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Abstract

Sheet metal forming processes often involve comlaading sequences. To improve
the prediction of some undesirable phenomena, asigpringback, physical behavior
models should be considered. This paper invessgaiengback behavior predicted by
advanced elastoplastic hardening models which coenisbtropic and kinematic
hardening and take strain-path changes into accéustislocation-based
microstructural hardening model formulated from §ib&l observations and the more
classical cyclic model of Chaboche have been censttin this work. Numerical
implementation was carried out in the ABAQUS sofisvasing a return mapping
algorithm with a combined backward Euler and senabgtical integration scheme of
the constitutive equations. The capability of eaxddel to reproduce transient
hardening phenomena at abrupt strain-path charagelden shown via simulations of
sequential rheological tests. A springback analysstrip drawing tests was performed
in order to emphasize the impact of several inflia¢parameters, namely: process,
numerical, and behavior parameters. The effect@two hardening models with
respect to the process parameters has been spkgifighlighted.

Keywords: Sheet metal forming; Isotropic-kinematic hardeni@tgain-path change;
Transient hardening; Implicit integration schemiajté element simulation; Springback
predictions.

* Corresponding author. Address: ENSAM de Metzud Augustin Fresnel, 57078
Metz Cedex 03, France. Tel.: +(33) 3.87.37.54.6; F(33) 3.87.37.54.70.
E-mail address: tudor.balan@metz.ensam.fr




1. Introduction

The development of new grades of sheet metalshigth performances, such as
combined ductility and strength, greatly improvies gjuality of the final products.
Examples in the automotive industry include crasistance and weight reduction to
improve fuel efficiency. However, several undedegihenomena are observed during
the forming of such materials which compromiseftrened part. Springback is one of
the most significant drawbacks of these new sheg¢¢mals. This phenomenon has been
investigated by many authoms.g§.Mattiasson et al., 1995; Pourboghrat and Chu, 1995
He and Wagoner, 1996; Carden et al., 2002; Li.eRAD2; Lee et al., 2005a, 2005b). In
studying springback, much attention is given taitsurate evaluation whether by
analytical computations or by finite element (FE)dations. In this context, it is
important to have a deep understanding of theenite of all factors (process,
numerical, behavior). This understanding permigsitientification of the predominant
factors and how their interaction affects the fislahpe prediction.

Proper material behavior description has been ifighin many works as one of the
most important factors to consider for springbaadpctions via FE simulations.
During the last decades, many models have beerufated at different scales (micro,
meso and macroscopic) to describe the elastoplastiavior of sheet metals. In sheet
metal forming simulations, phenomenological (macopsc scale) models are widely
used, since they present a good compromise betineanodel accuracy and process
simulation computation time. The mathematical tlyaadrelastoplasticity is now well
understood since the works of Hill (1950) and nmexeently those of Lemaitre and
Chaboche (1990), Khan and Huang (1995) and otfbese works give a general
framework for the development of more advanced Wehanodels (initial and induced
anisotropy).

The description of the hardening during complexding paths has received
considerable attention. For simple applications, $wift's and Voce’s laws are widely
used to reproduce the isotropic hardening duringatanic loading paths. However,
strain-path changes induce more complex phenomémawnust be considered in the
constitutive model. To reproduce the decrease ow ftress upon reverse loading
(Bauschinger effect), Prager (1956) and Ziegleb8)9roposed linear evolution laws
for back-stress — the variable describing the kemmnmhardening. Armstrong and
Frederick (1966) proposed a non linear evolutiantlids type of hardening, which has
been successively improved to reproduce the Bangehgeffect, the ratcheting effect in
fatigue etc. (Chaboche, 1986, 1989; Lemaitre andbGthe, 1990; Ohno and Kachi,
1986; Ohno and Wang, 1993a, 1993b; Abdel-Karim@hdo, 2000; Geng, 2000; Gau
and Kinzel, 2001). Several back-stress variableél different evolution laws are often
combined in these models. Chun et al. (2002a, 2002ither improved the cyclic
hardening model of Chaboche by considering diffetsack-stress evolution laws for
the monotonic loading and the reverse loading.hkirtapproach, several back-stress
laws are deactivated upon loading reversal in otdeobtain a different flow stress
saturation level. Chung et al. (2005), Geng ei(2002), Geng and Wagoner (2002),
Khan and Huang (1995), proposed modified versiohsChaboche models by
considering some of the kinematic hardening pararseds functions of the effective



plastic strain. Recently, Choi et al. (2006a, 2Q0&tded rotational hardening for the
description of the multi-axial elastoplastic beluayi

Since hardening is essentially due to the dislooathicrostructure and its evolution,
attempts have been made to describe their effebaaiening at a macroscopic scale.
Following this approach, Teodosiu and Hu (1995,8)9%eodosiu (1997) proposed a
microstructure-based model representing not ordynbbnotonic or reverse loading, but
also the whole range between the two, includingpiréicular case of orthogonal strain-
path. More precisely, the introduction of physigatiotivated internal variables that
describe the evolution of the persistent dislocasivuctures allowed new transient
phenomena to be modeled. Stagnation, softeningagd change in work hardening
rate — as observed during abrupt, two-stage sei@leémtological tests — for a wide
range of sheet metals are well described withrtiadel (Bouvier et al., 2003).

In the current paper, the plastic anisotropy induag hardening has been modeled
by the microstructural hardening model proposed éydosiu and Hu (1998). The
model can be coupled with any yield potential teetanto account initial anisotropy.
The corresponding constitutive equations are implaed in the ABAQUS software
using the return mapping algorithm. A combined Eurtglicit and asymptotic
integration scheme is used to evaluate interntd stxiable evolution. The classical
cyclic hardening model of Chaboche, combining thmgtrong-Frederick’s and Voce’s
laws, is deduced as a particular case by settimgg soaterial parameters of the
Teodosiu-Hu model to zero.

Springback is considered in this work, as one efrttost challenging simulation
tasks, in order to investigate the impact of haigmodels on the accuracy of sheet
metal forming simulations. In parallel, the sengiyi of springback predictions to
purely numerical aspects of the simulation is alddressed. The well-known strip-
drawing test is used for this analysis. Two différdie and strip geometries and two
materials — each of them being described withwtehtardening models — have been
used to generate the results discussed in the.paper

The paper is structured in three parts. In the dine, a general framework of the
constitutive equations is developed, based onattge Ideformation theory. Both
hardening models considered in this paper are shovinthis general framework. The
second part deals with the numerical implementaticthese models. The main aspects
of the time integration algorithm are developed th@consistent tangent modulus is
given in a compact form for each model. In the fast, the FE predictions of these
models are analysed. Their respective potentispgooduce transient features of the
hardening is investigated by means of rheologestl simulations. Finally, a detailed
springback analysis is performed using several gdoes, holding forces, and
materials.

2. Constitutive equations

The phenomenological elastoplastic modeling adopézd is rate independent
(without viscous effects) and restricted to coltbdmation. The material is initially
stress-free (well annealed state) and homogenésys.eviously mentioned, the two
hardening models employed fall under the categbrojassic elastoplastic



phenomenological modeling. They utilize a hypo-tdaw defining the stress rate
with respect to the elastic strain rate, a yieltedon delimiting the elastic zone, a
plastic flow rule and a set of internal state Valeaevolution laws defining the work
hardening during plastic deformation.

2.1. Kinematics

Since the sheet undergoes large deformations ial fieeming, the elastoplastic
behavior is described by rate constitutive equatiémorder to achieve material
objectivity, objective rates must be used. Consetlyethe constitutive models are
often written in a convenient frame in order to giify their formulation and further,
their FE implementation. A short description of thege deformation theory used in
many FE codes is recalled here.

The kinematics of large elastoplastic deformatientased on the multiplicative

decomposition of the deformation gradiéntinto plastic part-" and elastic parE°,
le.

F=F°[FP, FeO(l+e)[R 1)

In the last equation, the elastic strains are clamed small with respect to unity,
which is always true for sheet metals; neverthelasge rotations are rigorously
considered. Herel, is the second order identity tenseris the symmetric tensor of

small elastic strain|q <<1), andR is the rotation tensor. The velocity gradiénf the
strain rate tensoD and the material spidV are given by:

L=FF'=RR"+ e +RE{F’) R (2.2)

D=1(L+L")=e +D°", W=1(L-L") (2.b)

wheree and DP are the objective time derivative of the elastraisttensor and the
plastic strain rate, respectively, given by thédi@ing expressions:

° . . . —17ISym
e=ée+e[RR-RR" &, Dp:REEFpEQFp) 1} RT 3)

where[ ]*" designates the symmetric part.

The elastoplastic constitutive equations requiesube of such objective rates. A
very convenient approach consists of reformulatimege equations in terms of rotation-
compensated variables. More precisely &ndS designate second and fourth order
tensors, respectively, the corresponding rotatmmuensated tensors are defined as
follows:

A

A =00,A, S =U 00 0gS (4.a)

pars



where is an orthogonal rotation matrix, generated blgeasnssymmetric spin tensor
QusingdM" =Q.

The main interest of this approach is that objecterivatives defined like in Eq. (3)

by A=A+A [Q-QT[A, are simply related to the material time derivatigétheir
rotation-compensated counterparts via equationgssito Eq. (4.a)i.e.

AJ =00y A, éu‘kl =050 gUaU s Seas (4.b)

For example, the Jaumann derivative is obtaineseliyng @ = W , while using
O =R leads to the Green-Naghdi derivative. Jaumanis i@t considered throughout
the present work.

Note that this transformation preserves the nodefned by|A| =/AA and

|S| =/Si $« - In the following sections, all variables are wait in the co-rotational

frame, that is to say, with the rotation-compergataiables. Consequently, simple
time derivatives are involved in the constitutiepiations, making them identical in
form to a small-strain formulation. For simplicitye superposed hat (*) is omitted
thereafter.

2.2. Constitutive model framework

The Cauchy stress ragéeis given by the hypo-elastic law
6=C:D°=C:(D-D") (5)

whereC is the fourth order tensor of the elastic constanhile D and D® are the

strain rate and elastic strain rate tensors, réispdc The plastic strain rate tensbr
is given by the associated flow rule:

pr =4i%F - v (6)
Jo

whereV is the flow direction normal to the yield surfatefined by the potentidf ,

and / is the plastic multiplier to be determined frone thading-unloading criterion.
This can be expressed in Kuhn-Tucker form as

F=0(c'-X)-Y<0 (7.a)
A20 (7.b)
FA=0 (7.c)

where g is the equivalent stress, a functioneof(the deviatoric part of the Cauchy
stress) and the back-streXs whereasy is the size of the yield surface.



If the hardening is governed by the rate equatajriee form
Y = H, X=H,A (8)
the consistency conditior =0 leads to

_ V:C:D
V:C:V+V:H, +H,

9)

This expression can be used for any particuladyselface and hardening laws in
the form of Eq. (8). The analytical elastoplaséingent modulus can then be derived as

(C:v)O(v:O
V:C:V+V:H, +H,

C®=C-qa (10)

where a =1 for plastic loading and 0 otherwise. If the ten€ois isotropic, these

expressions are further simplified giving

_ 2GV :D
2G|V +V :H, +H,

(11)

and

2
cr=c-g_ 2 VIV (12)
2G|V[ +V iH, +H,

whereG is the elastic shear modulus.

So far, the material model has been kept in a g¢éaealytical form. The yield
function is defined by the equivalent str&ssand its gradien, while the hardening is
defined byH, andH,. Itis important to note that all internal statgiables (denoted

by the vectory ) are governed by rate equations of the type

y=H, (13)
Thus, a general time integration scheme can befoui#tiny hardening model or

yield function (see section 3.1). Several yielddhions can be introduced in order to

model the initial anisotropy; however, since thpgraocuses on the hardening models,

the quadratic Hill’48 yield surface (Hill, 1950) @aslopted here. This model is defined

by

Ql
]
—
é
—

(14)



whereT =¢' - X is the effective stress arM is a fourth order tensor containing the
six anisotropy coefficients of Hill.

2.3. Hardening models

As for the initial plastic anisotropy, several hemthg models can be introduced in
the framework of phenomenological elastoplasticitye classical cyclic hardening
model of Chaboche and the dislocation-based mierctstral model of Teodosiu and
Hu (1998) are considered in this work.

2.3.1.Classical cyclic hardening model

This hardening model (seeg.Chaboche, 1991) describes isotropic and kinematic
hardening with two internal state variables. Themgables are a scalar varialdke
describing the isotropic hardening, and a secoddrdensorial variable& , describing
the kinematic hardening. The variab¥e allows reproduction of the Bauschinger effect.

The isotropic hardening evolution gives the variatd the yield surface sizé by
Y=Y, +R (15)

whereY, is the initial value of the yield stress. The exmn of R is given by the
Voce's law:

R=Gy( Ry~ BA= Hd (16)
where C, characterizes the saturation rateFofand R, is its saturation value.

The kinematic hardening gives the translation ofyileél surface in the stress space.
Its evolution law is given by an Armstrong-Fredkrigpe law described by:

X=Cy (XN =X)A=HA (17)

whereC, and X, are material parameters characterizing the sataredte and
saturation value oK , respectively, whilen =T /o is the saturation direction. Note that
n is parallel to the plastic strain rate tensor fer Yon Mises yield surface, and that the
scalar functionH, in Egs. (8), (9) and (10) is found from

Hy =H;=Cg(R,;~ R (18)

This model is considered as a reference in the wuwerk, since it is widely used in
literature to take into account the Bauschingezatfin metal forming simulations.
Moreover, this model is available in many commerEmR codes, including Abaqus.



2.3.2.Dislocation-based microstructural model

This advanced hardening model is able to reprodotemly the Bauschinger effect
but also other transient hardening phenomena obdeduring two-stage sequential
rheological tests. It is based on physical consitil@ns, mainly the description of the
evolution of the so-called planar persistent diatmn structures (PPDS) and their
contribution to the hardening of the material. Rrodescription of PPDS evolution
mechanisms will reproduce the elementary trangdm@nomena observed on stress-
strain curves.

This model involves four internal state variablés; X, S and P. The variableR
is a scalar, whileX and P are second order tensors &ds a fourth order tensor. Note
that R, X and S have units of stress arfél is unitless. The presentation of the model
follows the original paper of Teodosiu and Hu (1998)

The yield surface size is given as functionfofand S by
Y=Y, +R+f|g (19)

where R describes the contribution of the randomly disti@al dislocations to the
isotropic hardening. Its evolution law is giventbg Voce’s law, Eq. (16). The term

f|q represents the affect of PPDS on isotropic hardgnvhereS describes the
directional strength of the PPDS aifidis a material parameter.

The kinematic hardening evolution law, describedh®yback-stress variabl¢ , is
given by Eq. (17). Nevertheless, the saturationevady,, is no longer a material

parameter in this model, but a function of therinéé state variabl&. This dependency
of X., on theS variable is assumed of the form

sat

Xow = Xo + (1= fJSyr +(1-r)B2 (20)

where X, is the initial value ofX_, andr is a material parameter. The ratio

sat

Bs =S, /|9 is a measure of the change in orientation of thieeat strain rate tensor

with respect to the PPDS (Teodosiu and Hu, 1995% paiameter is therefore
considered to be an indicator of strain-path chahgeolves between 0 (orthogonal
loading) and 1 (monotonic or reverse loading).

Experimental observations indicate that the PPD8cested with the current
direction of the strain rate evolve quite diffetgritom the rest of the PPDS during
strain-path change. The varialfieis therefore decomposed into two part; (scalar)

and S, (fourth order tensor), wher§, represents the strength associated with the
currently active slip systems, where@s is associated with the latent part of the PPDS.
The decomposition o6 takes the following form

S,=N:S:N, S =S-S,NON (21)



whereN =DP/|DF" | and represents the plastic strain rate direclibe. evolution laws
of S, andS, are given by

$=Col o Su— §)- h§lA= HA (22.a)

. S
S =-Cq (|S_L|

sat

] S A=Hg / (22.b)

where S_, andCg, are the saturation value and rateSpf, respectively, whileCg,
and n, characterize the saturation rateQ)f. The functionsg andh have been

introduced in order to capture transient hardeaiitgy a change in strain-path. Their
assumed mathematical forms are given below:

- C:C Si—P:N‘ P N>
g - SD P sat (23.a)
(1+P:N)™ 1-— e S otherwise
CSD+CP Ssat
h=t[p- XN (23.b)
2 XN

In these expressions, is a material parameter amlis the internal state variable
describing the polarity of the PPDS. Its evolutiaw is given by

P=C (N-P)i (24)

whereC, characterizes the polarization rate of the PPDS.

From Egs. (21) and (22), one can obtain the timevalire of the norm,

|9 =S, +S2, of the S tensor as
S|

0 n

1 . .

& =E!HSDSD— CSL(S—LJ |SJ2}1 = HA (25)
sat

Thus the scalar functioHl,, in Egs. (8), (9) and (10) is deduced for this ni@de

H, =H o+ f Hy (26)



3. Numerical implementation

The elastoplastic models introduced above have ipeglemented in the static
implicit code ABAQUS/Standard. At each equilibriutaration, a displacement
increment is predicted in each node of the mestmRhis, the kinematics equations are
employed to calculate the strain increment at éatedgration point of the finite
elements. These steps are carried out by the F& sodnly the resolution of the
constitutive equations (state update) needs telfenmed to verify the equilibrium
state at the end of the loading increment. In thlewing, we develop the state update
methodology as well as the consistent tangent nusgdulecessary to achieve the
equilibrium state at the end of each loading in@etn

3.1. Discreteform of the constitutive equations

In the previous section, Egs. (5) to (7) and (18)axshown to completely define the
constitutive model. The FE implementation of suchael requires the numerical
integration of these equations over a time incrdpfesm a known state at tinigto the
unknown state &t — given the total strain incremeft. The most widely used
method is the fully implicit, backward Euler integjon schemeg(g.Hughes, 1984;
Simo and Taylor, 1985; Ortiz and Popov, 1985). Thethod leads to the following
discrete form of the constitutive equations

Ao =C:(Ae-NeP) (27.a)
Ae? = AV, (27.b)

Fra =0 (Tht) =Y (Yree) =0 (27.c)
Ay =hy(Y .16 .0,04) (27.d)

where A(Q)=(Dl.,, — (QL,, while h, is a function that will be defined in section 3This
is a system of four equations (tensorial and sgalih the four unknowns, ,,, Ag®,

AA andy,,,. A general method for the direct resolution oftkind of system has been

proposed by Keavey (2001). Nevertheless, no agjitaof this approach have been
made where the number of internal variables becdangs €.g.more than fifty scalar
equations for the Teodosiu-Hu model). In practibes would imply a significant
increase in computation time as well as possibiereence difficulties due to the
nonlinearity of the constitutive equations. Consadly, most existing implementations
(Hartmann and Haupt, 1993; Alves, 2003; De Montleial., 2004) attempt to reduce
the size of the nonlinear system to be solved.ridrdinearity of advanced elastoplastic
constitutive models often requires the developnoésspecific time-integration
algorithms, includinge.g sub-stepping (Yoon et al., 1999; Abdel-Karim, 20Rhoei
and Jamali, 2005). Generally convergent algoritfonglastoplasticity have been
recently proposed (Armero and Pérez-Foguet, 208@&2”Foguet and Armero, 2002),
which avoid the need for specific algorithms in nmeses.
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Several methods can be adopted for the time irtiegraf the internal state variables
evolution laws such as Eq. (13). Let us restrictdmyvelopment to a particular case
where the discrete form,,,, given in Eq. (27.d), can be written under theliekdorm

yn+1 = hZ(Tn+l’ AA) (28)

More details will be given in the next section.

The remaining equationsi-e. Egs. (27.a) to (27.c) can now be rearranged and
further simplified without any assumption, by catesing the following steps:

« Take the deviatoric part of (27.a);
e SubstituteAs” from (27.b) to (27.a);
* Substitutey,,, from (28) to (27.c);

» Explicitly write C for the case of linear, isotropic elasticity (altigh this is not
required for the current development, this is alnabsays the case and it
simplifies the final equations).

Moreover, a careful analysis of the equations aotise 2 suggest3 as unknown in
the final system, instead of. Indeed,s enters Eqs. (27.b) to (27.d) exclusively as part
of T ; equation (27.a) can be easily adapted to thingdhaf variable.

With these transformations, Eq. (27) becomes

T, —6 —2GAe' +2GAAV, ,(T,.,)+ Xy (T, 81) =0 (29.a)
Fo =0 (Ty) =Y (Y e (T 84)) =0 (29.b)

1

Since the expressions of the internal state vaasatdhn all be substituted here from
Eq. (28), it follows that Eq. (29) provides thedinreduced form of the constitutive
model in its discrete form. The system size is ceduo six (five components of the
symmetric, deviatoric tensar , plusAA) in a general 3-D analysis. After solving this
system by the Newton-Raphson method and then ungdite internal state variables
using Eq. (28), the Cauchy stress is updated ubmgelation:

Gy =Gy ton,l (30)
with o;,; (spherical part of the Cauchy stress tensor)andis deduced from the
relations

o, =4t (6,.,) =1tr (6,) +Ktr (A) (31.a)

Gy = T+ Xy (31.b)

where K is the elastic bulk modulus.

11



3.2. Update of theinternal variables

In the framework of the implicit integration, seakchoices are available to integrate
the evolution equations of the internal state \des, y = h(s,y)A . The Backward
Euler scheme leads to an update equation of the &yr=h(s ,,,Y,..)A1 . Applying

this scheme to Eq. (17), for example, generatefotteaving update equation for the
back-stressX :

—_ 1 sat

Xon _m(xn-l-cxxnﬂA/‘nml) (32)

Nevertheless, for some evolution equations, aryaoal integration can be
performed. This is the case for a particular fofrsaiuration-type equations, where an
accurate asymptotic integration has been propdsegd and Walker, 1992) and has
been adopted in many FE implementatiang.Chaboche and Cailletaud, 1996;
Abaqus, 2003). For many other cases, a similar-s@ailiytical integration can be
performed under some hypotheses and the resultastilbe more accurate than the
Backward Euler formula (Hoferlin et al., 2001; Baknd Teodosiu, 1999). Consider
Eq. (17) again as an example. It is possible tarsgp variableX and A and
analytically integrate this equation, provided thais considered constant over the
increment (and equal to its value at the end ofritbeement). This hypothesis is
consistent with Eq. (27.b), wheké is also considered constant and equal to its \atlue
the end of the increment. By applying this appro&eiplicit and independent update
equations can be obtained for the Teodosiu-Hu moaeler the following form:

Xy =X, €O + X300, (1- €541) (33.)
R =R, + (R~ R, J1-e*) (33.b)
P. =P, +(N,, P, )1-e) (33.0)
SD - SD -Csp(g+h)ar +S g _ -Csp(g+h)ai 334
n+1 n € sat (g + h) e ) ( )
_1
L o n, QL
St =[St 2 = s ™ +n S an |t 2 (33.0)
S, S S,
Sn+l = SI’I;+1 + SI'I'ID"“].NI"I+1 D Nn+1 (33'1:)
2
S, =[Sk + S5 (33.9)

Note that the functiong andh in the expression fo§, as well asX_,, are

assumed equal to their values of the beginningeiricrement. These approximations
are suggested by the structure of the model andhtteomena it describes. Indeed,
from physical and experimental observations (Tendasd Hu, 1998; Teodosiu, 2003),

the evolutions ofS, and X, are known to be much slower than thos®8f ¢ or X

which are evaluated implicitly, along with all othaternal variables. From a numerical
perspective, these approximations allow the Teaddsi model to fit the requirements

12



of Eq. (28), and reduce the size of the nonlingatesn to be solved by an order of
magnitude.

3.3. Consistent tangent modulus

The convergence rate of the Newton-Raphson resalafi the equilibrium equations
depends on the form of the tangent modulus to tredanced as stated in several works,
e.g.(Hughes, 1984) and (Simo and Taylor, 1985). Thissestent modulus should be
derived from the constitutive equations used toatgdthe state variables. It relates
linearly the variation of the Cauchy stress incratite the infinitesimal variation of the
strain increment that producediit.

D(Ac) =C*™: D(Ae) (34)
To compute this modulus, the incremental formsheftiypoelastic law and the

plastic flow rulej.e. Egs. (27.a) and (27.b) are differentiated. Thi@githe following
equations:

D(Ac)=C: [D(ae)- D(ae? ) (35.2)
D(ae?)= D(AAV) = D(AA)V +24D(V) (35.h)

where
D(v)=3—\T/: D(T)=Q:D(T) (36)

and, from the differentiation of Eq. (29.b):

D(A/])=%(V —Z—U: D(T) (37)

with

_9Y _0R . JS

== (38)
GIY IV BTV

ReplacingD(A4) and D(V) by their corresponding expressions in Eq. (35iéiy
a linear relationship betweed(A¢”) and D(T), i.e.

D(Asp):{%VD(V —%}MQ] D(T) (39)

With the differentiation of Eq. (29.a) and aftensorearranging, a linear relation is
obtained betweeiD(T) and D(A¢), i.e.

13



D(T)=2GA™: D(A¢) (40)

with

A=1,+2G ivg(v—a_Yj+A)lQ +a—x+ia—xD[V—a—Yj (41)
H oT 0T H oA oT

wherel’, is the fourth order symmetric and deviatoric idtgrtensor.

By replacing D(T) by its expression in Eqg. (39) and th@l{ﬂsp) in Eq. (35.a), a
linear relation is finally obtained betwed@{As) and D(Ae), thus defining thus the
consistent tangent modulus.

Ccons -

=K (101)+2Gl, - a 4G’ {&v O (v —‘;—\T(ijQ} AT (42)

wherea = 1for elastoplastic loading and =  d@herwise.

Note that this consistent tangent modulus is evatuwith the updated variables.

3.4. Timeintegration algorithm

The return mapping algorithm, used by many authocsadopted here, assumes an
elastic prediction and a plastic correction (wheguired). This allows for a
straightforward implementation of the Backward Ewsleheme and also provides an
effective numerical counterpart of the loading-@dimg conditions (Eq. (7)), as stated
e.g.by Hughes (1984). The resulting constitutive athon is outlined in Table 1. This
algorithm has been implemented in the FE code Afaguhe form of a UMAT
routine. The cyclic hardening model is availabléhe commercial version of Abaqus
and has been used here for validation, by meaosetlement simulation of the tensile
test. The corresponding stress-strain curves ateefdlin Fig. 1. The present
implementation not only accurately fits the refa@ibaqus simulation, but this
accuracy is achieved even for very large straineiments — up to 30% of strain in one
single increment. Since the regular strain incrasana sheet forming simulation
never exceed 1% strain, the accuracy of the preddime integration scheme is thus
largely satisfactory.

4. Applications

In this section, the role played by the selecteddm@ng models in the springback
prediction is investigated. The Teodosiu-Hu moda$wriginally developed for mild
steels, which exhibit very typical transition zormdter strain-path change: early
yielding and large hardening rates, followed byidet plateaux (or even softening after
orthogonal strain-path change) — and finally rgsuom of hardening at larger strains.

It is for these reasons that a mild steel sheebban considered in this study.

14



Nevertheless, the currently growing interest far élccurate prediction of springback
mainly concerns sheet metals with increased lighighting potential for the

automotive industrye.g high strength steels. Thus a dual phase (DPJ)istatso
considered, since the Teodosiu-Hu model has bemmrsto successfully predict the
dual phase steels hardening behavior (Haddadi,&Qfl6). Dual phase steels exhibit
both a considerable Bauschinger effect and anasecamount of springback as
compared to mild steels. Lee et al. (2005b) hawevalthat the springback of dual
phase steels is comparable to the one of aluminlaysaThis is due to their similar
maximum yield stress vs. elastic modulus ratiohditgh the accurate description of the
hardening of steels requires combined isotropieikiatic hardening models, their yield
surface can be successfully described by the ckdddill’48 yield function. It is
important to note that the choice of the yield fumt (and its parameters) is a key factor
for an accurate springback prediction when anigattanon-quadratic yield surfaces are
required (Yoon et al., 1999, Geng and Wagoner 2008)s the choice of two steels is
consistent with the focus on the influence of handg.

Once a constitutive model has been chosen to thesannaterial behavior, the
corresponding material parameters must be idedtiRarameter identification for
combined isotropic-kinematic hardening models ¢hallenging task since the required
reverse straining of sheet materials leads rapadlyrinkling when compressive
stresses are developed. Numerous experimentaldanasehave been proposed for the
parameter identification of isotropic-kinematic th@ning models. Original tension-
compression tests for sheet materials have begroged by Kuwabara et al. (1995)
using fork-shaped dies and by Boger et al. (2088)Lze et al. (2005a) using flat dies
for lateral compression to prevent buckling. Theashest has been successfully used
(Miyauchi, 1984a,b; Genevois, 1992; Rauch, 1998laBat al., 2003) for reverse
loading at large strains. An identification procegltor advanced hardening models has
been proposed by Teodosiu and Hu (1998), Haddadi €001; 2006), Bouvier et al.
(2006), based on shear and tensile tests. Congatef parameters obtained by this
identification procedure have been published, émesal steels and aluminum alloys.
Parameters for advanced hardening models inclutimge of Chaboche and Teodosiu
are listed in several references.

The main interest of this identification approashhat large amounts of pre-strain
(up to 30% in shear) are used in both uniaxialitenand simple shear, followed by
large amounts of subsequent strain (typically 5098jmple shear. As we shall see
later, these values are typical for the strip drgagimulations performed in the current
work. Consequently, when the accurate descriptidheexperimental tests is enforced
during the parameter identification phase, almostthole range of pre-strains and
subsequent strains induced by our applicationensidered.

For the purpose of the current work, the mategaameters of a mild steel and a DP
steel are selected from (Haddadi et al., 2003)¢ckwhorrespond to the two material
models investigated. Table 2 shows the Hill'48iahianisotropy parameters of the two
materials and Table 3 contains the correspondingdenéng parameters — for both
models.

In what follows, the respective ability of the twendels to predict rheological strain-
path changes is investigated. Whereas the impahbeagfield surface on the simulations
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of sheet forming and particularly on springbacived| recognized, different hardening
models are often shown in literature to predictilsinspringback, when the compared
models include both isotropic and kinematic hardgr{BDS Benchmarks, 2002; Alves,
2003; Lee et al., 2005b). Two geometries of thip-strawing test are used in order to
address the usefulness of the Teodosiu-Hu modskpidngback simulations. The
numerical efficiency and robustness of the numeéncplementation is also addressed
in the context of the draw-bend test simulations.

4.1. Rheological tests smulation

A set of typical rheological tests was simulatedltstrate the behavior reproduced
by the two hardening models. These are monotosts {&ensile or shear), reverse
(Bauschinger) shear tests with several amountses$iain and an orthogonal test
(tension followed by shear). These tests have hesed by Teodosiu and Hu (1998) to
emphasize the main strain-path-change effects mehang. All tests are considered
along the rolling direction. Fig. 2 and 3 overvidve capability of the two models to
predict the transient behavior after abrupt stpath change, represented in terms of
true stress versus true strain for the uniaxiaitertests and shear stress versus amount
of shear for the shear tests. As underlined by Bwwet al. (2003), the predictions of the
two models differ especially in the transition za@ifter abrupt strain-path changes —
while their monotonic responses are almost idehfidee Teodosiu-Hu model provides
an improved capability to describe the real tramdmardening behavior for a wide
range of sheet metals (Teodosiu and Hu, 1995, 1B@8yier et al., 2003).

From Fig. 2 and 3, the comparison between the gtieds of the microstructural and
classical models shows several differences dutnagnspath change. For the mild steel
(see Fig. 2a), the Teodosiu-Hu model exhibits rapck hardening followed by
stagnation and then resumption of work hardenitey &fading reversal. The plateau
length increases with increasing pre-strain. We afste that the phenomenon of rapid
hardening immediately followed by softening in tréhogonal test is well reproduced.
As shown in Fig. 3a, these transient phenomenaotdnencaptured with the classical
model. It is noteworthy that several evolutionshef classical model significantly
improve its predictions. As far as reverse loadingoncerned, most of the recent
hardening models cited in sectioneld. Abdel-Karim and Ohno, 2000; Geng, 2000;
Chun et al., 2002a and 2002b, Chung et al., 20@5gt al., 2002, Geng and
Wagoner, 2002) would provide a better fit of bdth transient and the saturation zones.
The models of Yoshida et al. (2002a, 2002b) alsalipt accurately the stagnation and
resumption of strain hardening in reverse loadivigje involving fewer parameters
than the Teodosiu-Hu one. The later has neverthéhesability to describe other strain-
path changes — e.g. orthogonal — due to its moysigdd background.

The transient phenomena are less pronounced faludlephase steel, as can be seen
in Fig. 2b, since the work hardening at the begigrof the second path in the reverse
test is less rapid and the plateau is shorter thiathe mild steel. It is noteworthy that
the length of this plateau also increases withrheease in pre-strain. In the orthogonal
path, the shear flow stress does not exceed thrabnbtonic shear at the transient stage.
Similar observations are found by Yoshida et @0ga and 2002b) on a cyclic loading
by tension/compression.
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Clearly, the predictions of the two models diffeider non-monotonic strain-paths,
while they are similar under monotonic loading. $htineir strain-path dependency will
be the unique source of difference in sheet metahihg simulations, such as the strip
drawing springback analysis hereafter.

4.2. Springback simulations for the strip drawing test

The strip drawing test (see Fig. 4) has been pexpas a springback benchmark test
at the NUMISHEET’93 (1993) conference. Since tlhhbrs test has been recognized as
a reference benchmark test both for the experirhenestigation of metal sheets and
also for the validation of numerical simulationsgftlasson et al., 1995; He and
Wagoner, 1996; Duffett et al., 2002; Sabourin gt28l02; Lee et al., 2005b; Dongjuan
et al., 2006; Firat, 2006). This test is used het@ghlight the effect of the hardening
models, combined with process and numerical paemsmieésome of the most important
geometrical characteristics of the test are thegafW, D/W, andT/R, whereW is the
punch widthL is the initial strip lengthD is the drawing strokd, is the sheet thickness
andR is the punch/die radius. Springback is not ontgéa for larger values of these
ratios, but the simulation is also more challengind more sensitive to the modeling
parameters. Two test geometries are investigated; corresponding geometrical
parameters are given in Table 4.

The numerical simulation of both the drawing anel springback steps is performed
with the static implicit code Abaqus/Standard. Gitiee small radii/thickness ratios, the
sheet is modeled with solid elements for a betteuacy. For computing time
convenience, all the simulations are performedgiplane strain solid elements. This
choice is sufficient for comparison purposes. Itgortant to note, however, that for a
more rigorous simulation, three-dimensional effettsuld also be taken into account.
Also, the tools are simply modeled using rigid anefs.

4.2.1.“Smooth” test geometry

Several physical and numerical factors have beemtifted in the literature to have a
considerable influence on springback. A generasisigity study has been realized in
this work, using the so-called smooth geometrye€lof the most representative series
of simulations are shown in Fig. 5. This figureigtrates the influence of the blank
holding force (BHF), the hardening law and thetérelement formulation.

The impact of the BHF as a process parameter fdigiged in Fig. 5a. The amount
of springback is inversely proportional to the BHitdeed, the increase of the BHF
increases the stretching force on the sheet whacbrnes the predominant loading as
compared to bending. Consequently, the stresshdistin is more uniform and the
residual bending moment is smaller as the BHF am®e. This means that upon
unloading, springback should decrease with incie8s¢~. Experimental tests
systematically confirm this tendency for differematerial grades (seeeg Chu, 1991;
NUMISHEET 93 Benchmark Problem, 1993; Kuwabaraleti®96).

The effect of the hardening model is almost absetitis simulation. Even extreme
cases of purely isotropic hardening law or pureheknatic have little impact. The
parameters of these simplified models — descrilyelds. (16) and (17), respectively —
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have been identified using a single tensile ststxs8n curve and the values are given in
Table 5. Finally, the hardening curve has also laettly input in Abaqus as a table of
stress-strain data — the simplest way to descipgeming in a FE code. As shown in
Fig. 5b, and as pointed out by several autheixg.Bouvier et al., 2005; Lee et al.,
2005b), there is no significant difference in tineoaint of springback even when using
these three simple models, despite the fact tlegptedictions of a reverse shear test
would be very different (see Fig. 7 in next sectidrhis result is due to the low
thickness/die radius ratio, combined with a sigaifit friction force. Indeed, when a
uniform stretching is superposed on pure bendhgystress gradient in the thickness is
reduced and for a given amount of stretch, alkstkalues in a section will have the
same sign. In this case, there will be no stressrsal during draw-bending and the
only useful part of the hardening model would IBenitonotonic aspect. This hypothesis
is further investigated in the next section.

Several numerical parameters are known to influ¢inegrediction of springback. Li
et al. (2002) have investigated in detail the inhmdi¢he number of through-thickness
integration points, the difference between solid shell elements etc. Here, the
analysis is restricted to plane strain two-dimenaicolid elements and to a fixed
number of integration points through the thicknisar layers of elements through the
thicknessj.e. eight integration points). Nevertheless, thre&edgnt formulations of
such elements, available in Abaqus/Standard, readktb somewhat different
springback profiles. The reduced integration elenogrrestimates springback since its
stiffness is too low, as compared to fully integthelements. This FE phenomenon is
due to the so-called hourglass modes or zero-emeogles which require an efficient
stabilization technique. On the other hand, fuliegrated linear elements are known to
be too stiff, especially when loaded in bending thushear, and sometimes volume,
locking. It is for these reasons that the lineanpl strain element CPE4I of Abaqus
(2003) is preferred in this work. This element pd@s selective reduced integration to
prevent volume locking for almost incompressitdey(plastic) behavior, as well as
incompatible modes additional degrees of freedopréwent shear locking (Simo and
Armero, 1992). These elements are particularlyghesi for an accurate description of
bending strains. Moreover, the aspect ratio oefleenents has been kept equal to one
for all the simulations in order to preserve anropt accuracy. This also allowed for a
satisfactory number of elements along the radihefpunch and the die. In the worst
case, the turning angle did not exceed 5.5°. Ul elements have been required to
ensure these conditions for all the simulationgigin the next section.

Nevertheless, it is important to note that the iotjd the finite element formulation
can be as important as the hardening law. For @giplns where greater accuracy is
required, the development of advanced constitutiveels may also require the
development of accurate finite elements @eeYoon et al., 1999).

In conclusion, there is significant influence oé thiank holding force, FE
formulation and other numerical factors (Haddaglet2005) on the springback for this
geometry. However, this geometry is not very saresib the hardening model. This
makes such geometries not suitable to compareviheiaterial models under study.
Consequently, a different test geometry has beed umsthe following section for this
purpose, since it exhibits “sharper” dimensions.
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4.2.2.“Sharp” test geometry

To highlight the influence of the hardening modelspringback, a second strip
drawing test geometry has been considered (TillRaab, 2005). Indeed, the radii of
the die and punch are smaller, thus inducing aage&ostrain-path change over the die
radius by bending/unbending with stretching dutimg drawing sequence. Hence, both
the transient hardening and springback predictethé&ywo hardening models should
differ.

As stated in several works.{. Pourboghrat and Chu, 1995; Carden et al., 2002;
Geng and Wagoner, 2002; Lee et al., 2005a, 200&8b8d&f et al., 2004, 2005), the
bending/unbending (with or without stretching) loé¢ tsheet is the principal mode of
deformation that affects springback. The unbendemuence can be considered as a
reverse loading and therefore the reverse shdaraede used as a typical
representation of this mode of deformation, in otdenterpret the difference on
springback predicted with the two hardening modeig. 6 shows the reverse shear
curves, predicted by the two models, at two amoohgse-strain (10 and 30%) and for
each material. It is noteworthy that these twoipaldr pre-strain levels have been used
for the identification of the constitutive parantsteas indicated in the appendix.

The predictions of the two models differ stronghder non-monotonic strain-path,
while they coincide under monotonic loading. Thhe, predicted springback can be
almost model-independent (as it has been the casled “smooth” geometry and as
reported in literature), if the sheet undergoeset@-dominated strain history.
Nevertheless, if the strain history becomes benrdmminated, the stress distribution at
the end of the forming simulation will strongly ae on the material model —
implying different results in terms of springbaéls a general trend, one can conclude
that for a wide range of strain following the sresversal, the classical model
overestimates the stresses with respect to thestractural one; only for the mild
steel, a different situation may be expected foalspost-reversal strains.
Consequently, an overestimated springback shouékpected with the classical
model. The simpler, purely isotropic or kinematardening models, should provide the
extreme springback values in most cases, as seghegtheir rheological predictions
in Fig. 7. The predictions of these simple mode¢sanly provided in the paper as they
represent well known academic bounds, while isatrapd kinematic hardenings occur
simultaneously in the two advanced models compiaréfte current work.

The second test geometry has been selected tdigatesthe validity of this intuitive
development. Fig. 8 and 9 show the springback prediwith the different models and
for each material, corresponding to this new geogmét high and a low BHF are used
for each material. In these test conditions, highein levels are reached during the
simulations. More specifically, the maximum amoahpre-strain at the end of the
bending sequence ranges from 0.13 to 0.32 (equivaleain), depending on sheet
thickness, constitutive model and holding force.dde hand, one can conclude that the
range of pre-strains is covered reasonably wethkyheological tests used for the
parameter identification. On the other hand, tietsans are about three times larger
than the pre-strain levels reached with the “smbg#ometry.
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For the mild steel (see Fig. 8), there is a sigaiit difference in the amount of
springback as predicted by the two combined hamdemodels; the classical model
predicts a larger springback for each BHF. Thisltesorrelates well with the previous
intuitive statements based on the analysis oftifess reversal behavior. One can
reasonably conclude that for this material and ggomthe bending/unbending loading
is the predominant effect compared to the stretehtd the applied BHF. The
predictions of the isotropic and the kinematic lemidg models confirm this
conclusion.

For the high strength steel (Fig. 9), howeverrgdaspringback is obtained with the
microstructural model when the low BHF is appli€te interpretation of this result
simply from the reverse loading analysis is naigtitforward, since the classical
model still overestimates the stress during thersg@doading path, as shown in Fig. 6b
— thus the same tendency should be obtained éisdfonild steel. A realistic
interpretation should take into account the ac$tralin history and the resulting stress
distributions in the part before springback. Ibs/ious from Table 4 that, since the
thickness of the two materials is not the samesttan levels and the corresponding
stress distributions through the thickness wilbliféerent as compared to the mild steel
simulation. Thus, simple and general trends aretpnétations cannot be easily
deduced for such applications and the accurate ncatheimulation of the process is
required.

Again, when the stretching becomes important wegpect to the bending, the
difference in the amount of springback given byttkie hardening models tends to
vanish. This is achieved here by considerably emirey the blank holding force (see the
high BHF in Fig. 9).

The computational efficiency of the numerical impéntation has been analyzed for
these springback simulations. For this purposehelsimulations have been performed
with the same number of time increments (1100Ceimants during the entire
simulation). Table 6 gives the total number of &qrium iterations of the finite
element code required for each simulation and &henaterial model. This table
clearly indicates the current implementation igffigient as the built-in constitutive
algorithms of Abaqus. Moreover, as shown in tablth& computing time is not
affected by the use of the Teodosiu model, in campa to the Chaboche model or
even to the Abaqus built-in models. This perforngaiscdue to two factors. First, in a
static implicit FE code the CPU time is mainly tethto the equilibrium resolution.
Thus the constitutive algorithm has a reduced irnpac¢he total computing time.
Moreover, the nonlinear systems solved by the dotise algorithms developed here
have the same size for both material models. Thaigo time is therefore identical,
although the accuracy and complexity of the two etedre very different.

5. Conclusion

Two combined isotropic-kinematic hardening mod#is,classical Chaboche model
and the microstructural Teodosiu-Hu model, are canexb in this paper in order to
show the impact of the transient hardening on gpiack. These models differ in their
capability to reproduce the transient hardeningipheena which occur upon abrupt
strain-path changes; the Teodosiu-Hu model is knimyprovide a better description of
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two-stage experimental tests. An implicit time gregtion algorithm has been developed
and implemented in a FE code to simulate sheetlfuetaing processes. A springback
analysis has been performed by means of a stnpinigsbenchmark test. The influence
of the hardening model has been specifically hgtied. The following concluding
remarks can be drawn:

* Animplicit state update algorithm for a categofyime independent,
anisotropic, large strain elastoplasticity models heen developed and described
in detail. The Chaboche model and the Teodosiu-Kddehare shown to fall into
this category. This paper provides a frameworkliernumerical implementation
of these models that can be readily applied torctimilar models.

* The numerical implementation of this algorithm lne tommercial FE code
Abaqus/Standard is accurate and robust enougmidatie sheet forming
operations, like the strip drawing tests analyzethis paper. The computing
time of the FE simulations does not depend on ¢tected hardening model,
although the number of internal variables, as aglthe complexity of the
modeled behavior is very different between the tamlels.

* For the simulation of many forming operations, theice of hardening law is
less important than the uncertainty of other sitiotaparameters (mesh size,
element type, number of integration points). Thadsth” geometry considered
in this paper is an example of this type of operati

* For some forming operations, however, the choideandiening law is more
important than these uncertainties. The “sharp’hggtoy considered in this paper
falls into this category.

One should note that in these tests the predomstiemih path is the strain reversal,
due to the bending-unbending sequence; there @sthogonal strain-path change. For
such cases, other models (e.g. Chun et al. 200ghida et al. 2002) can also provide
accurate simulations. For more complex indusfniatesses, e.g. involving multi-step
operations, one can expect to further improve imelstion accuracy by using more
physically-based models, such as the Teodosiu-Hiemo
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Figure captions

Fig 1. Simulation of a tensile test with the claasimodel; validation of the numerical
implementation.

Fig. 2. Rheological predictions with the microstural model. a) Mild steel and b)
Dual phase steel. UT: uniaxial tension; SS: sinspkear; BS: Bauschinger shear at 10,
20 and 30% of pre-strain; OR: uniaxial tension@wf@% of pre-strain followed by
simple shear in the same direction.

Fig. 3. Rheological predictions with the classitaldel. a) Mild steel and b) Dual phase
steel. UT: uniaxial tension; SS: simple shear; B&ischinger shear at 10, 20 and 30%
of pre-strain; OR: uniaxial tension up to 10% ad-gtrain followed by simple shear in
the same direction.

Fig. 4. The strip drawing test geometry.

Fig. 5. “Smooth” test geometry: shape of the stfipr springback. Influence of a) the
blank holding force (BHF), b) the hardening modsd &) the formulation of the finite
element.

Fig. 6. Comparison between the two hardening madelse reverse shear test at 10
and 30 % amount of pre-strain: a) Mild steel an®bal phase steel.

Fig. 7. Predictions of the simple shear test, dft®t of pre-strain in shear in the
opposite direction, with the purely isotropic harohg, the purely kinematic hardening,
the classical Chaboche model and the microstrudfliemdosiu) model. a) Mild steel
and b) DP steel.

Fig. 8. “Sharp” test geometry: shape of the stfipraspringback. Influence of the
hardening model and of the blank holding force (B the mild steel a) Low blank
holder force (BHF=24kN); b) High blank holder for@HF=72kN).

Fig. 9. “Sharp” test geometry: shape of the stfipraspringback. Influence of the

hardening model and of the blank holding force (B the Dual phase steel. a) Low
blank holder force (BHF=84kN); b) High blank holderce (BHF=324kN).
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Table 1
Return mapping algorithm over one increment indbvotational frame

1.

Input data: strain increment, stress and intertaa¢ s/ariablesAe, o, andy

2. Elastic predictions!’, =¢, +C: A
3.
4. If elastic behavior then:

Check the yield criterionF, = F (o‘;{l,yn) <07?

State updates,,, =o;, andy ,, =y, > goto 8.

Otherwise ie. elastoplastic behavior), continue.

Initialize: T,,, =o,, =X, andAA =0

UpdateT,,, andAA by solving Eqg. (29) by Newton-Raphson.
State update:

Y . With Eq. (28)

6., with Egs. (30) and (31)

Compute the consistent tangent modulii®* with Eq. (42).
Returne,,, and C*™ to check the equilibrium state.
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Table 2
Initial anisotropy: Hil'48 parameters for the tveteels

Material Mild steel Dual phase steel
Thickness (mm) 0.68 1.2

F 0.234 0.428

G 0.339 0.562

H 0.662 0.438

N 1.35 1.09

L, M 1.5 1.5
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Table 3

Hardening parameters of the two steels

Mild steel Dual phase steel
Classical Microstructural Classical Microstruclura

Yo (MPa) 356.1
R (MPa) 225.5 75.12 331 77.02
Ce 4.14 23.29 5.88 558.9
X (MPa) 78.26 - 220.4 -
Cy 28.9 361.9 70.93 65.1
X, (MPa) 7.3 120.4
S (MPa) 233.3 313.3
Cso 3.75 8.67
Cq. 1.097 0
C, 2.42 1.53
n 0 0
n, 974 700
f 1 0.49
r 0.86 0
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Table 4
Strip test geometries

Dimensions Test 1 “smooth”

Test 2 “sharp”

L/W 4.4 6.4
D/W 0.9 1.7
T/R 0.2 0.23and 0.4

42



Table 5
Hardening parameters of the two steels — simplifnediels

Mild steel Dual phase steel
Purely Purely Purely Purely
isotropic kinematic isotropic kinematic
Yo (MPa) 161.7 356.1
R (MPa) 303.75 - 551.40 -
o 5.1 - 9.3 -
X (MPa) - 303.75 - 551.40
C, - 5.1 - 9.3
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Table 6

Total number of equilibrium iterations for the silation of strip-drawing and
springback with the sharp geometry

Mild steel Dual phase steel
BHF (kN) 24 72 84 324
Isotropic (Abaqus) 23605 24657 20852 23725
Kinematic (Abaqus) 24546 25442 22851 24343
Chaboche (Abaqus) 24640 21868 22419 27799
Chaboche (UMAT) 24552 21905 22319 27466
Teodosiu (UMAT) 22120 22729 21944 23222
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Table 7

Total CPU time (in hours) for the simulation ofigtdrawing and springback with the
sharp geometry

Mild steel Dual phase steel
BHF (kN) 24 72 84 324
Isotropic (Abaqus) 57.18 61.23 35.86 39.72
Kinematic (Abaqus) 60.81 62.28 38.41 40.42
Chaboche (Abaqus) 60.69 55.2 38.18 45.03
Chaboche (UMAT) 61.62 57.12 38.59 45.57
Teodosiu (UMAT) 57.66 58.35 38.61 40.01
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