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Abstract

An analysis of high cycle multiaxial fatigue behaviour is conducted through the numerical sim-

ulation of polycrystalline aggregates using the finite element method. The metallic material chosen

for investigation is pure copper, which has a Face Centred Cubic (FCC) crystalline microstructure.

The elementary volumes are modelled in 2D using an hypothesis of generalised plane strain and

consist of 300 equi-probability, randomly oriented grains with equiaxed geometry. The aggregates

are loaded at levels equivalent to the average macroscopic fatigue strength at 107 cycles. The goal

is to compute the mechanical quantities at the mesoscopic scale (i.e. average within the grain)

after stabilization of the local cyclic behaviour. The results show that the mesoscopic mechanical

variables are characterised by high dispersion. A statistical analysis of the response of the aggre-

gates is undertaken for different loading modes: fully reversed tensile loads, torsion and combined

in-phase tension-torsion. Via the calculation of the local mechanical quantities for a sufficiently

large number of different microstructures, a critical analysis of certain multiaxial endurance crite-

ria (Crossland, Dang Van and Matake) is conducted. In terms of material behaviour models, it is

shown that elastic anisotropy strongly affects the scatter of the mechanical parameters used in the

different criteria and that its role is predominant compared to that of crystal plasticity. The analysis

of multiaxial endurance criteria at both the macroscopic and mesoscopic scales clearly show that

the critical plane type criteria (Dang Van and Matake) give an adequate estimation of the shear

stress but badly reflect the scatter of the normal stress or the hydrostatic stress.

Keywords: Multiaxial high cycle fatigue, finite element simulation, polycrystalline aggregates,

cubic elasticity, crystal plasticity



Nomenclature

Σ : macroscopic stress tensor

σ : mesoscopic stress tensor

n : unit vector normal to the slip plane (see Figure 1)

l : unit vector in the slip direction (see Figure 1)

m : orientation tensor for a slip system

τr : resolved shear stress (see Figure 1)

τ : shear stress vector (see Figure 1)

τoct : octahedral shear stress

σn : normal stress

Figure 1: The definition of certain quantities at the mesoscopic scale

1. Introduction

The numerical simulation of polycrystalline metal aggregates has seen increased used over the

last twenty years (Meric and Cailletaud (1991)) to shed new light on the relationships between the

mechanical properties of polycrystalline materials at the scale of individual grains and the overall

response of the material within a Representative Elementary Volume (REV). Although much of
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this work has been focused on the monotonic mechanical behaviour, studies dedicated to fatigue

behaviour are becoming more frequent. Bennett and McDowell (2003) have used several me-

chanical quantities (the maximum slip amplitude, an equivalent stress inspired by the Dang Van

criterion (Dang Van (1973)) and an equivalent strain inspired by the Fatemi and Socie criterion

(Fatemi and Socie (1988)) computed at the scale of the grains in order to treat the problem of high

cycle fatigue crack initiation. The distributions of these mechanical quantities in polycrystalline

aggregates were analysed for two loading modes (tension / compression and shear) with or with-

out mean stress and at different load levels. To test the ability of these quantities to reflect certain

experimental observations, the authors establish a correlation between the distributions of the ini-

tiation parameters obtained for alternating tensile loads and distribution of crack lengths observed

on the surface of a ferrito-martensitic steel subjected to the same loading type. The results are

promising for the Fatemi and Socie type parameter and for the parameter based on the maximum

slip amplitude.

Guilhem et al. (2010) continued the work of Bennett and McDowell (2003) and enriched the

crack initiation analysis by taking into account the effects of a free surface and the anisotropic

elastic material behaviour. The distributions of the various parameters were studied, distinguishing

the position of the grains (i.e. in the thickness or on the surface), their direction and the orientation

of neighbouring grains. The authors find that the Dang Van equivalent stress and the Fatemi and

Socie equivalent slip amplitude do not highlight the well know critical character of the grains at

the free surface when considering high cycle fatigue behaviour.

Bertolino et al. (2007) use the concept proposed by Dang Van, whereby elastic shakedown of

the grains can be seen as a limit for crack initiation. They therefore sought to determine, using

numerical models, the critical load above which at least one grain does not elastically shakedown.

This seems to give good predictions for alternating uniaxial tensile loads but not for shear loads.

Indeed, in this case, the predicted fatigue limit is under estimated.

Przybyla and McDowell (2010) have studied the interaction effects between different mi-

crostructures for the extreme values of the Fatemi and Socie criteria. Several stress levels are

studied for uniaxial loads. The authors analysed these distributions for 25 to 100 Statistical Vol-

ume Elements (SVE). They show that these distributions are well characterized by a Gumble type
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distribution, and converge with this distribution, even for a small number of SVE (i.e. 25).

Parallel to the development of these approaches, recent work by Altus (2006), Morel and

Huyen (2008) and Poncelet et al. (2010) have made it possible to take into account the role of

microstructural heterogeneities in terms of multiaxial fatigue modelling. These models seek to ac-

count for the effect of the variability of the mechanical behaviour at the scale of the microstructure,

as simply as possible. For metallic materials, the fatigue crack initiation mechanisms in the HCF

regime result in isolated microcracks with no interaction between neighbouring initiated cracks

(Flaceliere et al. (2007)). Moreover, when an isolated microcrack is not stopped by a microstruc-

tural barrier, it may lead to the final failure. To reflect this behaviour from a probabilistic point of

view, the weakest link hypothesis (Weibull (1939, 1951)) is often used when it comes to deal with

high cycle fatigue. Furthermore, Monchiet et al. (2006, 2008) propose to extend the framework

of crystal plasticity by computing damage at the grain scale. The proposed criterion seems to be

promising, especially for high hydrostatic pressure.

This study is undertaken in the context of understanding the role of microstructural hetero-

geneities on the multiaxial high cycle fatigue response via the numerical simulation of polycrys-

talline aggregates. In this work, the material investigated is pure copper.

The principal components of this work are:

• to investigate the role of the material behaviour (i.e. cubic elasticity and crystal plasticity)

and the grain orientation on the mechanical response under cyclic loads at levels close to the

average macroscopic fatigue limit at 107 cycles

• to undertake an analysis of the distribution of the mesoscopic mechanical parameters (i.e. the

shear stress on a slip plane, the resolved shear stress in a slip system, the hydrostatic stress

and the stress normal to a slip plane) for different aggregates and for different macroscopic,

fully reversed cyclic loads (i.e. tension, shear and combined in phase tension-shear)

• to investigate the ability of the Crossland, Dang Van and Matake multiaxial fatigue criteria

to reflect certain trends observed in HCF under multiaxial loading conditions through the

results of the numerical simulations. Particular attention is given to the difference between

the macroscopic predictions and the mesoscopic results of the aggregates for each criterion.
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2. Numerical procedure

This section discusses the different aspects of the modelling approach. After describing the

different material behaviour models used, the finite element models are presented.

2.1. Material behaviour models

In this work, four types of material behaviour, all associated with copper, are studied:

• isotropic elasticity;

• cubic elasticity;

• isotropic elasticity + crystal plasticity;

• cubic elasticity + crystal plasticity.

For the case of isotropic elasticity, the elastic properties of the material are identical in all

directions and are characterised by the Young’s modulus and the Poisson’s ratio. Furthermore, all

grains are assumed to have the same properties. The cubic elasticity material constitutive law is

characterised by 3 independent elastic constants. The elasticity coefficients are the same for all

grains (in their respective coordinate systems), and each grain has a different orientation, defined

by three Euler angles. Crystal plasticity is considered in the classical manner, in which plastic slip

occurs in a slip system defined by a plane and a direction in the planes of maximum atomic density.

The crystal plasticity law includes combined non-linear isotropic and kinematic hardening. Each

grain has 12 slip systems (i.e. an FCC crystal structure) and all of the grains have a different

orientation. This plasticity model is described in details in the following section.

One of the objectives of this work is to better understand the effect of the choice of the material

constitutive law on the local distributions of the aforementioned mechanical quantities. For this,

the effect of cubic elasticity and crystal plasticity on the response at the mesoscopic scale (i.e. the

scale of individual grain) are discussed.

For the case of isotropic elasticity, Young’s modulus is 50 GPa and Poisson’s ratio of 0.3 (C11

= 67.3 MPa, C12 = 28.8 MPa and C44 = 38.5 MPa in Voigt notation). For cubic elasticity, the

5



K [MPa.s
1
n ] n [-] r0 [MPa] Q [MPa] b [-] c [MPa] d [-]

8 20 15 4 12 32000 900

h0 [-] h1 [-] h2 [-] h3[-] h4 [-] h5 [-]

1 1 0.2 90 3 2.5

Table 1: Material parameters used in this work, taken from Gérard et al. (2009)

following constants are used: C11 = 159 MPa, C12 = 121.9 MPa and C44 = 80.9 MPa (Meric and

Cailletaud (1991)).

The crystal plasticity material constitutive law used in this work was introduced by Meric and

Cailletaud (1991). It is commonly used for the numerical simulation of polycrystalline aggregates

(Musienko et al. (2007); Barbe and Quey (2011); Aubert et al. (2012)).

The constitutive relations are defined by Equations 1 to 6. Where γs represents the plastic

slip within system s and νs is the accumulated plastic slip in system s. The isotropic hardening is

defined in each slip system by the variable rs, and the kinematic hardening by the variable xs. c

and d are parameters of the constitutive law.

The orientation tensor m
s, which is computed for each slip system s by the tensorial product

of the normal to the slip plane ns and the direction of slip ls, is used to compute the resolved shear

stress τs and the plastic strain rate tensor, ε̇pl. The two material parameters, K and n, represent the

sensitivity to strain rate. Finally, the parameters r0, Q and b (and also the components hrs of the

interaction matrix) are used to model the isotropic hardening.

The material parameters used for the crystal plasticity, identified for a high-purity copper by

Gérard et al. (2009), are presented in table 1.

γ̇s =

(
‖ τs − xs ‖ −rs

K

)n

sign (τs) = ν̇s sign (τs) (1)

xs = cαs with α̇s = γ̇s − dν̇sαs (2)

rs = r0 + Q
∑

r

hrs (1 − exp (−bνr)) (3)

m
s =

(
ns ⊗ ls + ls ⊗ ns

)
/2 (4)
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tension shear tension/shear

σa [MPa] 56 0 30

τa [MPa] 0 36 30

Table 2: Tensile and shear stress amplitudes used for the different loading conditions

τs = m
s : σ (5)

ε̇
pl =

∑

s

γ̇s
m

s (6)

2.2. Loading conditions

The polycrystalline aggregates considered in this work are subjected to load levels correspond-

ing to the average macroscopic fatigue limit at 107 cycles, taken from the results of Lukás and Kunz

(1989). The fully reversed tensile and torsional fatigue limit used are s−1 = 56 MPa and t−1 = 36

MPa respectively. From these data the Crossland criterion, which is defined below, is arbitrarily

used to define the equivalent multiaxial loading conditions in tension, shear and combined in-phase

tension-shear for all analyses regardless of the criterion being investigated.

For all load conditions investigated, the load ratio used is Rσ = σmin/σmax = −1 and in the case

of combined tension-shear, the biaxiality ratio is σa/τa = 1. These fatigue limits are presented in

Table 2.

2.3. The numerical model

The generation of synthetic polycrystalline microstructures has been the subject of numerous

studies (Groeber et al. (2008); St-Pierre et al. (2008); Bhandari et al. (2007); Fritzen et al. (2009)).

Among the most widely used methods, the simplest is to create grains of the same topology and

to duplicate them in order to fill the entire volume of the microstructure. This relatively simple

method allows for the rapid generation of numerical microstructures, even though they may have

significant topological differences with real microstructures. This method is used for example by

Bridier et al. (2009) with a hexagonal grains topology. Many authors (e.g. Weyer et al. (2002);

Zhang et al. (2005); Luther and Könke (2009)) use Voronoi polyhedra to generate more realistic

Microstructures. Groeber et al. (2008) have used several Voronoi polyhedra to define the geometry
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of a grain. This results in a more realistic geometry. Finally, even more sophisticated methods can

be used as per St-Pierre et al. (2008) or Bhandari et al. (2007) in order to model curved boundaries

and to obtain more representative microstructures.

In order to numerically generate polycrystalline aggregate morphologies, the grains are ini-

tially approximated by ellipses (with a randomly chosen minor to major axis ratio of between 0.9

and 1). The ellipses are randomly positioned and orientated but not superimposed. The Watershed

algorithm (Fernand and Meyer (1994)) is then used to dilate the ellipses in order to fill the elemen-

tary volume. Finally, a CAD model is created by approximating the grain boundary with Bezier

curves, and a finite element mesh is generated using Gmsh (Geuzaine and Remacle (2009)). All

of these steps are shown in Figure 2.

For all of the loading conditions studied here, three microstructural topologies containing 300

equiaxed grains were used. In addition, for each topology three sets of random grain orientations

are studied. This results in a total of 9 configurations. The size of the 2D aggregate is 0.5 mm ×

0.5 mm.

Figure 2: The principal steps used to generate the mesh of the finite element models of the polycrystalline aggregates

For the nine configurations studied, ten loading cycles were applied. The decision to simulate

only ten cycles is discussed in the Results section. The microstructures and the finite element mesh

are periodic with respect to the two axes. The different topologies and different orientations are

shown in Figure 3. The different grain orientations are presented in the form of pole figures.

Triangular (3 node) finite elements, with linear interpolation, are used with an hypothesis of

generalized plane strain. Each grain contains approximately 400 linear elements. An example of
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Figure 3: (a)-(c) Pole figures (100) showing the three different grain orientations and (d)-(f) the three different topolo-

gies investigated

a meshed microstructure is shown in Figure 4.

Figure 4: The finite element mesh of a periodic aggregate with 300 grains and approximately 120000 elements

The boundary conditions consist of an imposed mean stress (i.e. imposed on the entire aggre-

gate), with periodic displacement conditions at the edges of the aggregate.
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The ZeBuLoN finite element code is used. This software is developed by Mines ParisTech,

Northwest Numerics and ONERA.

3. Multiaxial endurance criteria

3.1. Crossland criterion

The Crossland criterion (Crossland (1956)) is based on a macroscopic approach. It takes into

account two mechanical quantities, the magnitude of the octahedral shear stress τoct,a and the

maximum hydrostatic stress σhyd,max. It is formulated as follows:

τoct,a + αcσhyd,max ≤ βc (7)

where αc =
t−1 − s−1/

√
3

s−1/3
and βc = t−1 are the criterion coefficients and can be identified from the

fully reversed tensile and torsional fatigue limits (s−1 and t−1).

The amplitude of the octahedral shear stress is defined by:

τoct,a =

√
J2,amp (σ) (8)

where J2,amp (σ) is determined from the smallest hypersphere circumscribing the loading path in

the deviatoric space associated with the tensor σ. More precisely J2,amp (σ) is the radius of this

hypersphere when the norm J2 is used. J2 is the second invariant of deviatoric stress :

J2 =
1

2
S i jS i j (9)

and S is the deviatoric stress tensor defined by :

S = σ −
1

3
tr (σ) I (10)

I is the second order unit tensor.
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3.2. Dang Van criterion

The Dang Van multiaxial criterion (Dang Van (1973)) is valid in the high cycle fatigue domain

and is a multi-scale approach based on the concept of elastic shakedown.

The Lin-Taylor hypothesis (Taylor (1938); Lin (1957)) is used for the scale transition from

mesoscopic to macroscopic quantities. The criterion can be summarised by the following state-

ment: "Microscopic fatigue crack initiation does not occur if the material achieves an elastic

shakedown state at both the macroscopic and mesoscopic scales". Mathematically the criterion

is represented by equation 11

max
t

{
max

n

[∥∥∥∥ τ̂
(
n, t

) ∥∥∥∥ + αdv σ̂hyd (t)

]}
≤ βdv (11)

where σ̂hyd (t) and σ̂ (t) are time functions of the hydrostatic stress and the stress tensor after

elastic shakedown given by:

σ̂hyd (t) =
1

3
σ̂i j (t) (12)

and τ̂
(
n, t

)
is the mesoscopic shear stress after shakedown on a plane defined by its normal vector,

n.

αdv =
t−1 − s−1/2

s−1/3
and βdv = t−1 are two criterion coefficients that can be identified from the fully

reversed tensile and torsional fatigue limits (s−1 and t−1).

3.3. Matake criterion

The Matake criterion (Matake (1977)) is based on a critical plane approach. It takes into

account two mechanical quantities: the shear stress amplitude τa and the maximum normal stress

σn,max. The criterion is formulated as follows:

max
n

(τa) + αmσn∗,max ≤ βm (13)

where n∗ is the normal to the slip plane for which the shear stress amplitude (τa) is maximum. The

two criterion coefficients, αm = 2
t−1

s−1

− 1 and βm = t−1 can be identified from the fully reversed

tensile and torsional fatigue limits (s−1 and t−1).
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4. Results

This section presents the cyclic response for the different material behaviour models and the

three loading modes. Firstly, Figures 5, 6 and 7 highlight the spatial evolution of the accumulated

equivalent plastic strain (γcum), during the first 10 cycles, for the cubic elasticity + crystal plasticity

material constitutive law, and for the three loading modes studied. Note that these values are not

values averaged in the grains but are the values at each integration point of the FE mesh. It can be

seen that the most plastified grains, in terms of accumulated equivalent plastic strain, during the

first cycles remains the most plastified throughout the following cycles. Moreover, a strong vari-

ation of this quantity (or large heterogeneity) is observed between the different grains. Regarding

the influence of the loading type, the intensity of the accumulated equivalent plastic strain after

cycling is greater for shear loading (Figure 6) compared to the tensile load case (Figure 5). Also,

for the shear load case there are more grains for which this quantity is high. As for the combined

tension-shear load case (Figure 7) the intensity of the maximum accumulated plastic deformation

is in between the tensile and shear cases. In shear 17% of grains have γcum > 0.5γcum
max compared

to the tensile loading case for which 10% of grains have γcum > 0.5γcum
max and for the tension/shear

loading case 15% of grains have γcum > 0.5γcum
max. This is also experimentally observed (Agbessi

et al. (2011)). The maximum mesoscopic (or grain averaged value) of γcum is 0.032 for the shear

loading case, 0.021 for the tensile loading case and 0.026 for tension/shear. Also in tension/shear

the grains for which the plasticity is well developed are identical to the shear load case.

4.1. Mechanical response of the polycrystalline aggregates

The results are presented for both the mesoscopic and the macroscopic scale.

The macroscopic scale represents the average behaviour of the complete aggregate. The me-

chanical quantities are computed from the stress tensor, associated with the imposed load. The

macroscopic stress is referred to as Σ.

The mesoscopic scale represents the behaviour in a grain. The mechanical quantities are the

volumetric average in the grain of each component of the stress tensor. Elements having at least

one node on the grain boundary are excluded from the averaging process. Hence, stress concen-

trations at grain boundaries are not taken into account.
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Figure 5: Evolution of the accumulated equivalent plastic strain at the end of each cycle for the tensile loading

condition using the cubic elasticity + crystal plasticity material constitutive law

Note that, all of the mechanical quantities reported at the mesoscopic scale are averaged quan-

tities within the grains so that the linear interpolation of 3 nodes elements as a little effect on the

average values specially as stress gradient are relatively low.

Figure 8 shows the stress-strain curves computed at the mesoscopic and macroscopic scales for

different loading conditions, for the cubic elasticity + crystal plasticity material constitutive law.

The gray zone in these figures correspond to the superposition of the average stress-strain curves

for each of the grains. The extent of this gray zone represents the range of values determined at

the mesoscopic scale in the elementary volume. The black curve represents the behaviour at the

macroscopic scale. It can be seen that there are significant variations in the values of the maximum
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Figure 6: Evolution of the accumulated equivalent plastic strain at the end of each cycle for the fully reversed shear

loading condition using the cubic elasticity + crystal plasticity material constitutive law

stress and strain in the grains, which are much higher than the values obtained at the macroscopic

scale. Note also that the hysteresis loops are generally centred around zero at the mesoscopic

scale.

It can be seen from Figure 9 that after having applied ten cycles a stabilized macroscopic

stress-strain hysteresis loop is obtained for each loading mode. The CPU time for each simulation

is approximately 60 hours on an Intel Xeon X5677 processor at 3.47 GHz with 64 Gb of RAM.

4.2. The Crossland criterion

The Crossland diagrams, shown in Figure 10 are plotted for the 3 different loading conditions

and the 4 different material constitutive laws. The mechanical quantities are computed for the
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Figure 7: Evolution of the accumulated equivalent plastic strain at the end of each cycle for the tension / shear loading

condition using the cubic elasticity + crystal plasticity material constitutive law

last cycle. For the mesoscopic scale, the quantities τoct,a and σhyd,max are shown for each grain of

the nine microstructures studied. At the macroscopic scale these quantities are computed from

the stress tensor averaged over the total volume of the aggregate. The criterion prediction at

the macroscopic scale is given by the black point which falls on the solid line representing the

Crossland macroscopic criterion threshold at 107 cycles for a failure probability of 0.5. The cloud

of gray dots shows the results at the mesoscopic scale. In these figures, the maximum on the cycle

(over time) of the hydrostatic stress for the last cycle is always positive, even for the loading in

shear. This implies that no grains are loaded in compression/compression. Figure 10(a) shows the

results for the isotropic elastic material constitutive law. As expected, for the three loading cases,
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Figure 8: Cyclic stress-strain behaviour at the macroscopic scale (in black) and the mesoscopic behaviour (in gray)

for a simulation using the cubic elasticity + crystal plasticity material constitutive law

Figure 9: Cyclic stress-strain behaviour over all cycles at the macroscopic scale for a simulation using the cubic

elasticity + crystal plasticity material constitutive law

the mesoscopic criterion predictions for each grain are identical to the macroscopic prediction.

The effect of the elasticity model (isotropic and cubic)

Figures 10(c) and (d) highlight the influence of the elasticity model used in combination with

crystal plasticity, on the results of the Crossland criterion. For cubic elasticity, large dispersion
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Figure 10: The prediction from the Crossland criterion at the macroscopic scale (in black) and mesoscopic scale (in

gray)

of the variables is observed at the mesoscopic scale. For the simulations using isotropic elasticity

+ crystal plasticity, the difference between the macroscopic and mesoscopic scales is relatively

small. This is because in this case where fatigue limits are close to the macroscopic yield limit,

the ratio between plastic strain and elastic strain is small.
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The effect of crystal plasticity

Figures 10(b) and (d) highlight the influence of crystal plasticity used in combination with

cubic elasticity. In both of these figures, the scatter of the two mechanical variables of this criterion

is of the same order of magnitude. Hence, crystal plasticity has less effect than the change from

isotropic to cubic elasticity.

For the different load modes studied, the macroscopic result falls within the range of the meso-

scopic quantities.

4.3. Dang Van criterion

This criterion at the grain scale is discretized on the different slip systems which correspond

to the possible physical planes for crack initiation in a given grain. However at the scale of the

aggregate, all the possible planes are considered (as in the continuum space discretization proposed

by Dang Van) since the grain orientation distribution considered in this work is uniform, and that

sufficient number of grains are considered for each loading type. The angles Θ and Φ (Figure 14)

defining the unit normal vector of the slip planes are shown in Figure 11. The norm of shear

stress (τ (t) ) is used. It can be noted that the ratio τm
τa

is small, where τm and τa are the mean and

amplitude of the shear stress, calculated using the smallest circle circumscribing the load path of

the tenth load cycle.

Figure 11: Illustration of all the considered slip planes within all the aggregate (spherical coordinates of the unit

normal vector to the considered planes

The maximum values of τ (t) + αdvσhyd (t) , as a function of time, determined during the last

cycle are computed for each slip plane and the corresponding values of τ, σhyd are plotted in gray

in Figure 12. The black dot corresponds to the macroscopic value of the criterion by taking into

account all possible physical planes. The Dang Van criterion threshold line, computed from the

18



macroscopic fatigue limits, is given by the solid line. Figure 12(a) shows the results obtained

using the isotropic elastic material constitutive law. The hydrostatic stress is identical at both

scales. The shear stress on the slip planes, computed at the mesoscopic scale varies from zero to

the value obtained at the macroscopic scale. For the combined tension-shear loading mode, the

macroscopic point is slightly above the criterion threshold line because the loading conditions are

defined from the Crossland criterion.

Figure 12: The predictions from the Dang Van criterion at the macroscopic scale (in black) and the mesoscopic scale

(in gray)
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Comparison with Crossland criterion

In terms of cubic elasticity (Figure 12(b)) the cloud of gray points representing the mesoscopic

results is very dispersed. In addition, some grains have a critical value of this criterion that is

beyond the macroscopic endurance threshold. As per the Crossland diagram, the difference be-

tween the mechanical quantities used in this criterion, at the two scales, is very significant for the

simulations using the cubic elasticity material constitutive law. Also, the maximum shear stress

on all slip planes at the mesoscopic scale is greater than the maximum value of macroscopic shear

stress for this type of behaviour. Regarding the influence of the crystal plasticity, its role seems

limited to a slight increase in the dispersion of the averaged mesoscopic hydrostatic stress for the

simulations using isotropic elasticity and a reduction in the maximum shear stress for the case of

cubic elasticity (which however remains greater than that computed at the macroscopic scale). In

addition, the maximum observed shear stress in the calculations with cubic elasticity is higher than

that for the case of isotropic elasticity.

The effect of the material constitutive law on the loading path

Figure 13 represents the temporal evolution of the two variables used in the Dang Van crite-

rion, at the mesoscopic scale (in gray) and the macroscopic scale (in black). It can be seen that

for the isotropic elasticity constitutive law, without crystal plasticity, the maximum values at the

mesoscopic scale for each time step are equal to those at the macroscopic scale. For the case of

cubic elasticity, the cloud of points representing the mesoscopic scale is very dispersed but glob-

ally has the same shape as the macroscopic load path. The crystal plasticity has less impact than

cubic elasticity on the overall shape of the mesoscopic loading path.

Note that the black line illustrates the load path on the Dang Van critical plane, while the gray

points correspond to all the slip planes of the aggregates.

Critical plane analysis

Fatigue crack initiation is highly dependent on the orientation of slip planes. In a 3D coordinate

system the orientation of the normal to the slip planes can be defined using a spherical coordinate

system. The normal can be defined by two angles: the angle θ between the z axis and the xy plane
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Figure 13: Temporal evolution of the two variables used in the Dang Van criterion at the macroscopic scale (in black)

and the mesoscopic scale (in gray)

of the macroscopic coordinate system and the angle Φ between the x axes of the macroscopic

coordinate system and the plane defined by (n,z) (see Figure 14).

The coefficient of danger for the Dang Van criterion, for a given slip plane, can be written as

follows :

D = max
t

(
τ (t) + ασhyd (t)

β

)
(14)
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Figure 14: Spherical coordinate system defining the unit normal vector to a slip plane, where (x,y,z) are linked to

macroscopic coordinate system

The coefficient of danger normalized with respect to the microstructure can then be defined by:

Dn =
D

Dmax

(15)

where Dmax is the maximum value of the coefficient of danger for all computed slip planes of the

microstructure.

This normalized coefficient of danger is plotted in Figure 15, in terms of the two angles (θ,Φ),

for all simulated slip planes of the polycrystalline aggregates. (Values lower than 0.6 are not

ploted)

In terms of orientation, very little variation of the distribution of the coefficient of danger

is seen for the isotropic elasticity constitutive law, with and without crystal plasticity. For the

case of cubic elasticity, some orientations have a coefficient of danger that is much higher than

others. Also, the critical plane orientation scatter is much higher compared to the case of isotropic

elasticity.

4.4. Matake criterion

Figure 16 shows the resolved shear stress amplitude as a function of the maximum normal

stress determined from the totality of the modelled slip systems. The results of the different loading

modes and the different material constitutive laws are shown. As before, the cloud of gray points

shows the mesoscopic result for the different slip systems. The black point shows the macroscopic
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Figure 15: Normalised coefficient of danger for the Dang Van criterion as a function of the orientation of the normal

to the slip plan (values less than 0.6 are not ploted)

result and the solid line is the Matake criterion threshold line. For the simulations using the

isotropic elastic material constitutive law (see Figure 16(a)), good correspondence is observed

between the point representing the macroscopic prediction and the upper part of the envelope of

the mesoscopic points, for which the shear stress amplitude is a maximum. This implies that the

number of slip system in the aggregate is sufficient to be representative of the number of slip planes
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in the physical space.

Figure 16: The predictions from the Matake criterion at the macroscopic scale (in black) and the mesoscopic scale (in

gray)

Effect of the material behaviour on the mechanical variables of the criterion

Regarding the influence of the type of material behaviour at the mesoscopic scale, Figure 16(b)

shows that cubic elasticity strongly influences the resolved shear stress amplitude as well as the

maximum normal stress. The impact of crystal plasticity combined with isotropic elasticity (see

Figure 16(c)) is low when considering the maximum value of the resolved shear stress amplitude.

However it increases the maximum normal stress by several percent. In terms of the effect of
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crystal plasticity combined with cubic elasticity (see Figure 16(d)), a slight decrease is observed

in the maximum resolved shear stress amplitude and maximum normal stress.

5. Discussion

Thanks to the preceding investigation of different high cycle multiaxial fatigue criteria, the

dispersion of the mechanical quantities at the mesoscopic scale has been highlighted.

The use of the Crossland criterion, based on a macroscopic approach, shows that the macro-

scopic point is located roughly in the middle of the cloud of gray points representing the meso-

scopic predictions. The use of this criterion therefore results in a macroscopic prediction which

corresponds to the "average" mesoscopic behaviour.

From a constitutive point of view at the mesoscopic scale, for the case where the fatigue limit is

close to the macroscopic yield stress, crystal plasticity has relatively little effect on the mesoscopic

response. However, cubic elasticity (or local anisotropic elasticity) has a considerable influence

on the dispersion of the mesoscopic values.

In the case of a local stress approach, the two criteria investigated (i.e. Dang Van and Matake)

also highlight the dispersion of the variables computed at the mesoscopic scale. In terms of be-

haviour, crystal plasticity combined with isotropic elasticity has little effect on the maximum shear

stress as well as the amplitude of the maximum resolved shear stress compared to the case of

isotropic elasticity, without plasticity. In terms of hydrostatic stress and maximum normal stress,

a dispersion of a few percent is observed. However, for these two criteria, the critical values ob-

tained at the mesoscopic scale are very close to those associated with the macroscopic scale. For

this type of criteria, cubic elasticity has a strong influence on the results. The maximum shear

stress and the amplitude of the maximum resolved shear stress increase significantly with respect

to the isotropic elasticity case (even if crystal plasticity tends to decrease them). In terms of the

hydrostatic stress, the maximum is more than 20 MPa greater than the maximum value obtained

with an isotropic elastic behaviour, for the three studied load cases. Crystal plasticity does not

appear to influence these maximum values. For the case of cubic elasticity, it is clear that the

mesoscopic hydrostatic stress is not equal to the macroscopic hydrostatic stress, as assumed in the

Dang Van criterion.
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These differences have a significant impact on the maximum value of the Dang Van coefficient

of danger, but in terms of critical planes orientations, the maximums are not strongly modify by

cubic elasticity. In terms of the maximum normal stress, its maximum value also increases by the

same order of magnitude as the hydrostatic stress.

The maximum shear stress for each slip plane, determined for the last cycle, is plot in Figure

17(a) for the case of isotropic elasticity and cubic elasticity. The gray points are plotted for the

same slip plane. The solid line represents perfect agreement between isotropic elasticity and cubic

elasticity. Large dispersion is observed, which is globally centred on the solid line. The largest

dispersion is observed for the highest values of the shear stress for the tensile loading condition.

This is not the case for the other two loading types.

Figure 17: Comparison of the maximal shear stress (a) between isotropic elasticity (Iso. E.) and cubic elasticity (Cub.

E.). and (b) between cubic elasticity (Cub. E.) and cubic elasticity + crystal plasticity (Cub. E. + CP).

The maximum shear stress for each slip plane, determined for the last cycle, is plot in Figure

17(b) for the case of cubic elasticity and cubic elasticity + crystal plasticity. The gray points are

plotted for the same slip plane, and the solid line represents perfect agreement between the two

behaviour types. It can be seen that crystal plasticity tends to reduce the highest values of the
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shear stress due to hardening. Lower dispersion is also observed (i.e. "smoothing" effect of the

microplasticity).

The maximum resolved shear stress (or the maximum shear stress) increases significantly for

a behaviour including cubic elasticity at the mesoscopic scale. To further investigate this particu-

larity, apparent Schmidt factors are analysed in the following. These factors are defined using the

following equation:

FS = max
t

(
τr (t)

ΣI (t)

)
(16)

where ΣI is the largest principal stress at the macroscopic scale.

Figure 18 shows the accumulated apparent Schmidt factor density, considering all slip systems

computed for the nine microstructures, for the different loading modes and for the four material

constitutive laws studied. It can be observed that the majority of slip systems have an apparent

Schmidt factors with a lower intensity for the cubic elastic case (with or without crystal plasticity).

However, for this type of behaviour, the maximum values are much higher. Globally, crystal

plasticity tends to reduce the maximum value.

To better understand these curves, the maximum apparent Schmidt factors are plotted as a

function of the percentage of the total number of systems (see Figure 19). The 100th percentile

corresponds to all of the simulated slip systems and 90th percentile corresponds to the 90% of

systems with the lowest apparent Schmidt factors. For the 90th percentile the tendencies, with

respect the type of elasticity, are inverted compared to 100th percentile. The apparent Schmidt

factors are lower for cubic elastic behaviour. Crystal plasticity, has a relatively small effect, but

never-the-less tends to decrease the maximum values, for all the loading modes and the two types

of elasticity studied. For the case of uniaxial tension, it goes from 0.44 to 0.43 for isotropic

elasticity and from 0.40 to 0.39 for cubic elasticity.

For the case of uniaxial tension Sauzay (2007) studied the effect of the free surface using cubic

elasticity on the maximum values of the apparent Schmidt factors. Polycrystalline aggregates with

grains modelled using an extruded hexagonal geometry, surrounded by an isotropic homogeneous

matrix were considered. He obtained a decrease in the apparent Schmidt factors as a function of

the coefficient of anisotropy (2C44/(C11 − C12)). He noted that with a coefficient of anisotropy of
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Figure 18: Density of the apparent accumulated Schmidt factors for the different material constitutive laws studied

3.26 the maximum apparent Schmidt factor is 0.43. In our work, for the cubic elasticity, without

plasticity case (i.e. coefficient of anisotropy equal to 4.36), the maximum apparent Schmidt factor

is 0.71 taking into account all grains and becomes equal to 0.40 for the 90th percentile. For the

case of isotropic elasticity, these factors are 0.5 and 0.44 respectively. The major difference, with
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Figure 19: Apparent Schmidt factors as a function of the percentile. (Cub. E. = cubic elasticity, Iso. E. = isotropic

elasticity, CP = crystal plasticity)

respect to Sauzay’s work (Sauzay (2007)) is the 3D geometry which takes into account the free

surface. It can be concluded that the grain geometry as well as the influence of neighbouring

grains have a large effect on the maximum values of the resolved shear stress in the grains. It can

be noted that the grain shape also effects the mesoscopic results.

6. Conclusion

In this work high cycle fatigue behaviour is investigated via the numerical simulation of poly-

crystalline aggregates. The effects of cubic elasticity and crystal plasticity are clearly distin-

guished. It is seen that crystal plasticity has a relatively small effect, for the applied load levels

(i.e. close to the macroscopic yield stress), but variations exist which are certainly not negligible

when dealing with extreme value statistics. Cubic elasticity has a drastic effect on the dispersion

of mechanical quantities commonly used in high cycle multiaxial fatigue criteria. The analysis of

the Crossland criterion at the mesoscopic scale has shown that the macroscopic criterion predic-

tion is approximately equal to the "average" mesoscopic prediction. The investigation of the two

criteria that use a critical plane approach (i.e. Dang Van and Matake) have highlighted the im-

portance of the mesoscopic dispersion for the maximum values of these criteria. Cubic elasticity

has a non-negligible effect on the values of the hydrostatic stress and the normal stress. The use

of elastic anisotropy at the mesoscopic scale in homogenization models could improve the predic-

tions of this type of approach. An investigation of the apparent Schmidt factors has shown that the
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maximum shear stress is much greater for material behaviour including cubic elasticity. However,

the same trends can be found with results from the literature by taking the 90th percentile (i.e.

the maximum shear stress is lower for cubic elasticity than for isotropic elasticity as discused by

Sauzay (2007)).

The perspectives for this work include the analyse of the effect of the critical grain using

statistics of extremes (Saintier et al. (2011)). Also, using 2D computations allow to have a first

picture of the mesoscale response of the microstructure to cyclic loading in fatigue contexte. Full

3D semi-periodic computation dedicated to the free surface effect will form the object of future

work.
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