminar
stiffness. Integrating HMS into delamination detection methods [62–
64] to enhance their performance is an appealing perspective and will
be comprehensively studied in the future.



Fig. 12. Polar plot of wave velocity (unit: m/s). Four non-singular angles 𝜃 ∈ {0◦ , 90◦ , 180◦ , 270◦} present in the metallic-composite laminate. The experimental data points are
extracted from [17].

7. Conclusion

This paper comprehensively studies the coupling issue of guided
waves propagation in arbitrarily stacked multi-layered composite
plates. In accordance with different material classes in each layer of the
laminate, there exists three cases of guided waves, namely, the coupled
Lamb and SH waves, the separated Lamb and SH waves, and the hybrid
case that in some layers of the laminate the two wave types are coupled
to each other but in other layers decoupled. The hybrid case is generally
existing in a quasi-isotropic composite plate and a metallic-composite
plate for which metallic layers are isotropic but composite laminae are
anisotropic.

The standard SMM can deal with the coupled and decoupled cases,
but for the hybrid case, an original HMS is proposed to address the lam-
ina stiffness matrix incompatibility issue. Its core idea is to hybridize
the partial waves matrices of the pure Lamb and SH waves such that it is
compatible with the counterpart of the coupled ones, thus guaranteeing
the successful proceeding of the recursion process of generating the
terminative stiffness matrix of the whole laminate system. The stability
of HMS is interpreted in theory.

Numerical examples on two commonly used composite laminates,
i.e. a quasi-isotropic laminate and a metallic-composite laminate, val-
idates the effectiveness of the SMM-HMS framework, whose accuracy
is further validated by the experimental data extracted from a classical
Ref. [17]. The HMS is also superior to the pseudo correction measure
for dealing with the incompatibility issue of metallic-composite plate.

The coupling case of guided waves in an arbitrarily stacked multi-
layered composite plate may become irregular. Using the conceptual
diagram to manually identify the singular angle is intuitional but cum-
bersome. The developed Algorithms 1–5, however, can automatically
process the most inhomogeneous composite plates that are made up
of the simplest isotropic, commonly used orthotropic and fully triclinic
materials. Thus, the intelligence of SMM-HMS highlights its possibility
of application in arbitrarily oriented multi-layered sandwich plate that
is widely used in aeronautic and aerospace industry.
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Appendix A. The polynomial coefficients in Eq. (10)

𝐴6 = −𝐶2
35𝐶44 + 2𝐶34𝐶35𝐶45 − 𝐶33𝐶

2
45 − 𝐶2

34𝐶55 + 𝐶33𝐶44𝐶55 (A.1)

𝐴5 =2( − 𝐶15𝐶
2
34 + 𝐶14𝐶34𝐶35 + 𝐶15𝐶33𝐶44 − 𝐶13𝐶35𝐶44

− 𝐶14𝐶33𝐶45 + 𝐶13𝐶34𝐶45 + 𝐶35𝐶36𝐶45 − 𝐶2
35𝐶46

− 𝐶34𝐶36𝐶55 + 𝐶33𝐶46𝐶55 + 𝐶34𝐶35𝐶56 − 𝐶33𝐶45𝐶56)
(A.2)



Fig. C.13. Derivation of the hybrid lamina matrices of displacement and stress.

𝐴4 = − 𝐶2
14𝐶33 − 𝐶11𝐶

2
34 + 2𝐶16𝐶34𝐶35 − 4𝐶15𝐶34𝐶36 − 𝐶2

13𝐶44

+ 𝐶11𝐶33𝐶44 + 2𝐶15𝐶35𝐶44 − 2𝐶16𝐶33𝐶45

− 2𝐶15𝐶34𝐶45 + 2𝐶13𝐶36𝐶45

+ 2𝐶13𝐶
2
45 + 4𝐶15𝐶33𝐶46 − 4𝐶13𝐶35𝐶46 − 𝐶2

36𝐶55

− 2𝐶13𝐶44𝐶55 + 2𝐶13𝐶34𝐶56

+ 2𝐶35𝐶36𝐶56 − 𝐶33𝐶
2
56 + 2𝐶14(𝐶13𝐶34 + 𝐶35𝐶36

− 𝐶35𝐶45 + 𝐶34𝐶55 − 𝐶33𝐶56)
− 𝐶2

35𝐶66 + 𝐶33𝐶55𝐶66

+
(

𝐶2
34 + 𝐶2

35 − 𝐶33𝐶44 + 𝐶2
45 − 𝐶33𝐶55 − 𝐶44𝐶55

)

𝜌𝑣2

(A.3)

𝐴3 =2[ − 𝐶2
14𝐶35 − 𝐶11𝐶34𝐶36 + 𝐶16𝐶35𝐶36 − 𝐶15𝐶

2
36 + 𝐶11𝐶35𝐶44

− 𝐶11𝐶34𝐶45 − 𝐶16𝐶35𝐶45 − 𝐶15𝐶36𝐶45 − 𝐶2
13𝐶46 + 𝐶11𝐶33𝐶46

+ 2𝐶34𝐶35𝐶46 + 𝐶16𝐶34𝐶55 − 𝐶16𝐶33𝐶56 − 𝐶15𝐶34𝐶56

+ 𝐶14(−𝐶16𝐶33 + 𝐶15𝐶34 + 𝐶13𝐶36 + 𝐶13𝐶45 + 𝐶36𝐶55 − 𝐶35𝐶56)

+ 𝐶15𝐶33𝐶66 + 𝐶13(𝐶16𝐶34 − 𝐶15𝐶44 − 2𝐶46𝐶55

+ 𝐶36𝐶56 + 2𝐶45𝐶56 − 𝐶35𝐶66)]
+ 2[𝐶13𝐶35 + 𝐶34𝐶36 − 𝐶35𝐶44 − 𝐶15(𝐶33 + 𝐶44) + 𝐶14𝐶45

+ 𝐶34𝐶45 − 𝐶33𝐶46 − 𝐶46𝐶55 + 𝐶45𝐶56]𝜌𝑣2

(A.4)



𝐴2 = − 𝐶2
16𝐶33 − 𝐶11𝐶

2
36 − 𝐶2

15𝐶44 − 2𝐶11𝐶36𝐶45 − 𝐶11𝐶
2
45 − 4𝐶13𝐶15𝐶46

+ 4𝐶11𝐶35𝐶46 − 𝐶2
14𝐶55 + 𝐶11𝐶44𝐶55 − 2𝐶11𝐶34𝐶56

− 2𝐶15𝐶36𝐶56 + 2𝐶13𝐶
2
56

+ 2𝐶14[𝐶15(𝐶36 + 𝐶45) + 𝐶13𝐶56]

+ 2𝐶16(𝐶15𝐶34 − 2𝐶14𝐶35 + 𝐶13𝐶36 + 𝐶13𝐶45

+ 𝐶36𝐶55 − 𝐶35𝐶56) − 𝐶2
13𝐶66

+ 𝐶11𝐶33𝐶66 + 2𝐶15𝐶35𝐶66 − 2𝐶13𝐶55𝐶66

+ (𝐶2
13 + 𝐶2

14 − 𝐶11𝐶33 − 2𝐶15𝐶35 + 𝐶2
36 − 𝐶11𝐶44

+ 2𝐶16𝐶45 + 2𝐶36𝐶45 + 𝐶2
45

− 4𝐶15𝐶46 − 4𝐶35𝐶46 + 2𝐶13𝐶55 − 𝐶44𝐶55 + 2𝐶14𝐶56

+ 2𝐶34𝐶56 + 𝐶2
56 − 𝐶33𝐶66

− 𝐶55𝐶66)𝜌𝑣2 + (𝐶33 + 𝐶44 + 𝐶55)
(

𝜌𝑣2
)2

(A.5)

𝐴1 =2( − 𝐶2
16𝐶35 − 𝐶2

15𝐶46 + 𝐶16(𝐶15(𝐶36 + 𝐶45)

− 𝐶14𝐶55 + 𝐶13𝐶56) + 𝐶15(𝐶14𝐶56 − 𝐶13𝐶66)

+ 𝐶11(𝐶46𝐶55 − 𝐶36𝐶56 − 𝐶45𝐶56 + 𝐶35𝐶66))
+ 2(𝐶13𝐶15 + 𝐶14𝐶16 − 𝐶11𝐶35 − 𝐶11𝐶46

− 𝐶46𝐶55 + 𝐶16𝐶56 + 𝐶36𝐶56 + 𝐶45𝐶56 − 𝐶15𝐶66 − 𝐶35𝐶66)𝜌𝑣2

+ 2(𝐶15 + 𝐶35 + 𝐶46)
(

𝜌𝑣2
)2

(A.6)

𝐴0 = − 𝐶2
16𝐶55 + 2𝐶15𝐶16𝐶56 − 𝐶11𝐶

2
56 − 𝐶2

15𝐶66 + 𝐶11𝐶55𝐶66

+ (𝐶2
15 + 𝐶2

16 − 𝐶11𝐶55 + 𝐶2
56 − 𝐶11𝐶66 − 𝐶55𝐶66)𝜌𝑣2

+
(

𝐶11 + 𝐶55 + 𝐶66
) (

𝜌𝑣2
)2 −

(

𝜌𝑣2
)3

(A.7)

Appendix B. Proof of Eq. (28)

The core idea of proving Eq. (28) is to apply the displacement and
stress continuity condition formulized in Eqs. (B.1a) and (B.1b). See the
interface 𝑖𝑘−1 in Fig. 4(b) for easy understanding.

𝐮B𝑘−1 = 𝐮T𝑘 (B.1a)

𝝈B
𝑘−1 = 𝝈T

𝑘 (B.1b)

Expanding Eq. (29) into Eqs. (B.2a) and (B.2b).

𝝈T
1 = 𝐊TT

𝑘−1𝐮
T
1 +𝐊TB

𝑘−1𝐮
B
𝑘−1 (B.2a)

𝝈B
𝑘−1 = 𝐊BT

𝑘−1𝐮
T
1 +𝐊BB

𝑘−1𝐮
B
𝑘−1 (B.2b)

Due to the continuity condition in Eqs. (B.1a) and (B.1b), 𝐮B𝑘−1
and 𝝈B

𝑘−1 in Eqs. (B.2a) and (B.2b) can be replaced by 𝐮T𝑘 and 𝝈T
𝑘 ,

respectively, thus Eqs. (B.3a) and (B.3b) are obtained.

𝝈T
1 = 𝐊TT

𝑘−1𝐮
T
1 +𝐊TB

𝑘−1𝐮
T
𝑘 (B.3a)

𝝈T
𝑘 = 𝐊BT

𝑘−1𝐮
T
1 +𝐊BB

𝑘−1𝐮
T
𝑘 (B.3b)

With the block matrices in Eq. (26), Eq. (25) is expanded into
Eqs. (B.4a) and (B.4b).

𝝈T
𝑘 = 𝜿TT

𝑘 𝐮T𝑘 + 𝜿TB
𝑘 𝐮B𝑘 (B.4a)

𝝈B
𝑘 = 𝜿BT

𝑘 𝐮T𝑘 + 𝜿BB
𝑘 𝐮B𝑘 (B.4b)

Eqs. (B.3b) and (B.4a) represent the same variable 𝝈T
𝑘 , which makes

Eq. (B.5).

𝐊BT
𝑘−1𝐮

T
1 +𝐊BB

𝑘−1𝐮
T
𝑘 = 𝜿TT

𝑘 𝐮T𝑘 + 𝜿TB
𝑘 𝐮B𝑘 (B.5)

𝐮T𝑘 is solved into Eq. (B.6) from Eq. (B.5).

𝐮T𝑘 =
(

𝜿TT
𝑘 −𝐊BB

𝑘−1
)−1 𝐊BT

𝑘−1𝐮
T
1 −

(

𝜿TT
𝑘 −𝐊BB

𝑘−1
)−1 𝜿TB

𝑘 𝐮B𝑘 (B.6)

Substituting Eq. (B.6) into Eq. (B.3a) leads to Eq. (B.7).

𝝈T
1 =

[

𝐊TT
𝑘−1 +𝐊TB

𝑘−1
(

𝜿TT
𝑘 −𝐊BB

𝑘−1
)−1 𝐊BT

𝑘−1

]

𝐮T1 −𝐊TB
𝑘−1

(

𝜿TT
𝑘 −𝐊BB

𝑘−1
)−1 𝜿TB

𝑘 𝐮B𝑘

(B.7)

Substituting Eq. (B.6) into Eq. (B.4b) leads to Eq. (B.8).

𝝈B
𝑘 = 𝜿BT

𝑘
(

𝜿TT
𝑘 −𝐊BB

𝑘−1
)−1 𝐊BT

𝑘−1𝐮
T
1 +

[

𝜿BB
𝑘 − 𝜿BT

𝑘
(

𝜿TT
𝑘 −𝐊BB

𝑘−1
)−1 𝜿TB

𝑘

]

𝐮B𝑘

(B.8)

Rearranging Eqs. (B.7) and (B.8) as matrix form just proves Eq. (28).

Appendix C. Proof of Eqs. (37) and (38)

The derivation of �̃�𝑢
𝑘 and �̃�𝜎

𝑘 in Eqs. (37) and (38) is illustrated in
Fig. C.13. The procedures stated in this figure are also applicable for
proving 𝜿𝑢

𝑘 and 𝜿𝜎
𝑘 in Fig. 5 and Eqs. (45) and (46).
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