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ABSTRACT

The model-based system engineering approach consists of assembling subsystems together to model a complete
system, In this context, sume functional blocks can have a considerable influence on the overall behaviour of
the system. A preliminary identification of the influence of the subsystems on the output responses can help
reducing the complexity of the overall system, with a negligible impact on the overall accuracy. Therefore,
pertinent indicators must be introduced to achieve this goal. To this purpose, in this work, some well-
established methods and algorithms for global sensitivity analysis (GSA) of linear and non-linear systems with
independent input variables, i.e., approaches based on Sobol’s indices (different algorithms are considered),
and Shapley's effect, are compared on both benchmark functions and real-world engineering problems.
Specifically, in this paper, real-world engineering problems dealing with linear and non-linear systems are
modelled through commercial finite element software and/or dedicated programming languages for solving
complex non-linear dynamics models, like Modelica. Regarding Modelica models, an efficient strategy based
on functional mock-up units is presented to speed up the simulation of highly non-linear dynamic systems,
All numerical models are interfaced with the algorithms used for GSA through ad-hoc routines coded in
Python environment. For each problem, a systematic comparison between the results provided by the different
algorithms making use of Sobol’s indices and Shapley’s indices is performed, in terms of reliability, accuracy

and computational costs,

1. Introduction

In the last decade, the topic of the sensitivity analysis experienced
a renewed interest in both academy and industry. Indeed, a sensitivity
analysis allows determining the parameters influencing the most the
behaviour of a system or, alternatively, the ones having the least influ-
ence on it. Thanks to the sensitivity analysis, it is possible to simplify
models and to dedicate computing resources only where (and when) it
is necessary. Of course, for each mathematical model describing some
physical phenomena, it is possible to identify a suitable sensitivity
analysis method: this concept has been extensively discussed in a recent
and interesting review article on this topic by Razavi et al. [1].

Initially, the sensitivity analysis focused on the study of a nomi-
nal point sensitivity in a model output space: this approach is often
referred to as Local Sensitivity Analysis (LSA). However, LSA is nei-
ther suitable nor efficient for characterising the global behaviour of
a system. To this purpose, the concept of Global Sensitivity Analysis
(GSA) was introduced by Saltelli et al. [2], even if some methods
were already available [3]. Generally speaking, GSA approaches can
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be classified in four families [1]: (a) the derivative-based approaches,
which are multi-local techniques firstly introduced by Morris [4]; (b)
the distribution-based approaches, which consist in studying conditional
model output variances, based on the Hoeffding decomposition [5] and
introduced by Sobol [3] in 1993 (the so-called Sobol’s indices); (c) the
variogram-based approaches, linking derivative-based and distribution-
based approaches [6,7]; (d) the regression-based approaches [8].

In the literature, the GSA method used as a reference is, very often,
the distribution-based GSA approach making use of Sobol's indices [9-
11]. It is noteworthy that the vast majority of real-world problems
is characterised by dependent input variables, thus GSA approaches
based on Sobol's indices in the case of independent input variables [12-
14] must be properly modified. To overcome this issue, in the last
decade, some distribution-based GSA approaches devoted to systems
characterised by dependent input variables have been developed. For
instance, Chastaing et al. [15,16] proposed a GSA approach, revisiting
the works by Hooker [17] and Stone [18], which is based on classical
Sobol's indices coupled with the covariance of two correlated variables.
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Nevertheless, this aspect constitutes also the limit of this method: it can
be applied solely to problems characterised by an Independent Pairs
of Dependent Variables (IPDV). To go beyond this restriction Broto
et al. [19] presented a generalisation of this method.

Another strategy allowing the integration of dependent input vari-
ables in GSA is the Shapley effect [20]. The concept of Shapley effect
comes from the game theory: by considering a team playing to a game
to win a certain gain, the aim is to quantify the role of the single
player of the team to win this gain. The mathematical theory behind the
Shapley effect, in the context of GSA approaches, is presented in [14,
21-23]. Particularly, in [14], a comparison between the generalised
Sobol’s indices and the Shapley effect is discussed. According to the
results presented in [14], the latter approach is more efficient than the
former one, at least for the problems discussed in [14]. The GSA method
based on Sobol’s indices and the one based on the Shapley effect have
also been compared in terms of complexity in [22]. It is noteworthy that
in the literature one can find some works dealing with the problem of
speeding up the algorithms based on the Shapley effect [24].

Further efficient approaches are available in the literature to per-
form the GSA of non-linear systems [25-30], but are not yet widespread
enough to be available in the classical Python libraries (SALib, Open-
Turn, Emukit) or MATLAB® environment (Global Sensitivity Analysis
Toolbox). For example, in [31,32], the generalised Morris method is
presented, possibly by considering uncertainty and correlated inputs,
whilst in [33], the notion of Sobol tensor trains for GSA is intro-
duced. In [34], low-rank tensor approximation is used to carry out
the GSA, while in [35], a new moment-independent sensitivity index
is developed for quantifying the effect of each input variable on the
outputs in the case of systems characterised by dependent input vari-
ables. Among the most recent research works on GSA making use of
alternative approaches and formulations, it is noteworthy to mention
the methodology proposed in [11], based on the theory of active
subspaces and Kriging surrogate metamodeling, and the methods based
on the random forests algorithms discussed in [36]. Finally, all the
methods mentioned above can be applied to both to Multiple-Inputs
Multiple-Outputs (MIMO) [12,35] and Multiple-Input Single-Output
(MISO) systems.

As one can infer from the above non-exhaustive literature survey,
the comparison, in terms of both accuracy and reliability of results
as well as computational costs, on the approaches based on Sobol’s
indices and Shapley’s effect is not performed in a systematic way by
considering both analytical benchmark problems and highly non-linear
systems (including dynamical models) related to real-world engineering
applications. To this end, in this paper, a comparison between different
algorithms for GSA available in Python libraries based on Sobol’s
indices (different variants are considered) and the algorithm based
on Shapley’s effect proposed by Goda [37] (adapted to the Python
environment in this study), is systematically performed on both ana-
Iytical benchmark functions and engineering applications of industrial
complexity. Only MISO systems with independent input variables are
considered for the sake of simplicity. Specifically, the Sobol’s indices
will be computed through Saltelli’s algorithms [38,39] and Fourier
Amplitude Sensitivity Test (FAST) method [40].

As far as the real-world engineering applications are concerned,
the related mathematical models are developed either in dedicated
languages to solve highly non-linear dynamic systems (like Modelica)
or coded in commercial Finite Element (FE) software (like ANSYS™).
Regarding non-linear dynamic systems developed in Modelica environ-
ment, an efficient strategy that allows converting the Modelica model
into Functional Mock-Up Units (FMUs) to reduce the computational
costs is proposed. The interest of using FMUs relies on fast multi-
physics simulations, with the possibility to easily change the sets of
model parameters. Therefore, a statistical analysis (which requires a
huge amount of simulation runs) can be carried out by modifying the
model parameters through the use of FMUs in an efficient way.

The paper is organised as follows. In Section 2, the fundamental
of Sobol's and Shapley's indices are recalled. Section 3 presents the
comparison between the different algorithms to compute both Sobol’s
indices and Shapley’s indices. Section 4 focuses on the GSA of highly
non-linear dynamic models built in Modelica environment and con-
verted into FMU format to reduce computational costs, while Section 5
describes the GSA performed on FE models. Lastly, Section 6 ends the
paper with meaningful conclusions and prospects.

Notation. Upper-case bold letters and symbols are used to indicate
matrices, while lower-case bold letters and symbols indicate column
vectors. S denotes the cardinality of the generic set S.

2. Global sensitivity analysis

A sensitivity analysis allows determining the input variables influ-
encing the most the system outputs, in a qualitative or in a quantitative
fashion, depending on the considered method. In the literature one can
find several methodologies to carry out both LSA and GSA. This section
is devoted solely to the methods for GSA used in the following sections,
namely the Sobol’s indices computed with the Saltelli's algorithm in
the two variants proposed in 2002 in [38] and in 2010 in [39] and
the FAST algorithm [41,42], as well as the Shapley’s indices computed
with the algorithm proposed by Goda [37], which has been adapted
and optimised to the Python environment in this paper.

2.1. Sobol’s indices and analysis of variance

Consider a MIMO system whose transfer functionis M : A CR" —
15 C [B™, where n is the number of input variables, A is the definition
domain (where input variables take values), m is the number of output
responses of the system and B is the co-domain (where the system
outputs take values). {7 = (£).....£,). £ € A represents the vector of
inputs, whilst y' = (y,,...,»,). ¥ € B represents the vector of outputs.

The variability of the inputs is modelled via random variables char-
acterised by their Probability Density Functions (PDFs): {, ~dFP;, i =
I..... o (which must be read: £, follows a distribution of PDF d P, ). The
stochastic version of the MIMO system reads:

y=M). e ACR" ye BCR". (1)



In the following of this work, only independent input variables
are considered, i.e., the generic input variable cannot be expressed as
a function of the remaining inputs (neither explicitly nor implicitly).
Formally, this means that the PDF of ¢ reads:

L
dp, =[] dr.- 2
=1

It is noteworthy that in this work, the model inputs are distributed
according to a uniform distribution V" in the definition domain 4. In
this work, it is tacitly assumed that the results of the GSA, when consid-
ering a uniform distribution of the input variables (both continuous and
discrete), are not influenced by the discretisation step. This means that
the input variables considered in this paper are always independent,
regardless of their nature, i.e., discrete (with a step defined by the user)
or continuous (which are necessarily discretised when considering a
uniform distribution with a discretisation step related to the precision
of the machine). Moreover, for the sake of simplicity, in this section,
the discussion is limited to the case of MISO systems, i.e., m = 1.
Nevertheless, the proposed formulation can be easily extended to the
most general case of MIMO systems.

Consider the generic subset § € [1.....n}, with § # @, having
cardinality #S = n, < . If the scalar output function satisfies some
basic hypotheses [43], the Hoeffding decomposition [5] of the output
function y reads:

L3
YEMg Y MG+ Y MGG My (D)

=1 1si<jsn

= Mg+ Y ML) 3
o

where ¢, is a sub-array of { whose indices are defined through the
components of the vector u whose cardinality is u = n, < n, and whose
components belong to the subset S, i.e, uy € S. k = 1,....n, [34].
The uniqueness of the decomposition is ensured through the following
conditions:

My = E(y) (4)
and
E MM =0, w0, €5, u# v, (5)

In Egs. (4) and (5), the symbol E denotes the so-called expected value.
Therefore, in Eq. (4), M, is the mean value. It is noteworthy that the
above formul@ imply that all terms M, ({,) (u # 0) in Eq. (3) have zero
mean values. The terms M, ({,,) can be obtained in a recursive way as
follows:

M,
M,

E(y|C) = M,
[F.A()'l{,. ‘;/) -My—-M, - 4\4} , (6)

The terms of increasing order in Eq. (6) are conditional expectations
defined in a recursive way, constituting, thus, an orthogonal (and
unique) decomposition of the output of the system [5,34].

The goal of the GSA is to determine the relative influence of each
parameter ¢, on the considered output y, in terms of variance. Following
the same idea at the basis of Eq. (3), it is possible to introduce the
ANalysis Of VAriance (ANOVA) decomposition [34,43,44] as:

Var(y) = ) Var (My(€,)) - (7)
A
In the above formula, Var (M,(¢,)) represents the conditional vari-
ance for the sub-array ¢, whose indices, collected in the vector u,
belongs to the subset S [34]. The generic Sobol's index S, is defined
as:
. Var (M,(,))

e Var(y) ®)

which represents the ratio of the variance due to the interaction
between the components of £, (for u € S) to the total variance of the
output. Of course, the Sobol’s indices satisfy the following relationship:

=1 1<i<jsm

Y Sa= XS+ Y S G+ S =1 ©
weES
wzl

According to Eq. (8), the first-order Sobol’s index, also referred to
as elementary Sobol’s index, for a single variable £, is defined as:

_ Var (M)
T Varyy
The first-order Sobol's index provides a measure of the influence of
the single input variable ; on the output y. However, the elementary
Sobol's index does not provide any information about the influence
of the variable {, on the output y when interacting with other input
variables {,, k€ S, k #1i.

To get this information, one has to consider the Sobol's indices from
order 2 to n that, according to Eq. (8), can be expressed as:

L Var ('MI.J(";I' ';))) . Var (“’(I.J.ﬁ(gl‘ gj' Ci ))
o Var(y) Tk Var(y)
where S, , is the second-order Sobol’s index translating the influence of
the couple (£,.£;) on the output y, while S, is the third-order Sobol’s
index that provide a measure on the influence of the first three input
variables ({,, ¢ 1+€x) on the output y, etc.

The 2% — | Sobol's indices can provide precious informations for the
GSA, but their computation can be prohibitive when a large number
of variables is considered. To this end, a measure often referred to as
the “total-effect index™ or “total-order index” or “total Sobol’s index"”,
S7,. is used [34,38]. This index provides a measure of the contribution
to the output variance of {, including all variance caused by its
interactions, of any order, with the other input variables. The total
Sobol'’s index related to the input variable ; can be defined as [34,39]:

Sy = 3 S 12)
e

The total Sobol’s index S, represents the total effect of the generic
input variable £, including its direct effect on the output as well as
all interactions with other input variables. According to Eq. (12), it is
equal to the sum of all partial indices S, involving the input variable .
Of course, unlike the elementary indices .S, the sum of the total Sobol’s
indices can be greater than or equal to one, i.e.,

(10)

(11

L)
pIE TS (13)
=1

This is due to the fact that the interaction between two variables,
e.g., {, and {, is counted in both the associated total indices, i.e., Sy,
and Sy . The sum of the total indices is equal to one only when the
model is purely additive. It is noteworthy that in [38], Saltelli presented
a numerical integration scheme requiring N(» + 2) simulations, where
N is the total number of samples allowing the computation of the n
elementary indices (S, )¢, ,, together with the » total indices. According
to Eq. (12), if Sy, = 0, one can state that the variable ¢, does not
influence at all the considered output.

In the following of this paper (and, in a more general sense, in
almost all real-world engineering problems) only the elementary and
total Sobol's indices are considered. The elementary Sobol's indices are
indicated as S, whilst the total Sobol’s indices are indicates as Sy..
For a deeper insight in the matter the interested reader is addressed
to [14,15,19,34,44].

2.1.1. Saltelli’s algorithms

Saltelli’s algorithms presented in [38,39] for evaluating Sobol’s
indices require the same number of simulations, i.e., N(n+2), and both
provide elementary and total indices, i.e., S, and Sy, respectively. They



essentially differ in the way they compute these indices. Specifically,
in [39], the Quasi-Monte-Carlo (QMC) technique is used to generate
the samples. For a deeper insight in the matter the interested reader is
addressed to [38,39].

2.1.2. Fourier amplitude sensitivity test method

FAST method uses periodic sampling and Fourier transformation
to decompose the variance of a model output into partial variances
attached to the different model parameters. By relating these partial
variances to the overall variance, it is possible to compute Sobol's
indices.

It is noteworthy that the FAST method is a relatively old tech-
nique [40], but it has been improved in the last decade by combining
the random balance designs (RBD) technique with the FAST algorithm
(RBD-FAST) [24,45-47]. However, most of these enhancements are
either unavailable in classic Python or MATLAB® toolboxes, or in-
complete. For example, RBD-FAST method, integrated in SALib," only
computes first order indices, although this method has been extended
to total indices [48]). The interested reader is addressed to [41,42] for
more details on the theoretical background of the FAST method.

One of the advantages of this method over Saltelli’s algorithms is
that it requires fewer simulations to compute all the indices. Indeed, Nn
simulations are necessary against N(n+2) for Saltelli’s algorithms. Nev-
ertheless, some precautions must be adopted when using this method.
Indeed, Tissot and Prieur [46] have shown that for models with more
than ten input variables, the values of the indices were biased and the
algorithm become unstable.

Unlike Saltelli's algorithms that are based on the ANOVA decompo-
sition, the FAST method makes use of the frequency decomposition of
the outputs of the system. This leads to small discrepancies between the
values of the Sobol’s indices and those resulting from the FAST method.
Nevertheless, these differences are negligible and the information pro-
vided by the FAST algorithm can be used to quantify and classify the
influences of the different input variables in terms of percentage.

2.2, Shapley's indices

Recently, Owen [22] has proposed a GSA method for systems char-
acterised by dependent input variables based on Shapley's effect, a
concept taken from game theory [49]. Nevertheless, since in this work
only non-linear dynamic problems characterised by independent input
variables are considered, only the formulation of the Shapley’s indices
for non-correlated inputs is briefly recalled here below.

According to [14,50], and using the notation introduced in the
above subsection for Sobol's indices, in the case of independent input
variables, the Shapley’s index related to the generic input {; is defined
as:

S,
Su= Y == (14)
wes "
1cus

where n is the cardinality of the array u collecting the indices uy, € §
used to compute the elementary index S, i.e., n, = 1 if u" = (1),
n, = 2 if u’ = (1,2), ete. The two main properties and advantages of
the Shapley’s indices are that they are positive semidefinite and their
sum is equal to the unit [14].

It is noteworthy that, according to Eq. (14), the Shapley’s index
related to the generic input variable {;, is greater than or equal to
the corresponding elementary Sobol's index and it is lower than or
equal to the corresponding total Sobol’s index, i.e. §; = S, = S;.
Of course, this property is due to the mathematical definition of the
Shapley’s index, but follows also a clear rationale: the first-order Sobol's
index quantifies the influence of a single input variable on the output,
the total Sobol's index takes into account the influence of the single

1 https://salib.readthedocs.io/en/latest/

input on the output together with the interactions with the other inputs
variables belonging to £, (and the interactions are evaluated multiple
times), while in the definition of the Shapley's index the interaction
effect is equally distributed to each input variable involved in the
interaction.

In the following of this paper the Shapley’s indices are indicated as
Sy,- The Python script used to assess the Shapley’s index is provided
in Appendix.

An overview of Sobol's indices and Shapley’s indices main features
together with the algorithms used in this study is reported in Table 1.

3. An analytical benchmark problem: the ishigami function

The Ishigami function [51,52] is widely used as a benchmark func-
tion in GSA for its strongly non-linear and non-monotonic behaviour.
Moreover, its dependence on the third variable is quite particular as
described in [53]. It reads:

F1x) = sin(x,) + asin®(x;) + bxix;, (15)

with x, € UVl-zixl.i = 1,23, a = 7 and b = 0.1. The values of
parameters a and b has been taken from [54].

To calculate the Sobol's indices according to the Saltelli 2002 al-
gorithm [38], the OpenTURN" library is used, whilst for Saltelli 2010
algorithm [39] and FAST algorithm [42] the SALib library is employed.
Both libraries are available in Python. For the Shapley indices, the code
from [37] adapted to Python language is used (see Appendix). These
algorithms are compared according to the following criteria:

» The convergence rate of the relative error between the Sobol’s
index (elementary or total) and the Shapley's index calculated
through the considered algorithms and a reference value calcu-
lated via the same algorithms when considering a large number
of samples, i.e, N = 22 The relative error on each index
is considered as converged when it is lower than or equal to
0.01 during 10* successive samples. Of course, the lower the
number of samples to achieve convergence the more efficient is
the algorithm.

The accuracy of the algorithm in assessing the Sobol’s and Shap-
ley's indices, when convergence is achieved, by comparing the
values provided by the considered algorithm to analytical values
available in the literature [54,55].

The confidence interval (CI) on each index with a confidence level
equal to 95%, which provides a measure of the reliability of the
algorithm in assessing the considered indices.

.

The convergence rate of the relative error on the elementary index
and on the Shapley’s index for input variable x| is illustrated in Fig. 1
(results related to variables x, and x; are characterised by the same
trend but are not reported for the sake of brevity). As it can be inferred
from this figure, the FAST method requires a number of samples N
lower than those required by Saltelli’s algorithms to achieve conver-
gence. Conversely, the convergence of the Shapley index is slower, but
as it provides complementary information to the Sobol’s indices, this
algorithm will still be used in the following of this document.

The accuracy of the algorithms in computing Sobol’s and Shapley’s
indices (for a number of samples N = 2'%) when compared to analytical
values taken from [54,55] is illustrated in the histograms of Fig. 2.
In this figure, the confidence interval related to the result of each
algorithm for a number of samples N = 2 is also reported, by
considering a confidence level equal to 95%. From the analysis of
these results, one can infer that the results provided by Saltelli 2010
algorithm [39] are the most accurate ones, although the most reliable
ones are those provided by FAST method [40,42]. It is noteworthy that

2 https://openturns.github.io/www/index.html



Table 1
Main features of Sobol's Indices, Shapley's Indices and of the related algorithms used In this study.

Sobol

Elementary index

Total index

Shapley

g ¢ of one p - Influence of one parameter and its interactions - Influence of a parameter
= 0<s, <1 - Count the interactions several times and its contribution in
X Sz cach of its interactions
< Xl S, =)
0S8, g1
-8 285, =5
Saltelli 2002 [28] Saltelli 2010 [39] FAST [40,42] Goda 2021 [37]
- MC sampling - QMC sampling according - QMC sampling according - QMC sampling according
g - Nin+2) simulations to the So§ol's sequence to thie So!x?l's sequence to the So»l's sequence
2 - 8.8, 5 - Nin+ 2) simulations - Nw simulations - Nim+ 1) simulations
e - ANOVA decomposition -S5.8,,.8) - 8,8, - Sy,
< < ANOVA decomposition - Frequency decomposition
- Formulie for determining
indices in a more efficient
way than in [38)
a5l Therefore, for the other benchmark problems considered in this
| —— FAST paper, the FAST algorithm is the one retained to assess the Sobol’s
a E > Saltelli 2002 indices, because it represents the best compromise between accuracy,
i ==%== Saltelli 2010 reliability and computational costs (it requires only N = 2'2 samples to
3 Shapley achieve convergence for the Ishigami function). Moreover, the Python
version of the algorithm proposed by Goda [37] will be used to compute
the Shapley's indices. Specifically, in the following, the FAST method
will be used with a number of samples equal to 2'* and compared to the
results provided by the Saltelli 2010 algorithm with a sample size of 22
when no literature solutions are available. Regarding the convergence
results, the Shapley's algorithm will be used with a greater sample size,
i.e., with N =2"¢
- 4. Non-linear dynamics problems: the modelica programming lan-
- e AU L1 A U e o g“age
0 5000 10000 15000 20000 25000 30000

N

Fig. 1. Relative error of the Sobols elementary index and of the Shapley's index

puted with the ioned algorithms vs. the number of samples for variable x,.
60
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o
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Fig. 2. Comparison between Sobol's elementary and total indices and the Shapley's
indices with their analytical value [54,55] including the related confidence interval,

the FAST algorithm provides also a good level of accuracy, with the
highest percentage error equal to 4.65% for the total index related
to variable x,. Moreover, the Shapley’s index takes values between
elementary and total index for each variable.

4.1. Fundamentals of modelica language and the functional mock-up inter-
face norm

Modelica’ [56] is a freely accessible object-oriented formal cal-
culation language for describing systems of equations. In physical
modelling, it allows for an easy formal description of the dynamic
behaviour of complex systems (particularly in the context of multi-field
analyses), while reducing the issues associated with numerical resolu-
tion (e.g., strong non-linearity of the equations of the system) [57-61].
Modelica is an acausal object-oriented programming language. There-
fore, to model a physical problem, it is sufficient to assemble physical
subsystems (elementary blocks), each with an analytical description of
its behaviour. When simulating the model, Modelica will assemble the
different subsystems of equations into a global Differential Algebraic
Equation (DAE) system before solving it by symbolic manipulation
(acausal behaviour), translating it into C language, compiling it and
executing it. More details about the Modelica language can be found
in [56].

Among the interesting and useful features available in Modelica, this
programming language inherited the ability to exchange data according
to the Functional Mock-up Interface (FMI) standard and it is, thus,
particularly efficient. Indeed, as a Modelica program is translated into
C during simulation, it can easily be exported to the FMU format
according to the FMI standard. This standard is not necessarily well-
known and deserves a precise description. The development of the FMI
standard was initiated in the framework of the European MODELISAR'
project in 2008. The objective of this standard is to allow connections

modelica.org/
/itead.org/project/modelisar.html
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Fig. 3. Schematic representation of the model exchange and co-simulation operating
modes,

between different simulation and modelling environments in order
to benefit from their intrinsic functionalities within the same project
without approximation. For example, a Modelica model can include
models from Computer Aided Design (CAD) software such as CATIAY,
which can be used to describe both the geometry of an object and its
physical behaviour. It is interesting to note that there is an analogy
between the exchange possibilities allowed by the FMI standard (design
offices for 3D geometry and calculation offices for physical models)
and the adaptation process in the German V-and-V model presented
in [62,63] and applied in [64]. The latest usable version of this standard
is presented in [65], and the last update was made in July 2021 [66].

From a practical point of view, the FMI standard defines the stan-
dalone FMU compressed file export format including: (a) the exported
model code translated into C, (b) an Extensible Markup Language
(XML) file describing the structure of the model at hand and used to
interface the C file with the import program, (¢) the resources needed
to run the exported model such as point files, visualisation libraries,
etc.

To be autonomous, an FMU file must be exported in co-simulation
mode, i.e., it must include a solver defined by the user during the export
procedure. Thus, when it is included in a more global model, it will be
executed at the same time as the latter and will communicate with it via
exchanges of scalar and flow variables according to a pre-defined time
step. In the applications discussed in the following of this section, the
GSA algorithm will call the FMU as many times as necessary via Python
code. An FMU file can also be exported in the model exchange mode. In
this second case, the FMU will be executed with the same solver as
the global model and will be fully integrated. These export modes are
illustrated in Fig. 3. Examples of the use of the FMI standard can be
found in [67-71].

Due to the FMU format, even a complex model becomes cheap (in
terms of computational costs) to be simulated with the possibility of
efficient and non-intrusive coupling. This is interesting for statistical
analyses requiring many simulations such as GSA.

4.2, The car shock absorber

4.2.1. Analytical description

The first mechanical system analysed in this work is a car shock
absorber, illustrated in Fig. 4. Four main elements can be identified
within the CAD model: the piston is a cylinder with a central hole,
which allows for the oil flows during motion. This allows also absorbing
the spring oscillations. The external piston radius is equal to the inter-
nal piston chamber radius, without gap. The passengers and the car
masses are loaded on the whole assembly via the top mounting ring.

The scheme shown in Fig. 5 represents the CAD system in functional
diagram form: a spring-damper parallel system fixed to a support
structure represents the car shock absorber submitted to the weight of
the car and of the passengers.

Car and passengers
masses
~

-~

Piston ~<_

Damper

Spring

Fig. 4. CAO model of the car shock absorber.
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Fig. 5. Functional scheme of the car shock absorber.

The dynamic response of such system is governed by the longitudi-
nal displacement x(r) of the top chamber piston. It can be determined
by solving the equilibrium equation of the system:

4
Ma= Yl (16)

where M = "1—" + '"—f- is a quarter of the overall mass of the system
(i.e., car + passengers masses), a is the acceleration, whose component
along the x axis is equal to ¥(7), f,,,, is the generic ith external force
applied to the spring-damper (see Fig. 5) and ¢ is the total number of
applied forces.

The external forces applied to the system are listed below:

+ Archimedes' thrust and spring force:
r.-( = —Sphpmlgex- rS = —kix - L(I]e.\" a7

where S, = x(r}, —r’ ) is the cross-sectional area of the piston,
r. and r., are the inner radius and outer radius of the piston,
respectively, k is the height of the piston, p,, is the density of the
oil, g is the gravitational acceleration and e_ is the unit vector of
the x axis. Regarding the spring force, k is the spring constant and
L, is its unstretched length. At 1 = 0 s, the spring is pre-stressed.

« Damper force:

fp = —sign(x)S,4Pe,. (18)



Table 2
Reference value of model parameters for the car shock
absorber benchmark problem.

Parameter Value

k [Nm') 9000

Ly, [m] 0.45

Mo (M) 0.002

Foy [m] 0.03 (constant)
iy [kgl 150

h [m] 0.02

Pl 884 (constant)
# [ms?] 9.81 (constant)
Ly, (m] 0.5 (constant)
Loy (m] 0.25 (constant)
m [kg) 1000

where AP is the pressure drop, calculated considering a hollow
piston sliding without clearance in its chamber, i.e.,

Wy ) xS,
AP = Pml?(‘ml + $c\p)~ wy) = E» (19)
where §; = xrfm is the cross-sectional area of the piston hole. In
addition, parameters {4 and {,,, are expressed as follows:
. 1 L. S\’
Srcd=(z_l) 'pr=(l_s—-p) ’ (20)

2

with € = 0,63 + 037 (%) .
P

Action of the weight of the passengers and the weight of the car:

. mp . me-
Wp = -Tge,. We = -Tge,{. (21)
where mp and m. are the total mass of the passengers and of the
car respectively.

4.2.2. Modelica model

The mechanical model of the car shock absorber is built with the
Modelica [56] programming language via MapleSim [72] software and
interfaced, though FMU format file, with the GSA algorithms.

The Modelica Standard Library (MSL) is used to generate the com-
ponents of the mechanical system visible in Fig. 6. However, the
mechanical behaviour of the damper was modelled via a custom force
element to reproduce the constitutive law of Eq. (18). The element mass
with stop and fricion M, was introduced to constrain the movement
of the piston, limited by the chamber length. The car weight action is
represented by the element w., while the passengers one by wj,. The
whole system is described by means of eleven parameters of which five
are set to predefined values.

When the car is loaded, the role of the damper is to limit the
oscillations of the spring and to dissipate them in a short time at a
given position. Consequently, the output considered for the sensitivity
analysis is the position of the piston at a given time, i.e., x(1). As a
reference, the time constant for shock absorption has been set to ¢, =
2 s. The stable position of the piston is x = 0.64 m. The parameters of the
reference motion are given in Table 2 and correspond, approximately,
to a physically admissible situation. Note that the initial position of the
piston is defined as x(0) = L + L., where L, is the bar length in
contact with the ground (assimilated to the wheel) and L, is the
length of the chamber of the piston, which limits its displacement. At
1 =0 s, the spring is preloaded: x(0) < L, + Ly,,-

Once the Modelica model is created and validated, the FMU file
is generated in co-simulation mode. During the GSA, the FMU is con-
sidered as a black-box whose inputs variables are sampled according
to a uniform law 17 in their respective intervals, as reported in Ta-
ble 3, These intervals have been chosen according to the admissible
mechanical conditions of the shock absorbers. Particularly, the interval

X

Fig. 6. Modelica model of the car shock absorber (notations similar to the model
equations).

of definition of the parameter r,,
semi-periodic absorbing behaviour.

When generating the FMU file in co-simulation mode, it is necessary
to define the inputs, outputs and modifiable parameters of the model,
but also the solver type integrated in the file. In this situation, a
Runge-Kutta fourth-order algorithm was chosen, whose integration
and communication steps with the global program are set to 1075 s.
Considering these characteristics, the simulation time of the reference
model of the damper is reduced of factor approximately equal to 100
by switching from the initial MapleSim software to a call of the FMU
file (C code) by Python.

is chosen to ensure a complete or

Remark 4.1. Before proceeding to the GSA, the studied model can
be simplified. When evaluating the orders of magnitude of the external
forces, the Archimedes’ force can be neglected in comparison to the
spring force because the former is about three orders of magnitude
smaller than the latter. Consequently, the parameter & can be removed
from the input variables considered in the GSA.

4.2.3. Numerical results

Considering the interval of variation of each input variable, the
motion of the piston can be of three types: motionless at its initial
position (in this case the pre-load due to the spring is dominant),
completely damped or semi-periodic. The output response being the
final position of the piston, a GSA has been carried out by observing
x(1) for ten characteristic times, i.e., 1 = ir,,, with i € [I,...,10] and
T, = 25, corresponding to an intermediate value of time for the motion
when i = 1, and to a sufficient high time to reach the static position
when i = 10.

The results of the GSA considering the FAST method to assess the
Sobol's indices and the Python version of the algorithm proposed by
Goda [37] to assess the Shapley's indices are shown in Fig. 7 for
different values of ¢ in the interval [r,,. 107, ]. Moreover, when 1 =
101, the indices are compared to the reference results obtained with
the Saltelli 2010 algorithm with N = 222 samples

As one can infer from Fig. 7, the Sobol’s total indices of variables r; ,
and mp are lower than the counterparts related to other input variables
at r = 10r,,,. Nevertheless, the influence of variable r,, decreases with
the time and goes to zero when t > 3¢, , while that of m increases
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global indices and the reference solution is shown at ¢ = 107,

Table 3
Input variables and corresponding intervals for the car
shock absorber benchmark problem.

Variable Interval

& [Nm™] L8000, 11000])
Ly [m] (04, 06])

r,, [m] 17([0.00 1,0.005])
h (m) 17([0.01,0.04])
mpe kgl L7([640. 360])

me [kgl (900, 1300])

with time. This is an expected result because r,, only intervenes in the
expression of the damping force. This force depends upon the piston
speed, thus, when the system reaches a stable state, the piston speed
becomes zero and the influence of the r;, variable goes to zero too.
According to the definition of elementary and total indices of
Egs. (10) and (12), respectively, and by looking at the values illustrated
in Fig. 7, one can conclude that, for each input variable, the influence of
the interaction with the rest of the variables on the output is relatively
small. It varies between 3.2% at r = r, and 1.8% at 1 = 10z, for
variable k, 3.7% at r = r;, and 2.1% at 1 = 10« for variable L, 5.0%
at r = r,,, and 0.006% at r = 10r,, for variable r, 1.5% atr =
and 1.3% at r = 10r,, for variable mp, 2.8% at r = r,, and 1.8% at
t = 10r,, for variable m.. Moreover, by classifying the Sobol’s total
indices in ascending order, one can conclude that the parameter L is

the one influencing the most the piston motion for all values of the
characteristic time.

As it can be inferred from the above results, r,,, has a minor role
on the behaviour of the system for ¢ > 3r,, . However, if one considers
a larger variation range, with values of r,, higher than 0.005 m for
example, the piston is characterised by an unstable motion in most
cases. This highlights the importance of correctly defining the intervals
of definition of the input variables for GSA. Accordingly, r,, is the input
variable having the least influence on the piston motion.

The Shapley's index related to each input variable has been evalu-
ated under the same conditions as those considered for the GSA based
on Sobol’s indices. They are also reported in Fig. 7. Their values always
fall between S, and St for each time, and their sum is always equal
to one. Overall, they provide the same information as Sy,.

Regarding the reliability of the calculated indices, as shown in
Fig. 7(f) at r = 10z, the dispersion on the Shapley’s indices is higher
than the one on Sobol's indices, in agreement with the results obtained
for the Ishigami function.

4.3. Dry friction oscillator

4.3.1. Analytical description

The second dynamical system studied in this work is a dry friction
oscillator. It is modelled using a mass—spring system subjected to a
frictional force from a conveyor belt, as shown in Fig. 8. This system
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Fig. 8. Schematic representation of the dry friction oscillator.

has been studied extensively in [73,74] as a reference problem due to
its strong non-linearity introduced by the friction force.
The equation of motion of this system reads:

qJ
ma =Y L. (22)

i=l

where m is the mass, a is the acceleration of the mass (whose compo-
nent along the x axis is denoted by (1)), f_,,, is the ith external force
applied to the mass and g is the total number of external forces.

The external forces applied to the mass are listed below:

+ Spring force:
fg = —k(x — Lye,, (23)

where k is the spring constant and L, is its unstretched length.

Friction force:

F,sign (ty)
L+dlogl *

fr=- (24)

where F, = 1 N is the threshold value of the friction, v, = X —v
is the component along the x axis of the relative speed of the mass
(with respect to the conveyor belt), where x is the mass speed
and v, is the conveyor belt speed, which is constant, and 6 is a
constant. The model of the frictional force provided by Eq. (24)
was taken from [74].

4.3.2. Modelica model

As explained in [74], this problem is characterised by some nu-
merical issues when solving the motion equation due to the non-linear
profile (hyperbola) of the frictional force f; as a function of the relative
speed of the mass. To overcome these issues, two numerical strategies
are generally employed: the smooth method and the switch model.

The smooth method consists of introducing a term that makes the
curve continuous for 1 + é|v,| = 0. Conversely, the switch model
is a succession of conditional tests allowing to determine the system
behaviour mode (stuck, sliding or in transition) in order to apply the
correct analytical description.

However, the specificities of Modelica programming language
(i.e., the elementary blocks assembly strategy and the acausal nature)
make it possible to get rid of these issues and to directly enter the
friction force equation, without any approximation, in an adapted
block. The resulting model is illustrated in Fig. 9 and the results
obtained by considering the reference parameters listed in Table 4
coincide with those presented in [74].

These results are illustrated by the phase diagram of Fig. 10 that
shows the evolution of the velocity of the mass vs. its position. Two
phases can be observed: a first one starting from the origin and going
towards the circular curve corresponding to the transient regime until

Table 4
Reference value of the model parameters for the dry
friction oscillator benchmark problem,

Parameter Value
v,y [ms!) 0.2
m [kg] 1.0
k [N.m') 1.0
Ly [m] 0.0
Fy IN] 1.0
4 [sm™') 3.0
Table 5

Input variables and corresponding intervals for the dry
friction oscillator benchmark problem.

Varlable Interval

& [Nm?) L([05.50))
L, [m] U212
m [kg) U([05.200)
U [ms!] ([0.2.50])
Fy [N] U(1.0.50])

the stable position is reached. The plateau occurs when the mass has a
zero relative speed with respect to the conveyor belt.

For this example, the FMU file is exported in co-simulation mode,
by incorporating a solver based on the Runge-Kutta fourth-order al-
gorithm with integration and communication time steps both equal to
105 s.

4.3.3. Numerical results

Before starting the GSA, the first step is to define the observed
output. In the case of the dry friction oscillator, the output response
is the behaviour of the mass movement, which can be either stable
or unstable. More precisely, the behaviour is considered stable when
the relative speed of the mass is zero (sticking) during a time interval
At greater than or equal to r,,. = 0.3 5. Conversely, when the mass
velocity does not have a constant part or is zero during a time interval
My < Taaner the behaviour is considered unstable. A case of stable
behaviour is illustrated in Fig. 10. Therefore, the output response is
the time interval 4r,,; that must be greater than r_,, when a stable
behaviour is achieved.

The parameters used as input variables, with the corresponding
definition ranges, are listed in Table 5. As in the case of the car
shock absorber, the variation ranges have been selected to simulate the
system characteristic behaviour.

The Sobol analysis results considering the FAST method are reported
in Fig. 11 and compared to the reference results obtained with the
Saltelli 2010 method for N = 222, From the analysis of these results,
one can infer that the influence of the interaction among variables is
significant due to the high difference between total and elementary
indices. Indeed, the influence of the interaction is about 48%.

Moreover, from the histogram illustrated in Fig. 11, one can infer
that the input variable with the strongest influence on the motion
stability is v, with values of §; and S, equal to 32% and 75%, whilst
the one having the weakest influence is k& with elementary and total
indices equal to 1% and 23%, respectively. However, although the
elementary index for & is negligible when compared to the one of
the other variables, the value of the total index cannot be neglected,
highlighting that this variable influences the stability of the motion
when copuled with the other inputs. Accordingly, particular attention
must be paid to the choice of the frictional force model wherein the
variable v, is involved. This conclusion is found in the literature as the
same model is used with different frictional force expressions in order
to highlight particular behaviours (the Hopf bifurcation or the slip-slip
bifurcation in [73]). Unlike the values obtained for the Sobol’s indices
in the case of the car shock absorber, the accuracy in assessing the total
indices of variables L, and Fg with the FAST algorithm is not enough,
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Fig. 9. Modelica model of the dry friction oscillator system.
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Fig. 11. GSA results on the dry friction oscillator model.

the percentage error with respect to the related reference values being
11% and 13%, respectively. This means that the number of samples N
should be increased to obtain a better accuracy level. This conclusion is
supported also by the dispersion on the total indices of these variables
which is higher than that related to the rest of the input variables.

Regarding the Shapley’s indices, the same remarks already done for
the car shock absorber example can be repeated also in this case.

Fig. 12. Truss structure maodel.

5. Global sensitivity analysis on finite element models for struc-
tural analysis

5.1. Problem 1: static analysis of a truss structure.

5.1.1. Problem formulation and numerical model

In the test cases discussed in sections 3 and 4, GSA is applied to
an analytical benchmark and to the study of a mechanical system via
a Modelica modelling approach, respectively. In this section, GSA is
carried out on a model of a truss structure whose mechanical response
is obtained via a dedicated Finite Element (FE) model. The goal is to
evaluate the influence of the area of the cross section of the trusses on
the vertical displacement of the structure computed at the node where
the force is applied.

The geometry of the truss structure, shown in Fig. 12, has been
taken from [54]. The relevant geometrical and material properties,
used in the numerical analyses, are listed in Table 6. Particularly, the
material properties (E and v in Table 6) are kept constant together with
the lengths of the trusses constituting the structure (L, in Table 6).
A vertical force is applied at node 7 in Fig. 12 and the degrees of
freedom are set to 0 at nodes 1 and 4. To reproduce exactly the problem
formulation presented in [54], the cross sections areas, considered as
input variables for the GSA, are those of the trusses from 1 to 9. Table 6
reports the interval of variation of the cross sections areas assumed
as variables as well as the value of cross section area of truss n. 10,
which is constant. The parametric FE model of the truss structure has
been generated with the Ansys Parametric Design Language (APDL)
within the ANSYS® FE commercial software. Each truss is modelled
with LINK180 elements (truss elements with three degrees of freedom
per node). Finally, linear static FE analyses have been carried out.



Table 6
Characteristic parameters and input variables of the

truss problem.
Parameter Value
E [MPa) 21 x 108
v [-] 0.3
Liii247510) [mm] 1x 107
-
Lijsseo (mm] Vaxio
A, (mm?) 1% 10¢
A, ., (mm?) 1([0.5,2.5]) % 107
F [N] 1000

Sr,

Index value [%]
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Fig. 13. GSA results of the truss model.

5.1.2. Numerical results

The results of the Sobol analysis, considering the FAST method,
are reported in Fig. 13 and compared to the reference values of the
elementary indices S, taken from [54]. Regarding the results of the
total indices, the corresponding reference values are obtained using the
Saltelli 2010 algorithm with N = 222, From the analyses of these results,
one can infer that the cross-influence among variables is negligible
because the values of elementary and total indices are very close.
Indeed, the sum of the correlated influence is approximately 2%.

Moreover, the results of Fig. 13 point out that the input variable
with the strongest influence on the maximum vertical displacement is
the cross-section of the truss n. 4, A, , with values of S, and S equal
to 56% and 58%, respectively. Conversely, the cross-sections with the
weakest influence are those of bars n. 6, 7 and 8 with values of .5, and
Sy, smaller than 1.1%.

By comparing the relative error between the values of the computed
indices and those used as references, it stands out that a number of
samples N = 2'? is enough to limit the average percentage error to a
maximum of 2.5%. Regarding the Shapley’s indices, the same remarks
already discussed for the test cases presented in the above sections can
be repeated here.

5.2, Problem 2: eigenvalue buckling analysis of a mono-stringer composite
stiffened panel.

5.2.1. Problem formulation and numerical model

The usefulness of GSA is shown through the study of a realistic
engineering problem dealing with a composite stiffened panel under
uni-axial compression, a structural solution usually adopted in aircraft
structures.

The geometry of the stiffened panel used to perform the GSA is
taken from [75] and it is illustrated in Fig. 14 together with the
relevant geometrical parameters used in the analysis. The search for
trade offs between a lightweight solution and an adequate mechanical
behaviour (especially when buckling is the main critical phenomenon
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Fig. 14. Compasite stiffened panel scheme,

involved in the problem formulation) is not a trivial task if both the
geometry of the stringer and the stacking sequences constituting skin
and stringers are used as design variables. Even though design rules
have been defined to limit the complexity related to the design of
these structures, the great number of design variables (geometry and
material) leads to a significant number of structural solutions to be
assessed, Moreover, without the limitations of standard design rules,
it is possible to obtain a remarkable improvement in the structural
efficiency by addressing the problem via a multi-scale optimisation
approach, as described in [75]. Nonetheless, GSA can be used as a
preliminary design tool to determine whether it is possible to assess the
sensitivity of the structural responses to the set of design variables and
to determine, thus, the parameters that can be excluded from the set of
design variables due to the negligible influence on the behaviour of the
structure. Therefore, conducting a preliminary GSA will help reducing
the computational effort of further numerical campaigns (including
optimisation process).

In this context, the goal of the example presented in this section is
to assess the influence of the geometrical variables, shown in Fig. 14,
and of the polar parameters describing the anisotropic behaviour of the
stiffness matrices of the laminate at the macroscopic scale [75,76] on
the value of the first buckling load of the stiffened panel.

The stiffened panel is constituted of two regions, the skin and the
stringer. The skin, characterised by a length a and a width b, consists
of ng carbon-epoxy pre-preg plies, whose material properties are given
in [75]). The stringer whose geometry is completely defined by the
geometrical parameters a,, ¢; and h, is made of ny plies. Normalised
quantities are introduced to define the geometry of the stiffened panel
as follows:

o =2=. =2—. =

2 - az

(25)

8 |8

To avoid generating inconsistent geometries, two inequalities are intro-
duced as follows:

_ ) witha, > 0, anda; > ‘% (26)

The first inequality is necessary to avoid overlap between neighbouring
stiffeners and the second one prevents negative values of the angle 4.
The mechanical behaviour of the laminates is defined via the polar
formalism, which is an efficient approach to define the mechanical
response of composite laminates [76], especially for design purposes.
Specifically, as discussed in [76], only three polar parameters are



required to describe the macroscopic elastic behaviour (in terms of
membrane, bending and membrane-bending coupling stiffness matri-
ces) of a quasi-homogeneous orthotropic laminate: two anisotropic
moduli, i.e., RY; and R, and the polar angle @]" (which represents
the orientation of the main axis of orthotropy). Of course, the maximum
value of the first buckling load can be achieved by aligning the main
axis of orthotropy with the direction of the applied load. To satisfy this
condition it is sufficient to set 0;" = 0 for both stringer and skin,
as discussed in [75]: thus, o{" is not integrated among the design
variables of the problem. As done for the geometrical parameters,
normalised values are also used for defining the mechanical behaviour
of the stiffened panel. Particularly, two coefficients are introduced as
follows:

A RA.
K |
=2 - 27
Mo Ry P R, (27)

where R, and R, are the anisotropic moduli of the ply reduced stiffness
matrix [75]. Moreover, as suggested in [77], it is possible to avoid
introducing the feasibility conditions on p, and p, (which are required
to ensure the existence of a stack corresponding to the values of the
anisotropic moduli and polar angles used at the macroscopic scale to
describe the anisotropic behaviour of the laminate) by considering the
following variable change:

-1
(g, ) = pl),—.p, . (28)
202 - 1)

Of course, different values of «;, and «, are used for the skin and
for the stringer, namely, a;  and a,  for the skin and o, and a,,
for the stringer. More details about the implementation of the polar
formalism within FE analysis of composite structures can be found
in [75,77]. The reference configuration of the mono-stringer stiffened
panel is characterised by a value of the first buckling load equal to
445074 N [75]. The input variables of the GSA are listed in Table 7. A
detailed description of the numerical strategy to recover the stacking
sequences starting from the definition of the laminate polar parameters
is proposed in [75].

The FE model of the stiffened panel, shown in Fig. 15, is created
via APDL scripts and its mesh is made of SHELL181 elements (four-
node elements with six degrees of freedom at each node). A particular
care has been given to the definition of the mesh size to obtain at least
three elements along the width of each horizontal skin and stringer
partition (segments of length a,, @, and a;) and at least six elements
for the segments of height h. For the reference stiffened panel, the
FE model consists of a total of 4438 elements. To enforce periodic
boundary conditions between the opposite edges of the skin of the
stiffened panel suitable constraint equations have been used (see [75]
for more details on this point). Moreover, rigid multi-point constraint
elements (MPC184) have been created and linked with two reference
nodes on both sides: at x = 0, the relevant reference node is clamped
whereas, at x = b, all the degrees of freedom have been set to zero,
except the displacement along x axis. Moreover, a unit force along the
x axis is applied on this node. All details about the FE model of the
stiffened panel are available in [75].

5.2.2. Numerical results

The results of the Sobol analysis obtained with the FAST algorithm
with N = 2' are shown in Fig. 16 and compared to the reference results
obtained with the Saltelli 2010 method for N = 2%, By looking at these
results, one can infer that the influence of the interactions among input
variables is important with a value approximatively equal to 24%.

The results of Fig. 16 show that ¢, is the variable with the highest
total index Sy (approximately equal to 61%). In fact, ¢, acts on the
width of the flanges of the stiffener, which has a relevant impact
on the flexural stiffness of the panel. Moreover, the same variable
is also the one with the highest interaction with the other variables
since the difference between the elementary and total Sobol’s indices
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Fig. 15. (a) Finite element model of the repetitive unit and related reference frame,
(b) details of constraint equation to impose periodic boundary conditions along y-axis
and (c) detalls of MPC184 elements.

Table 7
Input variables of the composite stiffened panel
problem.
Variable Value Type
ny (120,32 Discrete
ny (120,32 Discrete
€ v0.1.0.45)) Continuous
I U3 Continuous
PN 3 Continuous
g o, 1 Continuous
g o, 1 Continuous
@y o, 1y Continuous
@y o1 Continuous
v
60
f - S
: v
50 , - Sy
S,
40 773 Reference

Index value [%)]

ng ng 2 ¢y g, g apg, Qg
Variable

Fig. 16. GSA results on the stiffened panel model.

contributions for ¢, is about 15%. Conversely, the variables for which
the GSA returns the smallest values of both total and elementary indices
are ¢; and the a,g, @5 (i = 0,1) quantities with values smaller than
10%. It is noteworthy that the buckling response can be very sensitive
to both the geometric and polar parameters. For this reason, when
considering the results of Fig. 16, it must be reminded that, while the
output quantity used within the GSA is the eigenvalue, different set
of input parameters can return different buckling mode shapes. As an
example, the buckling mode shapes obtained with four sets of input
variables are shown in Fig. 17. Particularly, the extreme values of
the intervals of variation of the input variables ¢, and ¢; have been
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considered, whilst the other parameters are set equal to those of the
reference configuration, whose details are available in [75].

From the results of Fig. 16, it also stands out that for the variables
¢y, ¢3 and a, g, @;5 (i =0, 1) the percentage error of the Sobol’s indices
with respect to the reference values ranges between 28% and 32%. This
result suggests that a greater value of N should be used. Regarding the
Shapley’s indices values in Fig. 16, the same remarks already done for
other test cases hold also in this case.

6. Conclusions

In this work, the effectiveness of different algorithms for global
sensitivity analysis has been evaluated on multiple-input-single-output
problems of different nature. An analytical benchmark has been used
to compare different algorithms available in the literature based both
on Sobol's indices and Shapley's effect in terms of computational costs,
accuracy, and reliability. As a result, regarding Sobol’s indices, a suit-
able trade-off between the considered criteria was obtained with the
Fast Amplitude Sensitivity Test algorithm. Moreover, Shapley's indices
were also employed since they provide complementary information
with respect to Sobol’s indices. The global sensitivity analysis was then
performed on two problems involving non-linear dynamical systems
of industrial interest, i.e., a car shock absorber and a dry friction
oscillator, modelled via the Modelica language. To further reduce the
computational cost required by the considered algorithms, the Modelica
models were exported via the Functional Mock-up Interface standard
and coupled with the algorithms coded in Python environment.

Subsequently, the global sensitivity analysis has been conducted
also on structural problems characterised by a greater number of vari-
ables if compared to the other studied problems, to be solved via finite
element analyses, namely, the static analysis of a truss structure and
the eigenvalue buckling analysis of a compaosite stiffened panel. Both
numerical models have been created via parametric APDL scripts and
coupled with the algorithms based on Sobol's indices and Shapley's
effect.

d)

Fig. 17. Buckling mode shapes of the mono-stringer stiffened panel for (@) ¢, = ¢, b) ¢, =¢, () ey =¢,, and (d) ¢; = ¢, ..

The results of the global sensitivity analysis on the mechanical
problems have pointed out, on the one hand, the input variables having
the weakest influence on the observed quantity and, on the other
hand, if interactions exist between the considered variables. These
preliminary results would allow, if more detailed studies are needed,
to reduce the number of sets of design variables to be evaluated.

This work represents a first step in the development of a thorough
global sensitivity analysis methodology for multi-field problems, where
the Modelica modelling strategy, used to gather the response of the
different sub-systems constituting the global model, is enriched with
meta-models describing the response of those sub-systems for which a
high level of accuracy is required. With a smart use of both high-fidelity
finite element models and experimental data to build and validate
the meta-model, it will be possible to accurately simulate complex
phenomena and drastically reducing the computational costs. Research
is ongoing on this topic.
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Appendix. Python code for the calculation of the shapley’s indices

import numpy as np

#Inputs:

# n: number of samples

# d: number of independent input variables

# x_LB (numpy.array, size [d,1]): lower bound of
the array of input variables

# x_UB (numpy.array, size [d,1]): upper bound of
the array of input variables

# myfunc (function handle): the user-defined
function

#0utputs:

# phil (numpy.array, size [d,1]): the array
collecting the Shapley’s indices

# phi2 (numpy.array, size [d,1]): the array
collecting the variance of Shapley’s indices

# var_tot: the total variance of the output

def Shapley(n,d,x_LB,x_UB,myfunc):

x = np.zeros((n,d)) #initialise array x

y = np.zeros((n,d)) #initialise array y

for i in range(d):
# fill array x with n samples uniformly
distributed between x_LB and x_UB along each
dimension
x[:,i] = np.random.uniform(x_LB[i), x_UB[i],
(1,n))
# fill array y with n samples uniformly
distributed between x_LB and x_UB along each
dimension
y[:,i] = np.random.uniform(x_LB[i), x_UB[i],
(1,n))

shu = np.arange(0, d, 1)
pm = np.zeros((n,d))

for i in range(n):
pm[i] = np.take(shu, np.random.permutation(
shu.shape [0])), axis=0, out=shu)
a = np.arange(0, d, 1)
z = x.copy()
fz1 = myfunc(z)
Ix = fzl

phil = np.zeros(d) # initialization
phi2 = np.zeros(d) # initialization

ind = np.zeros((n,d)).astype(bool)

for j in range(d):
for k in range(n):
ind[k] = (pm[k, j] == a)
y.red = y*ind

for i1 in range(n):
for i2 in range(d):
if(y.red[il, i2] != 0):
z[i1, 12] = y_red[il, i2]

fz2 = myfunc(z)
fmarg = ((fx-fz1/2-fz2/2)*(fz1-£22))

#Shapley’s index for input variable j

var_tot =

phil = phil + fmarg @ (ind/n)

#Variance of Shapley’s index
phi2 = phi2 + fmarg#**2 @ (ind/n)
fz1 = £22

sum(phil) #total variance of the
output

return phil, phi2, var_tot

References

(1]
(2]
(3]

4

[5

6]
(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

7]
18]
9]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

Razavi S, et al. The future of sensitivity analysis: An essential discipline for
systems modeling and policy support. Environ Modell Softw 2021:137:104-954.
Saltelli A, Tarantola S, Campolongo F. Sensitivity analysis as an ingredient of
modeling. Statist Sa 2000;15(4):377-95.
Sobol IM. Sensitivity estimates for li
1993;1(4):407-14.

Morris MD. Factorial sampling plans for pr
Technometrics 1991;33(2):161-74.
Hoeffding W. A class of statistics with asymptotically normal distribution. Ann
Math Stat 1948;19(3):293-325.

Razavi S, Gupta HV. A new framework for comprehensive, robust, and efficient
global sensitivity analysis: 1. Theory. Water Resour Res 2016;52(1):423-39.
Razavi S, Gupta HV. A new framework for comprehensive, robust, and efficient
global sensitivity analysis: 2. Application. Water Resour Res 2016,52(1):440-55.
Kleijnen JP. Sensitivity analysis and optimization of system dynamics mod-
els: Regression analysis and statistical design of experiments. Syst Dyn Rev
1995;11(4):275-88.

Li L, Lu Z, Li W. State dependent parameter method for importance analysis
in the presence of epistemic and aleatory uncertainties. Sci China Technol Sci
2012;55:1608-17.

Wang P, Lu Z, Cheng L Importance measures for Imprecise probabil-
ity distributions and thelr sparse grid solutions. Sci China Technol Sci
2013;56:1733-9,

Zhou C, Shi Z, Kucherenko S, Zhao H. A unifled approach for global sen-
sitivity analysis based on active subspace and Kriging. Reliab Eng Syst Saf
2022;217:108080.

Zhang K, Lu Z, Cheng K, wang L, Guo Y. Global sensitivity analysis
for multivariate output model and dynamic models. Reliab Eng Syst Saf
2020;204:107195.

Thapa M, Missoum S. Uncertainty quantification and global sensitivity analysis
of composite wind turbine blades, Reliab Eng Syst Saf 2022;222,

looss B, Prieur C, Shapley effects for sensitivity analysis with correlated inputs:
Comparisons with Sobol’ indices, numerical estimation and applications. Int J
Uncertain Quantif 2019;9(5):493-514,

Chastaing G, Gamboa F, Pricur C. Generalized hoeffding-sobol decomposition
for dependent variables - application to sensitivity analysis. Electron J Stat
2012;6:2420-48,

Chastaing G, Gamboa F, Prieur C. Generalized sobol sensitivity in-
dices for dependent variabless numerical methods, J Stat Comput Simul
2015;85(7):1306-33.

Hooker G. Generalized functional ANOVA diagnostics for high-di ional
functions of dependent variables, J Comput Graph Statist 2007;16(3).

Stone CJ. The use of polynomial splines and their tensor products in multivariate
funciton estimation. Ann Statist 1994;6(4):701-26,

Broto B, Bachoc F, Depecker M, Martinez JM. Sensitivity indices for independent
groups of variables. Math Comput Simulation 2019;163,

Song E, Barry LN, Staum J. Shapley effects for global sensitivity analysis: Theory
and computation. SIAM/ASA J Uncertain Quantif 2016;4(1):1060-83,

Moretti S, et al. Combining Shapley value and statistics to the analysis of gene
expression data in children exposed to air pollution, BMC Bioinformatics 2008:9.
Owen AB. Sobol' indices and shapley value. SIAM-ASA J Uncertain Quantif
2014;2(1).

Xu C, Zdzislaw Gertner G. Uncertainty and sensitivity analysis for models with
correlated parameters. Reliabil Eng Syst Safety 2008;93:1563-73,

Plischke E. An effective algorithm for computing global sensitivity indices (EASI).
Reliab Eng Syst Saf 2010;95(4):354-60,

Sarazin G, Morio J, Lagnoux A, Balesdent M, ¢ Brevault L. Reliability-oriented
sensitivity analysis in presence of data-driven epistemic uncertainty. Reliab Eng
Syst Saf 2021;215:107733.

Zhu X, Sudret B. Global sensitivity analysis for stochastic simulators based on
generalized lambda surrogate models. Reliab Eng Syst Saf 2021;214:107815.
Tabandeh A, Sharma N, Gardoni P, Uncertainty propagation in risk and resilience
analysis of hierarchical systems. Reliab Eng Syst Saf 2022;219:108-208.

MMCE

matl itical

Yy e ional experiments.




[28]
291

[30]

(31)

[32]
331
[34]

(35)

[36]
[37]
[38]

391

[40]
(411
[42]

[43]

[44]
[45]
[46]

471

(48]
[49]

501

51]

[52]

53]

[54]

Azzinl 1, Rosati R. Sobol” main effect index: an Innovative algorithm (1A) using
dynamic adaptive variances. Reliab Eng Syst Saf 2021;213:107647.

Damblin G, Ghione A. Adaptive use of replicated Latin Hypercube Designs for
computing Sobol” sensitivity indices. Reliab Eng Syst Saf 2021;212:107507.
Perrin TV, Roustant O, Rohmer J, Alata O, Naulin JP, Idier D, Pedreros R, Mon-
coulon D, Tinard P. Functional principal component analysis for global sensitivity
analysis of model with spatial output. Reliab Eng Syst Saf 2021;211:107522.
Lamboni M, Kucherenko S. Multi sensitivity analysis and derivative-
based global sensitivity measures with dependent variables. Rellab Eng Syst Saf
2021;212.

Ge Q, Menendez M. Extending Morris method for qualitative global sensitivity
analysis of models with dependent inputs, Reliab Eng Syst Saf 2017;162:28-39,
Ballester-Ripoll R, Paredes EG, Pajarola R. Sobol tensor trains for global
sensitivity analysis, Reliab Eng Syst Saf 2019;183:311-22.

Konakli K, Sudret B, Global sensitivity analysis using low.-rank tensor
approximations. Reliab Eng Syst Saf 2016;156:64-83,

Liu F, Wei P, Tang C, Wang P, Yue Z. Global sensitivity analysis for multivariate
outputs based on multiph P Gaussian process model. Reliab Eng Syst Saf
2019;189:287-98.

Antonladis A, Lambert-Lacrolx S, Poggl JM. Random forests for global sensitivity
analysis: A selective review. Rellab Eng Syst Saf 2021;206.

Goda 1. A simple algorithm for global sensitivity analysis with Shapley effects,
Reliab Eng Syst Saf 2021;107702,

Saltelli A, Making best use of model evaluation to compute sensitivity indices,
Comput Phys Comm 2002;145(2):280-97,

Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S, Variance
based sensitivity analysis of model output. Design and estimator for the total
sensitivity index. Comput Phys Comm 2010;181(2):259-70.

Cukier RI, et al. Study of the sensitivity of coupled reaction systems to
uncertainties in rate coefficlents. Theory. J Chem Phys 1973,59(8).

Cukier RI, Levine HB, Shuler KE. Nonlinear sensitivity analysis of multiparameter
model systems. J Comput Phys 1978;26(1):1-42,

Saltelli A, Bolado R. An alternative way to compute Fourier am|
test (FAST). Comput Statist Data Anal 1998;26(4):445-60.

Da Veiga S, Gamboa F, looss B, Pricur C, Basics and trends in sensitivity analysis
theory and practice in R. Society for Industrial and Applied Mathematics,US.;
2021, p. 293.

looss B, Lemaitre P. A review on global sensitivity analysis methods. Uncertainty
Management in Simulation-Optimization of Complex System. 2015;59:101-22.
Tarantola S, Gatelll D, Mara TA. Random balance designs for the estimation of
first order global sensitivity indices. Rellab Eng Syst Saf 2006;91(6).717-27.
Tissot JY, Prieur C. Bias correction for the estimation of sensitivity indices based
on random balance designs. Reliab Eng Syst Saf 2012;107:205-13,

Goffart J, Woloszyn M. RBD-FAST : une méthode d'analyse de sensibilité rapide
et rigoureuse pour la g ic de perfe | In; Conférence
francoph de Llinter | building performance simulation association,
2018, p. 1-8.

Mara TA. Extension of the RBD-FAST method to the computation of global
sensitivity indices. Rellab Eng Syst Saf 2009;94(8):1274-81.

Shapley LS. A valve for n-person games. Contribut Theo Games (AM-28)
1953;11:3-17.

Heredia MB, Pricur C, Eckert N. Global sensitivity analysis with aggregated
Shapley effects, application to avalanche hazard assessment. Reliab Eng Syst Saf
2022;222:245-51.

Ishigami T, Homma T. An importance quantification technique in uncertainty
analysis for comp dels. In: Prox gs. First international symposium on
uncertainty modeling and analysis, vol. 21. College Park, MD, USA; 1990, p.
99-104.

Becker W. Metafunctions for benchmarking in sensitivity analysis. Rellab Eng
Syst Saf 2020,204:107189.

Sobol IM, Levitan YL. On the use of variance reducing multipliers in Monte Carlo
computations of a global sensitivity index. Comput Phys Comm 1999;117:52-61.
Wu Z, Wang W, Wang D, Zhao K, Zhang W. Global sensitivity analy-
sis using orthogonal augmented radial basis function, Reliab Eng Syst Saf
2019;185:291-302.

Yo,

sensitivity

e energ!

[55]

[56]

[57]

[58]

[59]

[61]

[62]
[63]

(64]

[65]

[66]

(67]

[68]

[69]

[70]

[71]

(72]
(73]

[74]

[75]

[76]

(77]

Benoumechiara N, Elie-Dit-Cosaque K. Shapley effects for sensitivity analysis with
dependent inputs: bootstrap and kriging-based algorithms, ESAIM: Proc Surv
2019;65:266-93,

Fritzson P, Principles of object oriented modeling and si
3.3: A cyber-physical approach. [EEE Press; 2014,
Vuillod B, Hallo 1, Panettieri E, M ro M. Sensitivity analysis of a car
shock absorber through a functional mock-up units-based modelling strategy. In:
Proceedings of 14th modelica conference 2021, LinkOPing, Sweden, September
20-24, 2021. 2021, p. 307-14.

Huimin Z, et al. Modelica modeling and simulation for a micro gas-cooled
reactor. Proceedings of 14th modelica conference 2021, LinkOPing, Sweden,
September 20-24, 2021, vol. 181 2021;569-75,

Prado-Velasco M. In-silico virtual prototyping multilevel modeling system for
Cyborgs (CybSim) as a novel approach for current challenges in biosciencies, In:
Proceedings of 14th modelica conference 2021, LinkOPing, Sweden, September
2024, 2021, vol. 181, 2021, p. 485-96,

Pathak A, Schneider K, Norrefeldt V. Use of modelica to predict risk of Covid-19
infection in indoor In: Proceedings of 14th modelica conf e
2021, LinkOPing, Sweden, September 20-24, 2021, vol. 181. 2021, p. 463-9.
Campanini P, Ferretti G. Object-orlented models of parallel manipulators. In:
Proceedings of 14th modelica conference 2021, LinkOPing, Sweden, September
20-24, 2021, vol. 181, 2021, p. 241-8,

Plogert K. The tailoring process in the German V-Model. J Syst Archit
1996;42:601-9,

El Hefni B, Bouskela D. Modeling and simulation of thermal power plants with
ThermoSysPro. Springer Cham; 2019, p. 99-152,

Renier R, Chenouard R. De SysML a Modelica : aide & la formalisation de modéles
de simulation en conception préliminaire.. In: 12EMe Collogue National AIP
PRIMECA. Le Mont Dore; 2011, p. 1-9,

Blochwitz T, et al. Functional mockup Interface 2.0: The standard for tool inde-
pendent exchange of simulation models. In: Proceedings of the 9th international
MODELICA conference, September 3-5, 2012, Munich, Germany, vol. 76. 2012,
p. 173-84,

Gomes C, et al, The FMI 3.0 standard interface for clocked and scheduled
simulations. In: Proceedings of 14th modelica conference 2021, LinkOPing,
Sweden, September 2024, 2021, vol. 181. 2021, p. 27-36.

Hasmukhbhai Shah N, Le Henaff P, Schiffer C, Krammer M, Benedikt M.
Ac robot simulation for industrial facturing processes using FMI and
DCP standards. In: Proceedings of 14th modelica conference 2021, LinkOPing,
Sweden, September 20-24, 2021, vol. 181. 2021, p. 673-9.

Eklund M, Savolainen J, Lukkari A, Karhela T. Optimizing life-cycle costs for
pumps and powertrains using fmi co-simulation. In: Proceedings of 14th modelica
conference 2021, LinkOPing, Sweden, September 20-24, 2021, vol. 181, 2021,
p. 681-9.

Wiens M, Meyer T, Thomas P. The potential of FMI for the development of digital

lation with modeli

twins for large modular multi-domain sy In: P dings of 14th modeli
conference 2021, LinkOPing, Sweden, September 20-24, 2021, vol. 181. 2021,
p. 235-40.

Sun Y, Vogel S, Steuer H. Combining advantages of speclalized simulation tools
and modelica models using functional mock-up interface (FMI). In: Proceedings
from the Sth international modelica conference, technical univeristy, Dresden,
Germany. 2011, p. 491-4,

Schranz T, Moldrup Legaard C, Tola D, Schweiger G. Portable runtime en-
vir for Python-based FMUs: Adding docker support to UniFMU. In:
Proceedings of 14th modelica conference 2021, LinkOPing, Sweden, September
20-24, 2021, vol. 181, 2021, p. 419-24,

Waterloo Maple Inc. MapleSim user’s guide. Maplesoft; 2022, p. 266.

Sieber J, Bernd K. Control based bifurcation analysis for experiments. Nonlinear
Dynam 2008;51:365-77.

Leine R1, Van Campen DH, De Kraker A, Van Den Steen L. Stick-slip vibrations
Induced by alternate friction models. Nonlinear Dynam 1998;16:41-54.
Montemurro M, Pagani A, Fiordilino GA, Pailhés J, Carrera E. A general multi-
scale two-level optimisation strategy for designing composite stiffened panels.
Compos Struct 2018;201:968-79,

Montemurro M. An extension of the polar method to the firstorder shear
deformation theory of laminates, Compos Struct 2015,127:328-39,

Izzi M1, Catapano A, Moatemurro M. Strength and mass optimisation of variable-
stiffness composites in the polar parameters space. Struct Multidiscip Optim
2021;64(4):2045-73.




