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Reconstructing the neutrally-buoyant particle flow near a singular corner

Francesco Romanò*

1Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014 -LMFL - Laboratoire de Mécanique des Fluides
de Lille - Kampé de Fériet, F-59000 Lille, France

The correction of buoyancy effects is tackled for particles moving close to a singular corner in creeping flow conditions. A few
density-mismatched particle trajectories are used to reconstruct the dynamics of a neutrally-buoyant particle all over the target
domain. We propose to take advantage of the dissipative dynamics of density-mismatched particles in order to probe the target
domain. Thereafter, we retrieve the neutrally-buoyant particle flow all over the domain by reconstructing the phase space of the
density-mismatched particulate flow and taking the limit of the particle-to-fluid density ratio tending to one. The robustness of
such an approach is demonstrated by deliberately ill-conditioning the reconstruction operator. In fact, we show that our algorithm
well performs even when we rely on qualitatively-different density-mismatched orbit topologies or on bundles of close trajec-
tories rather than homogeneously distributed orbits. Potential applications to microfluidics and improvements of the proposed
algorithm are finally discussed.
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1. Introduction

Particle-laden flows are multiphase flows for which the
dispersed phase is made of rigid particles immersed in the
carrier (fluid) phase. Their relevance to industrial applica-
tions (e.g., aerosol technology [1], or combustion [2]) and
natural phenomena (e.g., transport of red blood cells [3], or
debris flows [4]) remarks the ubiquity of particle suspen-
sions, both in turbulent and laminar flows. Among the lam-
inar flows, suspended particles are frequently used in small-
scale systems such as in microfluidic [5,6] and lab-on-a-chip
[7, 8] devices, or to deliver drugs [9, 10] and replace sur-
factant [11, 12]. As the typical velocity scales associated to
micro- and nano-fluidic systems are slow, and the character-
istic lengths scales are small, the Stokesian approximation of
such flows is commonly employed.

To date, several modeling approaches have been proposed
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for particles in unbounded flows [13-15] and complemen-
tary exact [16, 17], numerical [18, 19], asymptotic [20-23],
or modeled [24-26] corrections attempted to include particle-
boundary interactions in the original equation of Maxey and
Riley [13]. Despite the well established mathematical frame-
work, understanding and predicting the dynamics of the par-
ticulate phase is still a challenge. In particular, the intrinsi-
cally dissipative dynamics of most of the forces exerted by
the fluid on the particle may lead to the formation of intri-
cate attractors either because of high-strain regions [27, 28],
particle-boundary interactions [29-31], Coriolis [32, 33], or
inertial [34-36] effects. The picture becomes even more com-
plex when considering that a qualitatively novel dynamics
can emerge when two or more of such effects gets combined.
This is the case, for instance, of the non-trivial attactors re-
ported for inertial particles in steady [37, 38] or oscillatory
[39-41] cavity flows. The prediction of the particle dynamics
becomes even more challenging when the particles are im-
mersed in a complex chaotic fluid flow [42, 43], where non-
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dissipative forces, such as buoyancy, actively contribute to a
symmetry breaking [44] or to the creation of attractors [45].

Starting from the method originally proposed by Romanò
[46] for retrieving the velocity field in the tracer limit, this
paper will extend our previous approach by demonstrating
that a similar method has potential for targeting a different
objective, i.e., predicting the dynamics of neutrally-buoyant
finite-size particles. As in Ref. [46], we will still rely on the
trajectories of a few large density-mismatched inertial par-
ticles, but contrary to Ref. [46] we will not take the tracer
limit (Stokes number tending to zero). This will allow us to
correct for sedimentation and density-mismatch effects, i.e.,
to reconstruct the dynamics of a neutrally-buoyant particle
preserving the dissipative effects due to its finite size and to
the corresponding interaction with the boundaries. The aim
is to demonstrate that a robust reconstruction of the partic-
ulate phase space for the neutrally-buoyant particle is pos-
sible, even for singular flows as the one considered in this
paper (not yet demonstrated by Ref. [46]). Such a correction
for density-mismatch effect can help to better understand the
particle dynamics in phase space, as a major source of dis-
sipation can be corrected for. This will be demonstrated for
a singular corner flow that reflects the Taylor’s scraper prob-
lem [47]. The forces and torques on a sphere near the right
dihedral corner in Stokes flow have been numerically com-
puted by Ref. [48] and are here used to integrate the particle
trajectories. At first, the mathematical problem is formulated
in Sect. 2, then the particulate flow is defined by taking ad-
vantage of the symmetries of the problem and of the linearity
of the creeping flow approximation (see Sect. 3). Thereafter,
the technique proposed for the phase-space reconstruction is

presented in Sect. 4 and the corresponding are analysed and
discussed in Sect. 5. A summary, some conclusions and the
future perspectives of our approach are finally reported in
Sect. 6.

2. Problem formulation

The motion of a rigid sphere near a semi-infinite right di-
hedral corner made by two solid walls is considered. The
spherical particle of density ρp and radius ap moves with
translational velocity Ũ = (Ũ, Ṽ , W̃) and rotational velocity
Ω̃ = (Ω̃x, Ω̃y, Ω̃z). The sphere is immersed in a Newtonian
fluid of constant density ρf and kinematic viscosity ν. One
of the two corner walls slides tangentially to its own plane at
z = 0 with velocity Ũw = (Ũw, 0, 0). By moving towards the
corner edge located at x̃ = (0, ỹ, 0), the sliding wall drives
an incompressible flow between the particle and the walls.
Moreover, owing to the density mismatch, also the buoyancy
force due to the gravitational acceleration g = g(0, 0, 1) con-
tribute to establish the fluid flow (see Fig. 1).

The particle experiences a creeping flow if the local par-
ticle Reynolds number is small, i.e., emphRep = |Ũ + Ω̃ ×(
x̃s − x̃p

)
− ũ|ap/ν ≪ 1, where x̃p = (x̃p, ỹp, z̃p) is the position

vector of the particle centroid, while x̃s denotes the particle
surface. Moreover, considering a region at distance L from
the corner edge, also the near-corner flow driven by the slid-
ing wall can be assumed Stokesian if emphRe = |Ũw|L/ν ≪
1. When both such assumptions hold, the inertial term of
the momentum equation can be neglected and the fluid flow
between the particle and the corner is governed by the incom-
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Figure 1 Spherical particle moving near a dihedral corner with a wall sliding at velocity Ũw = (Ũw, 0, 0). The sphere is subject to the forces exerted by the
surrounding fluid and by the gravitational acceleration g. The solid lines represent the streamlines of the Stokes flow without the particle, and the light-blue
region denotes the subdomain accessible to the particle centroid, considering that the sphere cannot penetrate the walls. The dynamics of the particle is therefore
considered within the light-blue domain, whereas the fluid domain extension in x- and z- direction is of 360ap, and of 720ap in y-direction (same domain as in
Ref. [48]).



pressible creeping flow equations:

∇ · u = 0, ∇p = ∇2u, (1)

where u is the dimensionless velocity field of the fluid phase
and p its reduced pressure field. The non-dimensional form
of the equations has been obtained by scaling lengths (x̃,
x̃p, x̃s), velocities (Ũ, Ũw) and pressure ( p̃) by ap, ν/ap

and ρfν
2/a2

p, respectively; consistently, the rotation rate of
the particle (Ω̃) is scaled by ν/a2

p. Below, the tilde-sign is
dropped for denoting the non-dimensional quantities.

The mathematical problem (1) is closed by the no-slip
boundary conditions at the solid walls and over the particle
surface

x = 0 : u = 0, (2a)

z = 0 : u = Uw, (2b)

x = xs : u = U +Ω × (xs − xp), (2c)

and by enforcing the far-field conditions for the fluid flow at a
distance L/ap from the corner edge. For |xp| ≪ L/ap we can
safely assume that the particle perturbation has vanished (see
Romanò et al. [48]), hence the far-field flow is enforced to
correspond to the analytical solution of the Taylor’s scraper
flow [47], i.e.,

u = Uw
[
f ′(θ) cos(θ) + f (θ) sin(θ)

]
, (3a)

v = 0, (3b)

w = Uw
[
f ′(θ) sin(θ) − f (θ) cos(θ)

]
, (3c)

where θ = cos−1
(
x/
√

x2 + z2
)

is the polar angle and f (θ) =
[θ sin(π/2−θ)−π/2(π/2−θ) sin θ]/(1−π2/4). Such an analyt-
ical solution is enforced at x = 360, z = 360, and y = ±360,
as in Romanò et al. [48].

Owing to the symmetries and the linearity of our creeping
flow problem, the original problem can be solved as superpo-
sition of four cases (one of which with two variants):

I) rotation of a sphere with axis parallel to the edge of a
steady right corner:

Uw = 0, U = 0, Ω = Ωyey, g = 0, (4)

II) translation of a sphere normal to one of the walls of a
steady right corner:

a) Uw = 0, U = Uex, Ω = 0, g = 0, (5a)

b) Uw = 0, U = Wez, Ω = 0, g = 0, (5b)

III) a sphere held steady near a right corner with one of its
walls sliding towards the edge:

Uw = Uwex, U = 0, Ω = 0, g = 0, (6)

IV) a sphere held steady near a stationary right corner un-
der the effect of buoyancy forces:

Uw = 0, U = 0, Ω = 0, g = ga3/ν2(0, 0, 1), (7)

where the wall and particle velocities have been normalized
by ν/ap, the particle rotation rate by ν/a2

p, and the gravity ac-
celeration is made non-dimensional by scaling it with ν2/a3

p.

3. Dynamics of a spherical particle

As the flow between the spherical particle and the dihe-
dral corner is Stokesian, the dynamics of the particle can be
computed using the quasi-steady approximation. Hence, the
sphere does not experience any acceleration and the resultant
of all the forces, as well as of all the torques, exerted by the
fluid on the particle must be null. Following Ref. [45], we
can write the translational and rotational equilibria for the
particle centroid formulating the equations in terms of force
and torque coefficients F = (Fx, Fy, Fz) and T = (Tx, Ty,Tz),
where the forces and torques have been scaled by the Stokes
drag 6πρfνapU and the couple 8πρfνa2

pU. Owing to the sym-
metries of the problem, U = (U, 0,W) andΩ = (0,Ωy, 0) and
the linear system governing the particle dynamics reads:
F IIa
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= −(A1 A2 A3)T. (8)

where ρ = ρp/ρf is the particle-to-fluid density ratio, Fr =

ν/
√

ga3
p is the Froude number, Ug = (2/9)(1 − ρ)Fr−2 =

2(1 − ρ)ga3
p/9ν

2 is the dimensionless settling velocity (with
Ug > 1 if ρ < 1 and vice versa), and the superscript identify
the respective sub-problem of Fig. 2 for the force and torque
coefficients that only depend on the position xp of the parti-
cle.

The solutions of Eq. (8) can be derived explicitly comput-
ing the translational and rotational velocity of the particle as
done by Ref. [45], i.e., assuming that the fit functions of Ref.
[48] hold:
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where αi = Ai/det(M).
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Figure 2 Decomposition of the general problem into elementary sub-problems. The arrows in a, b and c show the rotational and translational motion of the
particle, the arrow in d denotes the sliding direction of the moving wall, while the arrow in e refers to the non-dimensional settling velocity Ug.

4. Phase space reconstruction

A meshless interpolant will be employed to numerically
reconstruct the phase space of the particle dynamics. Follow-
ing Ref. [46], we carry out a multiquadratic radial basis in-
terpolation with radial basis functions ϕ(r) and scalar radius
r = ||r − ri||2 measured from the i-th generalized coordinate
of the phase space, ri. Our multivariate function f (r) to in-
terpolate is each particle flow component in the (x, z)-plane,
i.e., U and W. As they depend on the location of the particle
centroid x, on the wall velocity Uw, and on the characteristic
settling velocity Ug, the generalized phase space coordinates
are r = (x, z, Uw, Ug), and the basis function interpolant
fRBF(r) ≈ f (r) yields

fRBF(r) =
L∑

l=1

βl pl(r) +
N∑

n=1

λnϕ(||r − rn||2), (10)

where N denotes the amount of nodes to interpolate, pl are
the elements of a hierarchical polynomial functional basis
made use of for conditioning the interpolant fRBF to be posi-
tive definite, and L = 2 is here used as the maximum polyno-
mial order. For more details about the choice and optimiza-
tion of all the remaining coefficients, we refer to Ref. [46].

5. Results and discussion

As recently demonstrated by Romanò et al. [45], the
particle dynamics near a corner flow results from a dissi-
pative system that admits a non-trivial attractor in (x, z) ∈
[1.1, 2] × [1.1, 2] for Ug ∈ [−1.6, −0.7], if Ug is aligned
with the z-direction as in our case. This is demonstrated in
Fig. 3 for Uw = −1, and Ug = −1 (Fig. 3a) and Ug = −1.5
(Fig. 3b). The blue lines denote the particle trajectories con-
verging to the attractor (pink bullet). Owing to the linearity
of the creeping flow solution, an equivalent repeller would
emerge if we considered sign-inverted driving effects, i.e.,
for Uw = 1 and Ug = {1, 1.5}.
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Figure 3 Particle attractor for Uw = −1 and Ug = −1 a and Ug = −1.5 b.
The blue lines denote the particle flow streamlines and the pink bullet show
the location of the attractor.

The dynamics observed for the particle is dominated by
gravitational and particle-boundary interaction effects. This
is made clear by comparing Fig. 3a and b, which in turn are
topologically different from the unperturbed flow streamlines
(see light-blue square in Fig. 2). As a result, the strong sen-
sitivity of the particle dynamics to the ratio between Uw and
Ug renders very challenging to correct the particulate flow
field for sedimentation effects. In fact, we will generalize the
approach of Romanò [46] demonstrating that it can be used
not only for the reconstruction of the unperturbed fluid flow,
but also for robustly correcting the particulate flow field from
sedimentation effects. We will therefore reconstruct the dy-
namics of neutrally buoyant particles (Ug = 0) in the whole
domain by tracking only a few density mismatched particles.

To test our approach for reconstructing the flow of neu-
trally buoyant particles, we consider two tracking data sets,
i.e., a few density-mismatched particle trajectories initial-
ized: (i) at the same location (x, z) = (2, 1.1), and (ii) along
a vertical line at x = 2. Figure 4a depicts the particle tra-
jectories corresponding to case (i) for Ug ∈ [−2, 2] and
Uw = −1. The corresponding particle velocity U = (U, W),
unperturbed flow velocity uf = (uf, wf) and particle-to-fluid
velocity difference are depicted in Fig. 4b from right to left,
respectively. The particle trajectories are sampled with a con-
stant time step of ∆t = 0.01 and integrated for t = 150 or until
the particle leaves the domain (x, z) = [1, 2] × [1, 2]. As we
vary the characteristic settling velocity Ug, the particles init-
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Figure 4 Trajectories a and velocities b for twenty-one particles with
Ug ∈ [−2, 2] and initialized at (x, z) = (2, 1.1). The right panels denote
the particle-to-unperturbed-fluid-flow velocity difference (U − uf,W − wf),
the unperturbed fluid velocity (uf,wf), and the particle velocity (U,W) as a
function of time along the particle trajectory.

ialized at (x, z) = (2, 1.1) gets attracted to a spiral sink,
as shown for the lightest pink trajectories in Fig. 4a, while
they exit the domain of interest for large enough Ug, i.e.,
Ug > −0.7. In the spirit of the approach developed by
Romanò [46], different dissipative dynamics are combined
by computing particle trajectories for various Ug/Uw. On
the one hand, varying Ug/Uw allows to probe the domain
by taking advantage of the spectrum of the dissipative sys-
tems considered; on the other hand, enlarging the abso-
lute value of the control parameter |Ug/Uw| leads to sys-
tems with a less pronounced spiralling character that either
quickly converges to the spiral sink or quickly exits the do-
main of interest. We therefore decided to test the robustness

of our approach by considering a limited subset of trajecto-
ries, Ug = {−0.8, −0.4, −0.2, −0.1, 0.1, 0.2, 0.4}, that in-
clude both the qualitative behaviours (attracted and domain-
exiting trajectories) and that are used to correct the partic-
ulate flow for sedimentation effects. Figure 5a depicts the
seven trajectories considered to sample the particle velocity
U(x, z,Uw = −1,Ug) in the domain, and Fig. 5b shows the
target flow to reconstruct computed using Eq. (9) for Ug = 0.
The interpolation function (10) is used to reconstruct the par-
ticulate flow U in phase space (x, z,Uw = −1,Ug), deriv-
ing the interpolant URBF(x, z,Uw = −1,Ug) = (URBF,WRBF).
The robustness of the interpolant is tested by undersampling
the original data set and computing the interpolation error.
Comparing the interpolant reconstructed using a data sam-
pling ratio of 0.5, 0.2, 0.1, and 0.05, a maximum relative
error of less than 1% is found for the particle velocity probed
along the trajectories shown in Fig. 4. Taking the limit for
Ug → 0 of the interpolated particle velocity in the hyperspace
(x, z,Uw = −1,Ug), an approximation of the flow field for
neutrally buoyant particles Û(x, z,Uw = −1,Ug = 0) is de-
rived over the whole domain, i.e., Û(x, z,Uw = −1,Ug =

0) = limUg→0 URBF ≈ U(x, z,Uw = −1,Ug = 0). A com-
parison between Û(x, z,Uw = −1,Ug = 0) and U(x, z,Uw =

−1,Ug = 0) is depicted in Fig. 5c, where the former is de-
picted by pink arrows, while the latter is shown by green ar-
rows. The good agreement between the original flow veloc-
ity for neutrally-buoyant particles and the reconstructed one
is quantified by the absolute value of the error |(U − Û)Ug=0|
shown by the color map.

The second benchmark for the flow reconstruction ap-
proach proposed in this study considers particle trajectories
initialized along x = 2 and shifted one another along the z-
direction, i.e., z = 1.1 + 0.2 × (Ug + 2) for Ug ∈ [−2, 2]. The
same values of Uw = −1 and Ug depicted in Fig. 4 are shown
for this second test, and the corresponding particle orbits, ve-
locities and unperturbed flow velocities are depicted in Fig.
6 with the same color coding and panels layout used for Fig.
4. This second benchmark is even more challenging than the
first one as most of the particle trajectories considered do not
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Figure 5 Set of particle trajectories selected for reconstructing the neutrally-buoyant particulate flow a, particle velocity field for Ug = 0 b, and reconstructed
flow absolute error c. The green arrows show the target flow and the pink arrows denote the reconstructed particle flow.



provide any information about the flow near the vertical and
horizontal walls. We however restrict even further the data
set employed for demonstrating the robustness of our recon-
struction algorithm by selecting only the trajectories for Ug =

{−0.8, −0.4, −0.3, −0.2, −0.1, 0.1, 0.2, 0.3, 0.4}. We stress
that the corresponding flow reconstruction over the whole tar-
get domain, i.e., for (x, z) ∈ [1, 2] × [1, 2], will mainly rely
on a bundle of trajectories located at x ∈ [≈ 1.9, 2] and
z ∈ [≈ 1.5, 2] (see Fig. 7a). The target particulate flow to
reconstruct (Fig. 7b) is the same as in the first benchmark
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Figure 6 Trajectories a and velocities b for twenty-one particles with
Ug ∈ [−2, 2] and initialized at (x, z) = (2, 1.1 + 0.2 × (Ug + 2)). The
right panels denote the particle-to-unperturbed-fluid-flow velocity difference
(U − uf,W − wf), the unperturbed fluid velocity (uf,wf), and the particle ve-
locity (U,W) as a function of time along the particle trajectory.

(Fig. 5b). Despite the increased difficulty, the flow recon-
struction (pink arrows in Fig. 7c) keeps being in good agree-
ment with the target flow (green arrows in Fig. 7c) as also
quantified by the reconstruction error map |(U − Û)Ug=0|
shown in the background of Fig. 7c. In spite of the chal-
lenges of the two benchmarks, the reconstruction error is kept
below 0.06 for most of the two-dimensional domain. The
highest absolute error is localized near the bottom and left
boundaries where the forces exerted by the wall on the parti-
cle tend to infinite, naturally ill-conditioning whatever form
of reconstruction. We further stress that classic extrapolation
algorithms applied for reconstructing the neutrally-buoyant
dynamics are associated to a very significant absolute error,
more than double in comparison to our method (not shown).

6. Summary and conclusion

The reconstruction of the velocity field for a neutrally-
buoyant particle moving near a singular corner has been tack-
led by generalizing the approach firstly proposed by Romanò
[46]. A few density-mismathed particle trajectories have
been used to probe the flow field and the robustness of the
algorithm has been demonstrated by considering two increas-
ingly challenging benchmarks. At first, seven trajectories ini-
tialized from the same location have been considered. The
orbits were relatively well-conditioned to probe a significant
area of the near-corner flow, however, two qualitatively dif-
ferent dynamics have been included in this data set: (i) a par-
ticle getting attracted to a non-trivial spiralling sink, and (ii)
six particles exiting the domain without any spiralling dy-
namics. Even if the quantitative and qualitative disagreement
of the particle trajectories could ill-condition the reconstruc-
tion of the neutrally-buoyant particle flow U over the whole
domain, our algorithm has been proven robust. This same
satisfactory result has been obtained for the second test, in
which a further element of ill-conditioning of the system has
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Figure 7 Set of particle trajectories selected for reconstructing the neutrally-buoyant particulate flow a, particle velocity field for Ug = 0 b, and reconstructed
flow absolute error c. The green arrows show the target flow and the pink arrows denote the reconstructed particle flow.



been included. In fact, all the trajectories supposed to well
condition the reconstruction operator have been gathered in
a narrow bundle that could provide little information about
the particles velocity in most of the domain. These two tests
proved that the method proposed by Romanò [46] could well
be adapted to correct for sedimentation effects by starting
from the trajectory of density-mismatched particles and de-
riving the flow for a neutrally-buoyant particle all over the
domain. Still, the largest errors of the reconstruction tech-
nique are distributed along the bottom and left edge of the
particle centroid domain.

This consideration opens up to potential improvements of
the reconstruction method that could take advantage of the-
oretical boundary conditions applied near each wall, as done
for the background flow reconstruction [46]. The natural
counterpart of the reconstructed flow for a neutrally-buoyant
particle in Stokes flow is represented by the leading-order
particle-boundary interaction dynamics predicted by the lu-
brication theory (see e.g., Refs. [16], [49] or [50]). More-
over, when the unperturbed flow reconstruction is aimed, the
approach proposed in this study can well be used to correct
for a dissipative effect at a time (sedimentation/density mis-
match, particle-boundaries interaction, inertial effects) lead-
ing to the tracer equation. This same asymptotic limit can
be approached from different directions either correcting for
density mismatch at first and then for particle-boundaries in-
teraction, or viceversa. That could help to approach the ul-
timate limit of inertia-less tracer particles and estimate the
error committed by reconstructing the flow field.

The method proposed in this study is complementary to
the classic theories of sedimentation [51, 52] and has poten-
tial applications to micron-sized centrifugation devices for
particles in rotating cavity flows [53-57], to particle trap-
ping/sorting [58-60], to particle attraction/repulsion in cav-
ities [24, 61] and junction flows [62-65]. In general, within
the framework of the creeping flow approximation and based
on the definition of Ug, i.e., Ug = 2(1 − ρ)ga3/9ν2, the flow
considered in this study applies to small particles suspended
in liquids, i.e., a ∈ [10−4, 10−3] m and ν ∈ [10−6, 10−3] m2/s.
For typical microfluidic flows, a3/ν2 ∈ [0.1, 10] s2/m and our
range of Ug ∈ [−2, 2] leads to |1 − ρ| ∈ [0.1, 10].
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Francesco Romanò
摘要 在蠕动流动条件下,针对靠近奇异角移动的颗粒进行悬浮效应修正. 一些密度不匹配的粒子轨迹被用来重建整个目标区域的

中性悬浮粒子的动力学.我们建议利用密度不匹配粒子的耗散动力学来探测目标区域.然后,通过重建密度不匹配颗粒流的相空间,并

将颗粒与流体密度比的极限值取为1,检索整个区域的中性浮力颗粒流. 这种方法的鲁棒性通过对重建算子的目标函数实行有目的抖

动(ill-conditioning)来证明. 事实上,我们证明即使是依赖于质量不同、密度不匹配的轨道拓扑,或者依赖于密集的轨道束,而不是均匀

分布的轨道,我们的算法也能很好地执行. 最后讨论了该算法在微流体领域的潜在应用和改进.
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