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ABSTRACT 

The accurate prediction of both the elastic properties and the thermal expansion coefficients is 

very important for the precise simulation of such processes as injection molding of short-fiber 

polymer-matrix composites.  In this work, a two-step homogenization procedure is applied 

and compared with experimental values obtained on a polyarylamide/glass fiber composite for 

a broad range of temperatures.  It is observed that the stiffness averaging version of the model 

surpasses the compliance averaging variant, especially when it is combined with a precise 

evaluation of the fourth-order orientation tensor.  It is also demonstrated that the orthotropic 

closure approximations are significantly better than previous ones (linear, quadratic, and 

hybrid) and than a very recent one.  Among the orthotropic closure approximations, the fitted 

ones lead to acceptable results, which are very close to those obtained with the experimentally 

measured fourth-order orientation tensor. 
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1. Introduction 

Short-fiber reinforced polymer-matrix composites constitute an important class of 

technical materials, because of their technological and economical interests.  In particular, 

such composites with non-aligned reinforcements are of considerable importance because of 

their good thermoelastic properties.  Even if both the matrix and the fibers are isotropic, the 

composite is usually anisotropic because of the non random orientations of the fibers: it is 

stiffer and stronger along the direction of dominant orientation, for instance. In the present 

paper, both the elastic and thermal properties of a polyarylamide/glass fiber composite, 

obtained by injection molding, are estimated and measured.  

Several theories ([1, 2] for instance) proceed in two steps to predict the overall 

thermoelastic properties of such materials: first, the properties of a unidirectional composite 

are estimated, and then an orientation averaging procedure is applied over all directions.  For 

the first step, it has been shown by Tucker and Liang [3] that, among a set of available 

theories, the Mori and Tanaka model [4, 5] gives satisfactory results when compared with 

finite element simulations.  This is consistent with the previous comparisons with 

experimental results performed by Peyroux [6], for instance. In this paper, emphasis is put on 

the orientation averaging stage.  Materials with isotropic distributions of fiber orientations [5, 

7, 8] and/or planar isotropic distributions [9] have been considered much less often than 

unidirectional composites, and even fewer studies have focused on general orientation 

distributions [10, 11, 12].  The orientation distribution function, which describes the 

probability of finding fibers with a given orientation in the specimen, depends on two angular 

variables and is uneasy to manipulate in commercial codes for the simulation of injection 

molding.  This has been used by Pierard et al. [13] though, but it has also been proposed to 

rather define suitable orientation tensors, which depend on a small number of variables.  

Advani and Tucker [14], for instance, used orientation tensors that had been introduced by 
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Hand [15]. The second and the fourth-order orientation tensors are needed to apply most 

micromechanical models, but the fourth-order one is unavailable usually and, therefore, 

several closure approximations have been proposed. This is the type of approach that is 

evaluated in the present paper.  

The paper is organized as follows.  In Section 2, the two-level homogenization technique 

used to predict the elastic properties from the distribution of fiber orientations is described, 

and the procedure to deduce the thermal expansion coefficients is detailed. In section 3, 

experimental determinations of fiber orientation and thermoelastic properties of both matrix 

and composite are presented. In Section 4, the theory is applied to a polyarylamide/glass fiber 

composite with a distribution of fiber orientations that is typical of injection molding. Several 

approximation closures are implemented, and the results are compared with original 

experimental data. 

 

2. Theory 

2.1 Elastic properties 

As mentioned in the Introduction, the effective elastic properties of a unidirectional 

composite containing up to 20% by volume of short fibers can be evaluated accurately with 

the Mori-Tanaka model.  Detailed derivations can be found in [3], for instance, and only the 

final expression needs being given here: 

MTmf
f

mUD c A:CCCC )( −+=                                                             (1) 

where letters f and m refer to the fibers and to the matrix, respectively, with stiffness tensors 

fC  and mC . Perfect bonding is assumed between the matrix and the fibers (with a volume 

fraction 
f

c ), which are axially symmetric.  The strain concentration tensor in the fibers MTA  

that the model deduces is obtained from the Eshelby tensor [16] E for a prolate spheroid 

having the same aspect ratio as the fibers: 
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1])1[( −+−= AI:AA
ff

MT cc            with          1)]([ −−+= mfm
CC:S:EIA        (2) 

where I  is the fourth-order identity tensor and 1
)(

−= mm
CS  denotes the compliance of the 

matrix material.  The components of the Eshelby tensor, which depend on the fiber aspect 

ratio and on the matrix elastic constants, can be computed from the expressions given by 

Mura [17].  An important property of the Mori-Tanaka model is that the dual approach in 

terms of compliances, leading to 

 MTmf

f

mUD c B:SSSS )( −+=           with        mMTfMT S:A:CB =                        (3) 

where MTB is the stress concentration tensor in the fibers, is such that UDS  is the inverse of 

UDC . 

When a distribution of fiber orientations is present in a composite, the method of Advani 

and Tucker [14] can be used, where the properties of an auxiliary unidirectional composite are 

weighted by the orientation distribution function.  In terms of the elevation  and azimuthal  

angles, θ  and ϕ , the effective stiffness of the composite then writes as 

 
Ω

Ω= d),(),( ϕθψϕθUDCC         (4) 

where ),( ϕθψ denotes the orientation distribution function and Ω  is the unit sphere, with  

1d),( =Ω 
Ω

ϕθψ  and ϕθθ ddsind =Ω  .  The stiffness of the auxiliary unidirectional 

composite ( )ϕθ ,
UD

C  is obtained from (1) with the symmetry axis defined by the angles θ  

and ϕ , by taking fc  equal to the total volume fraction of fibers in the misoriented composite.  

The latter condition may lead to a quite stiff auxiliary unidirectional composite, but this is 

balanced by the weighting procedure.  This method, proposed by Dunn et al. [10] and recently 

applied by Pierard et al. [13], requires the probability density function to be specified. 

Although it can be determined numerically from flow-induced fiber rotations for simple flow 

conditions, it is very expensive to compute for three-dimensional flows.  Its experimental 
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determination is possible, but this requires a lot of effort and time.  Therefore, simplified 

descriptions of the orientation distribution are preferred, such as using orientation tensors 

defined by the second and fourth moments of the orientation distribution function: 

 
Ω

Ω= d),( ϕθψjiij ppa  and  
Ω

Ω= d),( ϕθψlkjiijkl ppppa   (5) 

where ),( ϕθp  is a unit vector parallel to a fiber direction, with components 

θϕθϕθ cossinsincossin 321 === ppp   .    (6) 

The expressions in (5) clearly show that jiij aa =  and, similarly, that any permutation of the 

four subscripts keeps 
ijkl

a  constant.  Moreover, 1
2

3

2

2

2

1 =++ ppp  implies that 

1and11 ===
ijijiijjii

aaa      (7) 

(with summation over repeated subscripts, as everywhere in this paper).  As a result, there are 

only 5 independent ija  components and only 13 independent ijkla  components.  Moreover, the 

following relation is obtained easily between the components of the two tensors: 

 
ijijijij

aaaa =++
332211

   .         (8) 

Isotropic fibers and matrix are considered in this work, and therefore the auxiliary 

unidirectional composite is transversely isotropic and can be written as [2]: 

 
)()

()(),(

54

321

jkiljlikklijilkjiklj

jklijlkiijlkkljilkji

UD

ijkl

CCpppp

ppppCppppCppppCC

δδδδδδδδ

δδδδϕθ

+++++

++++=
(9) 

where 
ij

δ  is the Kronecker symbol and the five constants 1C ,…, 5C  are related to the 

standard components of the stiffness tensor (with symmetry around axis 1): 

UDUDUDUD

UDUDUDUDUDUDUD

CCCCCCC

CCCCCCCCC

2121522114212132323

221133222212132322211332233331 242

==−=

−=+−+−=
  .      (10) 

Consequently, the orientation averaging (4) leads to: 

1 2 3

4 5

( ) ( )

( )

ijkl ijkl ij kl kl ij ik jl il jk jl ik jk il

ij kl ik jl il jk

C C a C a a C a a a a

C C

δ δ δ δ δ δ

δ δ δ δ δ δ

= + + + + + +

+ + +
 (11) 
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Alternatively, an averaging of the compliance tensor of the auxiliary unidirectional 

composite, defined by five constants 1S ,…, 
5

S , leads to : 

1 2 3

4 5

( ) ( )

( )

ijkl ijkl ij kl kl ij ik jl il jk jl ik jk il

ij kl ik jl il jk

S S a S a a S a a a a

S S

δ δ δ δ δ δ

δ δ δ δ δ δ

= + + + + + +

+ + +
   (12) 

but, in spite of UDS  being the inverse of UDC , this effective compliance S  is not the inverse 

of the effective stiffness C  obtained above.  This is a limitation of the present two-step 

approach. Many authors [2,14,18] prefer stiffness averaging to compliance averaging, because 

of a better agreement with experimental elastic constants, but without discussing the effect on 

thermal properties.  In the present work, both the elastic and thermal properties predicted for 

the composite are considered, and they are compared with experimental results in Section 4. 

 

2.2 Closure approximations 

Another drawback of the orientation averaging method is that the fourth-order tensor ijkla  

is required to evaluate the effective stiffness (or compliance) tensor, whereas flow simulation 

codes usually store the second-order tensor 
ij

a  only.  Several ways of relating these two 

tensors have been suggested, such as the linear, quadratic, and hybrid first generation closure 

hypotheses.  They are given respectively by: 

)(
7

1
)(

35

1
iljkikjlijkljkiljlikklijjkiljlikklij

L
ijkl aaaaaaa δδδδδδδδδδδδ ++++++++−= (13) 

which is exact for a completely isotropic distribution of fiber orientations, 

klij

Q

ijkl
aaa =            (14) 

which is exact for aligned fibers, and 

Q

ijkl

L

ijkl

H

ijkl
afafa +−= )1(         (15) 
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which is an intermediate between the quadratic and the linear closures weighted by a 

coefficient 0 1f≤ ≤ . Two expressions for the weighting function f in terms of the tensor ija  

have been suggested by Advani and Tucker [14, 19], such that f = 1 for perfectly aligned 

fibers and f = 0 for a completely isotropic distribution:  

2

1

2

3
−= ijij aaf   or  )det(271 ijaf −=    (16) 

where )det(
ij

a  denotes the determinant of tensor 
ij

a . In the sequel, type A and type B hybrid 

closures will refer to using respectively the left and right part of (16).  For the special cases 

where the fiber distribution is planar, two-dimensional variants of (16) have also been 

proposed [19]. Since the experimental fiber distribution considered is not strictly planar, as 

shown below, emphasis will be put on the three-dimensional versions of the closure 

hypotheses in the present work. 

Noting that fiber orientation distributions frequently include a strong 1D or 2D 

component, Doghri and Tinel [20] have very recently proposed a new closure approximation 

by weighting the 1D, 2D and 3D components of a general fiber distribution: 

1 2 3 1 2 2 3 3
1 2 3 1 2 1

1 1 1

, , ,D D D a a a a a
A A A A

a a a
α α α α α α

− −
= + + = = =  (17) 

where ai denote the eigenvalues of the orientation tensor aij (a1 > a2 > a3), A
1D is the quadratic 

closure, A
2D

 and A
3D

 being deduced from the hybrid closure. Much earlier, Cintra and Tucker 

[21] had defined fourth-order orientation tensors that use the principal axes of the second-

order tensor aij to define the three planes of an orthotropic symmetry. Such fourth-order 

tensors aijkl can be written as Amn in the contracted 6x6 notation that is usual in the theory of 

elasticity. When expressed in the principal coordinate axes, an orthotropic fourth-order tensor 

has nine independent components, but once full symmetry and normalization conditions (7) 

are applied, the number of independent components reduces to 3.  Since the sum of a1, a2 and 

a3 equals 1, defining an orthotropic closure approximation reduces simply to choosing three 
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scalar functions f, such that 
1 2

( , )
iiii i

a f a a=  (no sum over i). Cintra and Tucker [21] used 

second-degree polynomials: 

 2 2

1 2 1 3 1 4 2 5 2 6 1 2iiii i i i i i i
a C C a C a C a C a C a a= + + + + +  (18) 

where C is a 3x6 matrix of coefficients defined either by using specific orientation 

distributions (1D, random 2D or 3D, leading to the smooth version of their approach), or by 

fitting on distributions obtained for a set of flow fields (fitted  version). Later, Chung and 

Kwon [22] extended the set of flow fields and obtained another fit for the second-order 

polynomials; they also proposed using third-degree polynomial functions. At this point, it 

may be mentioned that the linear closure approximation is orthotropic and can be written in 

the form of (18): 

 ( )
1111

2 2

2222 1 1 2 2 1 2

3333

3/ 35 6 /7 0 0 0 0

3/ 35 0 0 6 / 7 0 0 1 '

27 / 53 6 / 7 0 6 /7 0 0

a

a a a a a a a

a

−" # " #
$ % $ %= −$ % $ %
$ % $ %− −& ' & '

 (19) 

The 3x6 matrices pertaining to the smooth and fitted Cintra-Tucker approaches can be found 

in [21], and another one is given by Chung and Kwon [22], using their improved fitting 

procedure. The quadratic closure is not orthotropic, and therefore this applies also to the 

hybrid closure and to the one proposed Doghri and Tinel. The natural closure approximation 

proposed by Verleye et al. [23] has orthotropic symmetry, but the three independent 

components of the fourth-order tensor are defined as polymonial functions of the second-

order tensor invariants. As Cintra and Tucker have got very similar results for their fitted 

closure and the natural one on several flow fields, the latter closure approximation was not 

tested in the present work. It can be also noted that the natural closure approximation is 

tedious to compute. 

Consequently, several evaluations of the elastic properties of the composite will be 

obtained, according to whether the stiffnesses or the compliances are averaged and depending 

on the closure approximation used: linear, quadratic, hybrid of type A or B, Doghri-Tinel 
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closure, smooth and fitted variants of the Cintra-Tucker approach, and the second-order 

polynomial fitted by Chung and Kwon. 

 

2.3 Thermal expansion 

In thermoelastic materials, the stresses are related to the total strain and to the temperature 

change by 

TT ∆−=∆−=  !:C"!:C# )(         (20) 

 where "  and  are symmetric second-order tensors that define the thermal expansion and the 

thermal stress, respectively.  This suggests strongly that the thermal properties of a composite 

are closely related to its elasticity.  This is especially true for a short-fiber composite 

containing two phases only, where the relation obtained by Levin [21] applies: 

ffmmmmff
":SS:SS":SS:SS"

11
)()()()(

−− −−+−−=  .   (21) 

It means that the thermal expansion can be evaluated directly from an estimation of the 

effective compliance S  tensor.  This remarkable result is obtained from the general 

expression ff

f

mm

f cc B:"B:"" +−= )1(  where the stress localization tensors mB  and 

f
B in the two phases are eliminated by using f

f
m

f cc BBI +−= )1(  and 

ff
f

mm
f cc B:SB:SS +−= )1( .  Similarly, elimination of the strain localization tensors m

A  

and f
A  between ff

f

mm

f
cc A: A:  +−= )1( ,  f

f

m

f
cc AAI +−= )1(  and 

ff

f

mm

f
cc A:CA:CC +−= )1( implies that the thermal stress can be estimated directly 

from the effective stiffness tensor as: 

ffmmmmff
 :CC:CC :CC:CC 

11
)()()()(

−− −−+−−=  .  (22) 

Usually,  (22) is not used because it is equivalent to (21) when ":C =  (which is expected 

from (20)) and 1−= SC  are used, but the latter relation does not apply to the model considered 

in this work, which leads to effective stiffness and compliance tensors that are not inverse to 
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each other because of the orientation averaging procedure.  As a result, (21) on the one hand, 

and (22) combined with  :C"
1−=  on the other hand, provide two different evaluations of 

the thermal expansion. 

 The fact that the effective compliance tensor is obtained here from an averaging 

procedure has another important consequence in the special case that we consider, where the 

thermoelastic properties of both the matrix and the fibers are isotropic.  In these conditions, 

the effective compliance tensor S , which is anisotropic for a general orientation distribution 

of the fibers, is contracted in (21) with the isotropic second-order tensor 

)()(
1 mfmf

"":SS −−
− .  Since any isotropic second-order tensor is proportional to the 

second-order identity tensor 
ij

δ , the term containing S  in (21) will be proportional to 

       

ijij

kljkiljlikklklij

kliljkikjljkiljlikklijklklijklijklklijkl

SSSaSSS

SS

aaaaSaaSaSS

δ

δδδδδδδδ

δδδδδδδδδδ

)23()43(

)(

)()(

542321

54

321

+++++=

+++

++++++=

(23) 

according to (13), and using (8) to replace 
ijkk

a  by 
ij

a .  Consequently, the thermal expansion 

obtained will depend on the second-order orientation tensor only, and will be independent of 

the closure approximation considered.  Similar arguments apply to the thermal stress, but 

using  :C"
1−=  subsequently to get thermal expansion will reintroduce an influence of the 

closure approximation through its effect on C . 

Another method for obtaining the thermal properties, similar to what has been done in the 

previous section for the elastic properties, consists in performing the orientation averaging 

directly on the thermal properties of the auxiliary unidirectional composite.  Applying Levin’s 

formula to this composite, one obtains: 

ffmUDmmmfUDfUD
":SS:SS":SS:SS"

11 )()()()( −− −−+−−=   (24) 

and 

ffmUDmmmfUDfUD
 :CC:CC :CC:CC 

11
)()()()(

−−
−−+−−=   (25) 



 11 

which are equivalent through UDUDUD
":C =  (recall that 1)( −= UDUD

SC ).  Since (24) is 

linear with respect to UD
S , the assumption that both phases are isotropic implies that 

averaging UD
"  comes down to averaging UD

S  only in (24), what leads exactly to (21).  The 

same considerations apply to (25), which gives (22).  Therefore, this method does not provide 

new evaluations of the thermal properties in the present case. 

Consequently, several evaluations of the effective thermal expansion coefficients are 

obtained:  one is independent of the closure approximation and is deduced from compliance 

averaging, whereas stiffness averaging leads to different variants for each closure 

approximation used. They are compared with experimental values in Section 4. 

 

3. Experimental  

A short-fiber composite (IXEF 1002 supplied by Solvay) has been analyzed in this study. 

It was made of a polyarylamide (semi-crystalline aromatic polyamide) matrix containing 16.5 

% (volume fraction) of glass fibers with an aspect ratio equal to 25. Both constituents were 

isotropic, with an influence of temperature on the Young modulus, Poisson’s ratio and 

thermal expansion coefficient of the matrix as shown in Fig. 1, whereas these parameters were 

assumed to be temperature-independent in the fibers, and equal to 74 GPa, 0.25 and 5 10
-6
 C

-1
, 

respectively. The matrix Young modulus was measured by tensile and dynamic torsion tests; 

the expansion coefficient by dilatometry tests and the Poisson’s ratio was deduced from the 

compressibility modulus K measurement as (3 / ) / 6E Kν = − . 

60x60x1mm
3
 plates of this polyarylamide/glass fiber composite have been mold injected 

through a 0.8mm-thick end-fan gate to provide a parallel flow front. Orientation distributions 

and moduli have been measured in the center of the plates. Since the thickness of the plate is 

small, the fiber distribution does not change significantly through the thickness (for instance, 

a11 in the flow direction does not vary more than 15%) and no skin-core distribution appears. 
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The Young moduli (at room temperature and at 120 C) have been measured with tensile tests, 

using a uniaxial extensometer; and the thermal expansion coefficients (for a whole range of 

temperatures) with dilatometry tests.  Because the specimens were very thin, the Young 

moduli were measured along the injection flow (axis 1) and the transverse direction (axis 2) 

only, whereas the thermal expansion could be obtained also through the plate thickness (axis 

3). 

The fiber orientation tensors were measured accurately by analyzing a series of images 

obtained with a scanning electron microscope, following a procedure that reduced the possible 

artifacts by using inclined polished cuts (this will be reported in a separate paper).  The 

components of the measured 
ij

a tensor deduced from the observation of a large number of 

fibers are: 

0.793 0.016 0.053

0.016 0.179 0.006

0.053 0.006 0.028

ij
a

" #
$ %

= $ %
$ %
& '

 (26) 

where it can be observed that the distribution is dominantly in the injection plane (the 
11a  and 

22a  terms are large) but is not strictly planar, and that many fibers are parallel to the injection 

flow (
11a  is the largest component).  These 

ij
a  values will be used in all the numerical 

applications that follow.  The fourth-order orientation tensor also was deduced from the direct 

observation of the fibers, and all its components can be obtained from the following set of 15 

values: 

   

005.0000.0001.0004.0

006.0002.0003.0005.0094.0

042.0004.0018.0019.0080.0694.0

3331332333123333

22312223221222332222

113111231112113311221111

====

==−===

======

aaaa

aaaaa

aaaaaa

(27) 

It can be checked that the two sums 
iijj

a  and 
ijij

a  are equal to 1 (which does lead to 13 

independent components), and that (8) is satisfied.  This experimental fourth-order orientation 
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tensor allows computing the elastic and thermal properties without using any closure 

hypothesis, and this will be applied in the discussion below. 

 

4. Results and discussion 

First, the use of the various closure approximations for predicting the elastic properties is 

analyzed.  Table 1 presents the experimental Young moduli measured along the flow axis (E1) 

of the composite and along the transverse direction (E2) at room temperature and at 120 C.  

These values are significantly higher than for pure matrix (Fig. 1), especially along the 

direction of preferred fiber orientation, which illustrates the effect of reinforcements.  It is 

worth noting that considering a low and a high temperature provides an interesting test of the 

homogenization model:  the same microstructure (i.e. set of fiber orientations) is considered 

with two phase ‘contrasts’, since the elastic constants of the fibers do not change, whereas the 

polymer matrix Young modulus decreases for a temperature higher than its glass transition 

temperature; therefore the contrast is higher.  As a result, the ratio between E1 and E2 

increases at high temperature. 

In Table 1, these experimental values are compared with the results given by stiffness and 

compliance averagings, using the experimental second-order orientation tensor and the linear, 

quadratic, and hybrid closure approximations mentioned above, whereas Table 2 compares to 

more elaborate closure approximations and to using the experimentally measured fourth-order 

orientation tensor, with stiffness averaging. It can be observed first in Table 1 that the 

predictions are better when the contrast between the phases is lower, i.e. at low temperature, 

especially for E2 (with a precision of a few percent). It also appears that stiffness averaging 

provides better results than compliance averaging almost systematically, especially for the E1 

modulus at both temperatures.  Among the various closure hypotheses applied with stiffness 

averaging in Table 1, the linear approximation is slightly better than others globally, although 
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it tends to underestimate the moduli (down to −19% for E1 at high temperature).  It may also 

be noted that the difference between the two hybrid variants is quite small, and that their 

predictions are not always bounded by the linear and quadratic models (although each 

component of the fourth-order orientation tensor is), which illustrates the complex 

interactions between constituents that are involved in a homogenization procedure.  

Table 2 demonstrates thate the orthotropic closure approximations, combined with 

stiffness averaging, lead to very good results. The closure of Doghri and Tinel [20], which is 

not orthotropic, compares poorly with the experiments, since it leads to the largest 

overestimates of E1 among all models. It can also be observed that the Chung and Kwon 

closure [22] gives slightly larger moduli than the fitted version of the Cintra and Tucker 

closure [21], which is very close to the values deduced from the experimental fourth-order 

orientation tensor, and close to the measured moduli. The smooth version of the Cintra and 

Tucker closure leads to higher, and therefore less satisfactory, values. 

It can be concluded from Tables 1 and 2 that the linear closure and the fitted Cintra-Tucker 

closure give equivalently good predictions of the elastic moduli, with the former (which is a 

very simple special case of an orthotropic closure) tending to underestimate the experimental 

results and the latter giving overestimates. The thermal expansion coefficients will provide a 

further test of the theories.  These coefficients were obtained along three axes defined by the 

injection flow.  The latter are not exactly material symmetry axes (recall that 
12a , 

23a  and 
31a  

are not zero in (26)): 
11α , 

22α  and 
33α  are not the principal values of the "  tensor, and small 

nonzero 
12α , 

23α  and 
31α  components were measured, that will not be reported here.  These 

experimental results, for a whole range of temperatures, are first compared in Fig. 2 with the 

thermal expansion coefficients 
11α , 

22α  and 
33α  deduced from compliance averaging.  The 

latter approach does not make any difference between the various closure approximations:  

these predictions only use the experimental second-order orientation tensor 
ij

a and the whole 
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curves shown in Fig. 1.  It can be noted in Fig. 2 that the predictions are not very good:  an 

increase of 
11α  with temperature is predicted rather than the observed decrease, and the 

difference with the experimental results keeps increasing with temperature for 
11α , 

22α  and 

33
α .  Some additional flexibility for a better agreement could be expected from the role 

played by the closure approximation in the stiffness averaging approach, and Fig. 3 presents 

the results given by the linear, quadratic, and hybrid closure hypotheses.  It is interesting to 

note first that temperature enhances the differences between the models, which can thus be 

discriminated.  A decrease of 
11α  with temperature is predicted now, but it is overestimated 

and unacceptable negative values are obtained at high temperatures, whichever of these 

closure approximations is considered, with the linear variant being worst.  By contrast, this 

variant keeps reasonably close to the 22α  experimental results (although the trend is wrong at 

high temperature, with a decrease), which are increasingly overestimated by the other closure 

approximations.  All four closure hypotheses behave in a comparable way for predicting the 

33
α  thermal coefficient and the results are all acceptable, with better results for the hybrid 

variant of type B.  The difference between the two hybrid closure approximations is more 

significant for thermal expansion coefficients than it was for Young moduli:  both types of 

hybrid models keep between the linear and quadratic approximations, with type A staying 

very close to the quadratic approximation and type B being closer to the linear variant. 

Therefore, the combination of stiffness averaging and linear closure approximation that 

appeared to be the best for predicting the Young moduli fails in giving reasonable values of 

the thermal expansion, essentially because of largely negative 
11α  values at high 

temperatures.  Finally, it may be mentioned that the planar version of the linear closure 

approximation and the corresponding hybrid variants (as defined in [14] and [19]) were also 

applied, since 
33a  is small, by merely discarding the suitable components of 

ija  and 
ijkla  (and 
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amplifying 
11a  and 

22a  such that 12211 =+ aa ), but this did not modify the above conclusions 

significantly. 

The results given by more recent closure approximations are compared to the 

experimental measures in Fig. 4, where the predictions deduced directly from the 

experimental fourth-order orientation tensor are also reported.  First, the deficiency of the 

Doghri-Tinel closure procedure that was already suggested above by the elastic moduli is 

clearly confirmed here by the thermal expansion coefficients.  Although both are orthotropic 

and use the same number of nonzero coefficients, as mentioned in Section 2, the smooth 

Cintra-Tucker closure gives better results than the linear closure approximation, but it is less 

satisfactory than other orthotropic closures for the α11 thermal expansion coefficient. 

Although they give very similar results, the fitted Cintra-Tucker closure is slightly closer than 

the Chung-Kwon closure to the direct use of the experimental fourth-order orientation tensor. 

This suggests that the fitted Cintra-Tucker closure hypothesis is excellent and that the 

refinements added by Chung and Kwon are not really useful, at least for the cases we studied. 

Fig. 4c shows a very close similitude between four approaches for the α33 coefficient: the 

smooth Cintra-Tucker closure of and the Chung-Kwon closure on the one hand, the fitted 

Cintra-Tucker closure and the use of the experimental orientation tensor on the other hand, 

cannot be distinguished; moreover, these two sets are close to each other.  It can be observed 

that the trends are correct when temperature increases for all thermal expansion coefficients, 

and that no negative value is obtained, but that too large (resp. small) values are predicted for 

α22 (resp. α33) at high temperatures.  This may be due to the complex flow-induced crystalline 

microstructure of the polymer matrix, which cannot be considered as fully isotropic. The 

dilatometric behavior of the pure injection molded matrix is transversely isotropic, with a 

larger expansion coefficient along the thickness direction.  The fitted Cintra-Tucker closure 

approximation is nevertheless the best among all the variants studied here, since it performs as 
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well as the experimental fourth-order orientation tensor.  Moreover, its good predictions 

confirm that the simple two-step homogenization procedure that averages the stiffness 

predicted by the Mori-Tanaka model for a unidirectional composite is reasonable. 

 

5. Conclusions 

(i)  The comparison with experimental values of both the elastic and thermal properties of a 

short-fiber composite provides a selective procedure to test predictive models. 

(ii)  The two-step homogenization procedure that applies orientation averaging to an auxiliary 

unidirectional composite with the same fiber content as the misoriented composite is able to 

predict the elastic and thermal properties of a short-fiber composite accurately. 

(iii)  A good agreement has been observed with experimental results obtained on an injection 

molded polyarylamide/glass fiber composite at low and high temperatures, what means for a 

broad range of contrasts between the properties of the two phases. 

(iv)  The stiffness averaging version of the model surpasses the compliance averaging variant, 

in particular for the thermal expansion coefficients because it allows more flexibility through 

the role of the fourth-order orientation tensor. 

(v)  The linear, quadratic, and hybrid closure approximations lead to unacceptable results;  the 

linear approximation is found to be the best as far as the elastic properties are considered, but 

it gives bad results for the thermal expansion along the injection flow direction. The closure 

approximation proposed recently by Doghri and Tinel does not compare well with our 

experimental results for both elastic moduli and thermal expansion. 

(vi) The fitted Cintra and Tucker closure is the best among all the approximations studied 

here, since it performs as well as the experimental fourth-order orientation tensor.  Its 

combination with a simple stiffness averaging procedure leads to good predictions for elastic 

moduli and thermal expansion. 
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Figure Captions 

Figure 1: Experimental values of the matrix Young modulus (a), Poisson’s ratio (b) and 

thermal expansion coefficient (c), versus temperature. 

 

Figure 2: Thermal expansion coefficients along the three axes of the composite: experimental 

values (symbols) and predictions given by the compliance averaging procedure. 

 

Figure 3: Thermal expansion coefficients along the three axes of the composite: experimental 

values (symbols) and predictions given by the stiffness averaging procedure using the linear 

(unbroken line), quadratic (dotted line), and hybrid (type A: long dashes, type B: short dashes) 

closure approximations. 

 

Figure 4: Same as Figure 3, but the experimental values (symbols) are now compared to the 

predictions given by the stiffness averaging procedure using either the experimental fourth-

order orientation tensor (unbroken line), or the closure approximations proposed by Cintra 

and Tucker (smooth closure: mixed dashes, fitted closure: long dashes), Chung and Kwon 

(short dashes), Doghri and Tinel (dotted line). 
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Table Captions 

 

Table 1:  Young moduli of the composite along the flow direction (E1) and along the 

transverse direction (E2), in GPa: experimental values and predictions given by either stiffness 

averaging or compliance averaging, using four closure approximations (linear, quadratic, and 

hybrid of type A or type B). 

 

Table 2:  Young moduli of the composite along the flow direction (E1) and along the 

transverse direction (E2), in GPa: experimental values and predictions given by stiffness 

averaging using either the experimental fourth-order orientation tensor or the closure 

approximations proposed by Cintra and Tucker (smooth and fitted versions: CTs and CTf), 

Chung and Kwon (CK), Doghri and Tinel (DT). 

   



 
stiffness averaging compliance averaging   

exp. 
lin. quad. hyb.A hyb.B lin. quad. hyb.A hyb.B 

E1 11.80 10.58 11.05 11.02 10.86 9.13 9.59 9.54 9.35  
room 

temp. E2 7.22 7.40 6.91 6.96 7.16 7.15 6.89 6.91 7.02 

E1 3.74 3.03 3.15 3.19 3.25 1.36 1.51 1.49 1.43  

120 C 
E2 1.26 1.14 0.94 0.96 1.06 0.98 0.91 0.92 0.94 

 

Table 1



 
 exp.  exp. aijkl CTs CTf CK DT 

E1 11.80 12.18 12.91 12.28 12.38 14.23  

room 

temp. E2 7.22 7.76 8.23 7.79 7.85 7.31 

E1 3.74 4.18 4.64 4.24 4.30 5.30  

120 C 
E2 1.26 1.45 1.73 1.46 1.50 1.08 

 

Table 2
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