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We investigate the laminar-to-turbulent transition for non-Newtonian Herschel-Bulkley (HB) fluids that ex-
hibit either a shear-thinning or a shear-thickening behavior. The reduced-order model developed in this
study also includes the effect of yield-stress for the fluid. Within our model framework, we investigate how
the Newtonian dynamics change when significant non-Newtonian effects are considered either via the flow
index n, or the yield-stress τ0, or both. We find that an increase of τ0, as well as a decrease of n lead to a
delayed transition if a perturbation of given turbulent intensity is injected at various radial locations. As the
radial position of the injection for the perturbation is varied in this study, our reduced-order model allows
for the investigation of the flow receptivity to the finite-amplitude perturbations and to their radial position
of inception. We observe that, for a given mean flow profile, the same perturbation becomes more prone to
induce turbulence the closer it approaches the wall because of its initial amplitude being relatively higher
with respect to the local mean flow. An opposite trend is found when the perturbation amplitude is rescaled
on the local mean flow.

The inertial Newtonian transition to turbulence in
cylindrical pipe flow is one of the most studied funda-
mental topics of fluid mechanics (see Hof et al.1, Faisst
and Eckhardt2, Kerswell3 and Avila et al.4). There is a
strong operational interest in understanding the transi-
tion to turbulence in cylindrical pipe flows, in particular
to identify the relevant critical conditions that control the
flow because the shear stress at the pipe wall depends on
the flow regime (see Jimènez? ). As the Hagen-Poiseuille
flow is linearly stable, finite-amplitude perturbations are
essential to trigger turbulence in Newtonian pipe flows.
The necessary amplitude A of these perturbations has
been shown to be dependent on the bulk Reynolds num-
ber Re as a power-law with an exponent between −1.5
and −1, i.e. A ∼ Reα for α ∈ [−1.5 , −1] (see Hof et al.6
and Peixinho7). When reaching the transitional regime,
spatial and temporal switches between the laminar and
the turbulent states are observed in pipe flow. This phe-
nomenon is called intermittency and it comes from the
two-states nature of pipe flow. Such systems where two
stable or meta-stable points coexist are called bi-stable
systems. Different flow regimes can therefore be identi-
fied: (i) a fully-laminar regime where no turbulent struc-
tures can be sustained and introducing a small finite-
amplitude perturbation will cause locally the emergence
of a turbulent puff which will necessarily decay over time,
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(ii) an intermittent regime where puffs due to the intro-
duction of a finite-amplitude perturbation will eventu-
ally not decay and can even split into multiple puffs, and
(iii) a fully-turbulent regime where the introduction of a
finite-amplitude perturbation will cause the emergence of
a slug, i.e. a sustained structure which can potentially
expand in the whole pipe. These structures have been
shown by Willis and Kerswell8 using Direct Numerical
Simulations (DNS) and have been confirmed experimen-
tally by Hof et al.9. Their dynamics has also been studied
using DNS by Song et al.10 and their results consolidate
this description. Barkley11 developed a minimal model to
explain the instability based on the interaction between
the two stable states. This model qualitatively matched
the DNS results and could therefore be used to interpret
the path of transition to turbulence in connection with
percolation theory for the perturbation (see Lemoult et
al.12), from the decay of the puff at low Re to the strong
slug at high Re. This model has recently been generalized
by Romanò et al.13 to integrate the power-law behaviour
of a non-Newtonian fluid of the Ostwald type and the
thermal effects on the fluid. It shows a net destabiliza-
tion effect for uniformly heated walls and a nontrivial
stabilizing effect for differentially heated walls, as well as
a clear stabilization with an increase in the power-law
index n for a power-law fluid.

In many applications, the fluids in use are complex
and non-Newtonian, from concretes, cosmetics or gels
to biological fluid such as blood, mucus or sludge (see
Coussot14). In order to carry out a representative case
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study, the rheological parameters are selected in accor-
dance with experimental measurements carried out on a
study fluid at the IMT laboratory, i.e. digested sludge
from a wastewater treatment plant. These biological flu-
ids are shear-thinning and posses a yield-stress. They can
be described by the HB model, integrating the power-law
variation with the fluid yield stress:

{
τ = τ0 + Kγ̇n τ ≥ τ0
γ̇ = 0 τ < τ0

(1)

where τ is the shear stress (Pa), τ0 the yield stress (Pa), K
the consistency factor (Pa s), n the flow index (−) leading
to shear-thinning fluids for n < 1 and shear-thickening
ones for n > 1, γ̇ the shear rate (s−1), R the pipe radius
(m). The control parameter for the rheology of such flu-
ids is the Herschel-Bulkley number Hb that compares the
rheological properties of the fluid with the flow inertia:

Hb = τ0Rn

KU0
n (2)

Figure 1 shows the flow curves obtained from coax-
ial cylinder geometries (CC27 and CC38) placed in a
rheometer, in which the inner cylinder is rotating and
the external cylinder is at rest. The temperature of the
external cylinder is kept fixed at 20°C. The rheological
parameters τ0, K, n derived from their fit (lines in fig. 1)
by the HB model are given in the legend of fig. 1.

The onset of turbulence for a non-Newtonian fluid is
impacted by the inertial characteristics of the flow (con-
trol parameter Re, just as for a Newtonian fluid), but also
by the interaction of the rheological characteristics of the
complex fluid with the flow. This so-called rheo-inertial
transition results in a turbulent pre-transition regime and
the asymmetry of the velocity profiles in this regime.
The work of Escudier et al.15 and Bahrani and Nouar16

shows the existence of this regime, non-existent in Newto-
nian fluids, before the regime where the turbulent puffs
appear. Its origin comes from the interaction between
the inertia and the non-linear dependence of the viscos-
ity with the stress. The friction coefficient Cf is then
above the laminar solution described by Poiseuille’s law,
but below the turbulent solution predicted by Prandtl-
Karman’s law (see Virk17). The corresponding drag re-
duction relies on the decrease of the turbulence level due
to the rheological nature of the fluid (see Escudier et
al.18).

By linear analysis, Chekila19 showed an increase in the
critical Reynolds number Rec for shear-thinning fluids.
Such a transition delay is caused by a reduction in the
energy exchange between the basic flow and the distur-
bance of the critical layer. By weakly non-linear stability
analysis, he shows that shear-thinning behavior has a sta-
bilising effect by stratification of the effective viscosity for
a shear-thinning fluid following a Carreau model. This
result suggests a delay in the transition to turbulence
caused by the rheological nature of the fluid. Romanò
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FIG. 1. Physical calibration of the HB-model parameters
from the rheological curves extracted on digested sludges.
Lines correspond to HB model fits. Error bars are shown
in black behind the experimental points. HB parameters
are specified in the legend in the top left corner. The fluid
samples are digested sludge from wastewater treatment
plant (WWTP) collected in the Seine Grésillons (Paris,
France) WWTP and Ovilleo (Lille, France) WWTP. Further
experiments (not shown) have confirmed the parameters of
our fits by HB model, as well as the presence of a yield stress
for both considered fluids.

et al.13 showed by a reduced-order model approach that
increasing the flow index n for a power-law fluid tends to
destabilize turbulent points, therefore leading to a delay
to turbulence. The focus was made on the centerline ve-
locity without investigating the effective viscosity strat-
ification. The work presented here aims to provide an
insight on the radial receptivity of a perturbation along
the radial coordinate due to threshold fluid behavior for
an HB fluid.

We build on the model of Barkley11

q̇ = −dV (q)
dq

(3a)

V (q) = q2

2

[
δ + (R + δ)

(
q2

2 − 4q

3

)]
(3b)[

∂q

∂t
+ (u − ζ)∂q

∂z

]
= q[R + (u − U0) − (R + δ)(q − 1)2]

+ D
∂2q

∂z2 (3c)[
∂u

∂t
+ u

∂u

∂z

]
= ϵ1(U0 − u) + ϵ2(U − u)q (3d)

where the local dynamics of the turbulent kinetic en-
ergy is described by (3a), where the potential V (q) is
a 4th-degree polynomial defined by (3b), where R is the
normalized Reynolds parameter and δ a fixed constant.



FIG. 2. Bifurcation diagram of the local model dynamics.
Three regions are modelled. The corresponding pipe flows
are represented on the top and corresponding potentials V (q)
are represented on the bottom where filled points are linearly
stable states, blue markers denote the laminar state q0 and
red markers denote the turbulent attractors, and white open
points are linearly unstable states. In the middle, solid curves
indicate linearly stable states and dashed curve indicate un-
stable states.

The potential term V (q) admits three stationary points
q0, q+, q− and, depending on the R value, three regimes
can be identified as shown in fig. 2. The model is made
of two constitutive equations, one for the turbulent ki-
netic energy q (3c) and one for the turbulent velocity u
(3d). The model of Barkley11 was originally proposed
for studying intermittency phenomena for a Newtonian
fluid and it has been generalized by Romanò et al.13 to
deal with thermal and power-law effects. In this letter,
we further generalize the model to deal with an HB fluid
(1). To that end, we consider the deformation rate tensor
corresponding to an HB fluid and we include the radial
derivatives of the background flow U(r) determined a-
priori and we neglect the corresponding derivatives of u
along r. This hypothesis is motivated for finite-amplitude
perturbations u ≪ U and allows our reduced-order model
to retain the essential non-linear effects required to deal
with an HB fluid, yet keeping moderate the complexity of
the reduced-order model. We remark that such assump-
tion implies that the flow remains strictly axial, there-
fore the perturbation does not contribute to the radial
derivatives, i.e. ∂ru = 0. Moreover, it allows to study
the receptivity of the perturbation to the radial location
where it gets triggered. The corresponding modification
to the original model consists of replacing the momentum

equation (3d) by
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+ ϵ1(U − u) + ϵ2(U − u)q, (4)

and of replacing U0 by U in (3c) and (3d). We further
stress that replacing (3d) by (4) adds an additional term
also for Newtonian flows (Hb=0 and n = 1), hence the
current model slightly differs from the original version of
Barkley11.

In order to employ (4), we need to determine the ve-
locity profile of the HB flow. This requires the calcula-
tion of the size of the unyielded zone, which depends on
the rheological properties of the fluid. The size of the
unyielded region is here denoted a and is a function of
(n,Hb) within the framework of the HB model:

(1 − a)
3n+1

n − 3n + 1
n

(1 − a)
2n+1

n

+ (2n + 1)(3n + 1)
2n2 (1 − a)

n+1
n

+ (3n + 1)(2n + 1)(n + 1)
2n3

( a

Hb

) 1
n = 0 (5)

The background velocity profile is therefore obtained by
plugging a in the analytical laminar solution of pipe flow
for HB fluids (see Peixinho20):

U =

 n
n+1

(Hb
a

) 1
n (1 − a) n+1

n , x ∈ [0, a)
n

n+1
(Hb

a

) 1
n

[
(1 − a) n+1

n − (x − a) n+1
n

]
, x ∈ [a, 1]

(6)
The corresponding profiles of a are depicted in fig. 3(a)

for varying Hb and n, while fig. 3(b) shows how U varies
upon an increase of Hb for n = 0.7.

From here on, the results of our model are presented.
We remark that the implementation of the original model
has already been detailed and validated in a previous
work (see Romanò et al.13). All the following results
are obtained using the same discretization schemes and
the same model parameters (δ,ϵ1,ϵ2,ζ,U ,c,D) as in Ro-
manò et al.13. We here investigate the effects of four pa-
rameters: R, n, τ0 and r, and the corresponding ranges
of variation are summarised in tab. I. We fix the tur-
bulence intensity of the initial perturbation and rescale
the turbulent velocity to the background flow U , i.e.



R n τ0 r K Umax[m · s−1] R[m]
0.40-1.00 0.70-1.20 0.00-0.90 0.50-0.90 0.10 1.00 1.00
25 values 11 values 10 values 5 absolute+5 relative - - -

TABLE I. Parameters value range in this study. Parameters have been adimensionnalized (n is already adimensionnal). For a
detailed analysis about the parameter R see Barkley (2016)11.

FIG. 3. (a) Iso-velocity zone dimension a with rheological pa-
rameters n and Hb. (b) Axial velocity profiles on x positions
along the radius axis for n = 0.7 upon a change of the Hb
values.

u(t = 0, r) = U(r) and q(t = 0, z) = (0.5 + N(z)) if
z ∈ [0.1, 0.12]Lpipe and q(t = 0, z) = 0 elsewhere, with
Lpipe = 1000 being the pipe length and N(z) a random
noise function whose values range within N(z) ∈ [0, 0.05].
The simulations are carried out fixing two out of three
parameters (n, τ0, r) at a time and investigating the
dynamics of the system on the planes (R, n), (R, τ0),

and (R, r). The corresponding perturbation at the final
simulation time tfin = 100 is depicted in fig. 4 in phase
space (q−u coordinates) for every spatial point along the
z coordinate. In fig. 4(a) we fix τ0 and r, and explore the
parameter plane (R, n). The case in black considers the
fluids described in fig. 1, which is assumed as reference
case for the three subfigs. 4(a), (b) and (c). Turbulence
is reached at every considered R ∈ {0.6, 0.8, 0.96} and
the increase in R results in the corresponding increase of
the maximum turbulence level qmax. Moreover, when n
increases, also qmax tends to increase. The increase of the
shear-thickening behavior, i.e. n ↑, is accompanied by a
shift in phase space to lower values of u, meaning puffs
and slugs propagate slower for higher value of n, as shown
in the space-time graph on the bottom. In fig. 4(b), we
fix n and r, and explore the parameter plane (R, τ0) for
R ∈ {0.6, 0.8, 0.96}. When τ0 decreases, qmax tends to
increase. The increase of the yield stress, i.e. τ0 ↑, is
accompanied by a shift in phase space to higher values
of u, meaning puffs and slugs propagate faster for higher
values of τ0. Finally, in fig. 4(c) we fix n and τ0, and move
on the parameter plane (R, r) for R ∈ {0.6, 0.8, 0.96}.
Upon an increase of r the maximum turbulence intensity
of the perturbation qmax increases. Shifting the incep-
tion of the perturbation towards the pipe axis, i.e. r ↓,
is accompanied by a shift in phase space to higher values
of u, meaning puffs and slugs propagate slower near the
pipe wall and faster near pipe axis, as expected. For low
R, the transition to turbulence is only reached when the
perturbation is initialized near the wall. For instance, no
turbulent stable point exists at r = (a+1)/2 for R = 0.60
(case shown in light blue); on the contrary, assuming the
same turbulent intensity promotes transition to the tur-
bulent regime at higher r. This is understood considering
that the initial perturbation intensity q(t = 0, z) consid-
ered so far is constant, hence its importance relative to
the background flow increases by shifting the perturba-
tion towards the wall. This may be trivial for Newtonian
flows, but is not as self-evident for HB fluids, because
the radial derivatives of the background flow profile may
potentially play a significant role when a → 1.

Moving on the same three parameter planes consid-
ered above, we refine the resolution in R and focus on
qmax. A contour plot of qmax on the (r, R)−plane is de-
picted in fig. 5(b) for (n, τ0) = (0.7, 0.5). At low R, i.e.
R ⪅ 0.6, qmax(t = tfin) decreased of four to five orders
of magnitude with respect to its initial amplitude, mean-
ing that the perturbation at such Reynolds parameters is
not strong enough to trigger turbulence in any radial po-
sition of the pipe. On the contrary, at R = 1, qmax ranges



FIG. 4. Three comparisons of q-u phase portrait for each parameter, respectively (a) n, (b) τ0 and (c) r, for three R values
(0.60; 0.80; 0.96) at final time on the top. The same reference case is plotted in black on the three plots and parameter values are
specified under the plots. The corresponding perturbation dynamics for R = 0.96 at different times t are overlaid on parameter
versus pipe axis position z graphs on the bottom.
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FIG. 5. (a) Transition points from laminar state (L) to turbulent state (T ) for different fluid parameters (n, τ0): n = 0.7
(diamond symbols), n = 1.0 (square symbols), n = 1.2 (circle symbols), open symbols for τ0 = 0 and full symbols for τ0 = 0.5.
The linear fits of the transition points indicate the edge of the transition for the different fluid parameters. (b) Contour map
of qmax on the (r, R)−plane for n = 0.7, τ0 = 0.5. This case is depicted in the panel (a) by filled black diamonds. Markers
indicate the tested points near the transition, black at the absolute and blue at the relative radial positions. (c) Variation of
qmax with R corresponding to the horizontal dashed red line in (b) for r = 0.70. The inset shows a zoom in the transition zone
(R ∼ 0.551). All the results in this figure consider a perturbation with given initial amplitude A, independently on the radial
location where the perturbation is triggered.

from ≈ 1.5 to ≈ 1.7, indicating that the perturbation has
grown enough to cause the transition to a stable turbu-
lent point. The radial receptivity to perturbations with
the given initial turbulence intensity is inferred from the
ordinate of fig. 5(b). Upon an increase of r, the laminar-
to-turbulent edge is shifted towards lower R. This is con-
sistent with the observations reported in fig. 4(c), where

perturbations triggered near the wall could initiate lam-
inar to turbulent transition at lower Reynolds param-
eters. Therefore, the contour map in 5(b) defines the
radial receptivity of a perturbation with given amplitude
for (n, τ0) = (0.7, 0.5). To identify the critical Reynolds
parameter Rc, we fixed the radial coordinate r and detect
the largest R such that qmax < 10−5 for each ordered pair
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FIG. 6. (a) Transition points from laminar state (L) to turbulent state (T ) for the same fluid parameters (n, τ0) as in figure 5.
The power-law fits of the transition points indicate the edge of the transition for the same fluid parameters (n, τ0). (b) Contour
map of qmax on the (r, R)−plane for n = 0.7, τ0 = 0.5. This case is depicted in the panel (a) by filled black diamonds. Markers
indicate the tested points near the transition, black at the absolute and blue at the relative radial positions. (c) Variation of
qmax with r corresponding to the vertical dashed red line in (b) for R = 0.8. The inset shows a zoom in the transition zone
(r ∼ 0.870). All the results in this figure consider an initial perturbation normalized with the local background flow U(r) for
the r considered to trigger the perturbation.

(n, τ0). This is demonstrated in fig. 5(c) for r = 0.7 (red
dashed line in fig. 5(b)). The transition to turbulence
predicted by our model is abrupt, as qmax passes from
less than 10−5 to ≈ 1.5 upon an increment in Reynolds
parameter of ∆R = 5 · 10−4. The inset in fig. 5(c) blows
up the neighborhood of the critical Reynolds parameter
Rc, showing the sharp transition from the laminar state
for R = 0.5475 to the turbulent state at R = 0.5480.
This same procedure is carried out for every radial loca-
tion r with ∆r = 0.002 and each of the six ordered pairs
(n, τ0) described in the 5(a) caption. The laminar-to-
turbulent edge is determines for each of these cases on
the plane (r, R). Corresponding linear fits of the tran-
sition lines from laminar (L in fig. 5(a)) to turbulent (T
in fig. 5(a)) states are depicted as solid and dotted lines
color coded as their respective marker. Figure 5(a) indi-
cates that increasing the yield-stress delays the transition
to turbulence to higher Rc. This is in good agreement
with the theoretical predictions of Nouar and Frigaard21

who showed that the yield-stress has a stabilizing effect.
Moreover, fig. 5(a) demonstrates that the shear-thinning
behavior (black in fig. 5(a)) of an HB fluid tends to de-
lay the transition while shear-thickening triggers turbu-
lence at lower Rc (light green in fig. 5(a)). Experimental
studies (see Bahrani et al.16 and Peixinho22) confirm the
behavior predicted by our model, as they find that the
transition to turbulence is delayed upon a decrease in n.

Finally, we investigate the effect of a perturbation with
a normalized turbulence intensity by carrying out the
same analysis presented so far, but for u(t = 0, r) = U(r)
and q(t = 0, z) = (0.5 + N(z))U(r) if z ∈ [0.1, 0.12]Lpipe
and q(t = 0, z) = 0 elsewhere. As we scale the ini-
tial turbulence intensity of the perturbation to the back-
ground flow, the finite amplitudes near the wall are

too small to trigger turbulence, hence the receptivity
map admits a pronounced gray area for r ≥ 0.875 and
(n, τ0) = (0.7, 0.5) (see fig. 6(b)). Similarly to the pre-
vious case, also for a normalized perturbation the tran-
sition from laminar to turbulence is abrupt in parameter
space. This is demonstrated in fig. 6(c) by considering
a vertical cut of the parameter plane (r, R) at R = 0.8
(see red dashed line fig. 6(b)). The inset in fig. 6(c) shows
that turbulence is sustained at R = 0.8 for r = 0.872
and it decays for r = 0.874. Figure 6(a) depicts the
laminar-to-turbulent edge for all the parameters consid-
ered in this study employing the same resolution as in fig.
5(a). The transition edges are well fitted by power-laws
(bRC + d), as demonstrated by the dashed and dotted
lines in fig. 6(a). This is due to the enhanced significance
of the background flow at large r and to the exponents
of the corresponding radial derivatives. In fact, the lam-
inar state tends to diffuse the initial puff thanks to the
diffusion term introduced in (4). This is enough to kill
an initial small-amplitude puff (normalized initial pertur-
bation). On the contrary, the near-wall puffs studied in
fig. 5 are not normalized with U(r), hence their ampli-
tude relative to U increases for r → 1 and it manages to
compensate or even to overcome the stabilizing diffusion
term. We further remark that an increase in yield stress
τ0 and a decrease in flow index n turn into destabilizing
effects for a normalized initial perturbation. This strik-
ing change of stabilization character for the rheological
parametric ordered pair (n, τ0) may be due to the growth
dynamics of the normalized perturbation, that leads to a
more pronounced impact of the terms associated to ∂zu
on the r.h.s. of (4). For a similar case, in fact, Romanò et
al.13 demonstrated that power-law fluids tend to be sta-
bilized by the axial component of the viscous term upon



an increase of n.
To summarize and conclude, in this letter we investi-

gate how the transition to turbulence in a pipe flow is
impacted by the rheology of an HB fluid. We generalize
the reduced-order model of Barkley11 to include shear-
thinning/-thickening, as well as yield stress effects. We
also investigate the receptivity of finite-amplitude pertur-
bations upon a change on the radial position where the
perturbation is injected. The typical conditions of an ex-
periment are mimicked by keeping fixed the turbulent in-
tensity of the perturbation and shifting its injection point
in radial direction. We find that the presence of a yield-
stress and the shear-thinning behavior of an HB fluid
tends to stabilize the flow, as also corroborated by the
corresponding experiments and the theoretical analyses
reported in the literature. Moreover, as the perturbation
is not scaled to the local laminar state, the transition to
turbulence occurs sooner for perturbations injected near
the wall. This is due to the enhanced relative importance
of the perturbation amplitude with respect to the back-
ground flow. A second investigation has been conducted
by rescaling the initial turbulence intensity of the per-
turbation to the local laminar profile. Our model shows
that all the most significant conclusions drawn for a per-
turbation of given turbulence intensity are reverted when
considering a basic-state-normalized q(t = 0, z): (i) the
receptivity of the perturbation gets killed by diffusion
near the wall, (ii) an increase of yield stress becomes
destabilizing, and (iii) an increase of n becomes stabiliz-
ing. This last feature was also reported by Romanò et
al.13 for a power-law fluid and explained by emergence
of the |∂u|n−1 as a pre-factor that decreases the effective
Reynolds number.

DATA AVAILABILITY
The data that support the findings of this study are

available from the corresponding author upon reasonable
request.

ACKNOWLEDGEMENTS
We gratefully acknowledge funding support from the

SIAAP (Greater Paris Sanitation Authority) in the
framework of the MOCOPEE French research program
and the Hauts-de-France French Region (convention
number: 20003867).

AUTHOR DECLARATIONS
The authors have no conflicts to disclose

REFERENCES
1Hof, B. et al. 2004 Experimental observation of nonlinear trav-
eling waves in turbulent pipe flow, Science, 305, 1594-1598.

2Faisst, H., Eckhardt, B. 2004 Sensitive dependence on ini-
tial conditions in transition to turbulence in pipe flow., J. Fluid
Mech., 504, 343-352.

3Kerswell, R. R. 2005 Recent progress in understanding the
transition to turbulence in a pipe., Nonlinearity, 18(6), R17.

4Avila, K. et al. 2011 The onset of turbulence in pipe flow,
Science, 333(6039), 192-196.

5Jiménez, J. 2018 Coherent structures on wall-bounded turbu-
lence , J. Fluid Mech., 842, P1.

6Hof, B., Juel, A., Mullin, T. 2003 Scaling of the turbulence
transition threshold in a pipe, Phys. Rev. Letters, 91, 244502.

7Peixinho J. 2007 Finite-amplitude thresholds for transition in
pipe flow, J. Fluid Mech., 582, 169-178.

8Willis, A.P., Kerswell, R.R. 2007 Critical Behavior in the
Relaminarization of Localized Turbulence in Pipe Flow, Phys.
Rev. Letters, 98, 014501.

9Hof, B. et al. 2008 Repeller or Attractor? Selecting the Dy-
namical Model for the Onset of Turbulence in Pipe Flow, Phys.
Rev. Letters, 101, 214501.

10Song, B. et al. 2017 Speed and structure of turbulent fronts in
pipe flow, J. Fluid Mech., 813, 1045–1059.

11Barkley, D. 2016 Theoretical perspective on the route to tur-
bulence in a pipe, J. Fluid Mech., 803, 1-79.

12Lemoult, G. et al. 2016 Directed percolation phase transi-
tion to sustained turbulence in Couette flow, Nature Phys., 12,
254–258.

13Romanò, F., Charles, A., Dottori, F., Bahrani, S.A. 2021
Transition to turbulence in a heated non-Newtonian pipe flow,
Phys. Fluids, 33, 091702.

14Coussot, P. 2014 Rheophysics: Matter in all its states, Springer,
ISBN: 978-3-319-06148-1

15Escudier, M.P., Rosa, S., Poole, R.J. 2009 Asymetry in tran-
sitional pipe flow of drag-reducing polymer solutions, J. Non-
Newt. Fluid Mech.,161, 19-29.

16Bahrani S. A. and Nouar C. 2014 Intermittency in the transi-
tion to turbulence for a shear-thinning fluid in Hagen-Poiseuille
flow, J. Appl. Fluid Mech., 7, 1-6.

17Virk, P. 1975 Drag reduction fundamentals, Phys. Fluids, 21,
625-656.

18Escudier, M.P., Presti, F., Smith, S. 1999 Drag reduction in
the turbulent pipe flow of polymers M.P., J. Non-Newt. Fluid
Mech.,81, 197-213.

19Chekila, A. 2014 Analyse non linéaire de la stabilité de
l’écoulement de Poiseuille plan d’un fluide rhéofluidifiant, PhD.
thesis, Univ. Lorraine (France)

20Peixinho, J. 2004 Contribution expérimentale à l’étude de la
convection thermique en régime laminaire, transitoire et turbu-
lent pour un fluide à seuil en écoulement dans une conduite, PhD.
thesis, Univ. Lorraine (France)

21Nouar, C., Frigaard, I.A. 2001 Nonlinear stability of Poiseuille
flow of a Bingham fluid: theoretical results and comparison with
phenomenological criteria, J. Non-Newtonian Fluid Mech., 100,
127-149.

22Peixinho J. 2008 Heat transfer of a non-Newtonian fluid (Car-
bopol aqueous solution) in transitional pipe flow, Int. J. of Heat
and Mass Transfer, 51, 198-209.


	Laminar-turbulent intermittency in pipe flow for an Herschel-Bulkley fluid: Radial receptivity to finite-amplitude perturbations
	Abstract
	DATA AVAILABILITY
	ACKNOWLEDGEMENTS
	AUTHOR DECLARATIONS
	REFERENCES 




