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ABSTRACT
A significant risk of femoral neck (FN) fracture exists for men and women with an areal bone mineral density (aBMD) higher than the

osteoporotic range, as measured with dual-energy X-ray absorptiometry (DXA). Separately measuring the cortical and trabecular FN

compartments and combining the results would likely be a critical aspect of enhancing the diagnostic capabilities of a new technique.

Because the cortical shell determines a large part of FN strength a novel quantitative ultrasound (QUS) technique that probes the FN

cortical compartment was implemented, aimed at testing the sensitivity of the method to variations of FN cortical properties and FN

strength. Nine femurs (women, mean age 83 years) were subjected to QUS to measure the through transmission time-of-flight (TOF) at

the FN and mechanical tests to assess strength. Quantitative computed tomography (QCT) scans were performed to enable analysis of

the dependence of TOF on bone parameters. DXA was also performed for reference. An ultrasound wave propagating circumferentially

in the cortical shell, which TOF was not influenced by the properties of the trabecular compartmentQ3, was measured in all specimens.

Averaged TOF for nine FN measurement positions/orientations was significantly correlated to strength (R2¼ 0.79) and FN cortical QCT

variables: total BMD (R2¼ 0.54); regional BMD in the inferoanterior (R2¼ 0.90) and superoanterior (R2¼ 0.57) quadrants; and moment of

inertia (R2¼ 0.71). The results of this study demonstrate that QUS can perform a targeted measurement of the FN cortical compartment.

Because the method involves mechanical guided waves, the QUS variable is related to the geometric and material properties of the

cortical shell (cortical thickness, tissue elasticity, and porosity). This work opens the way to a multimodal QUS assessment of the proximal

femur, combining our approach targeting the cortical shell with the existing modality sensitive to the trabecular compartment. In vivo

feasibility of our approach has to be confirmed with experimental data in patients. � 2012 American Society for Bone and Mineral

Research.
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Introduction

Osteoporotic hip fractures are associated with high mortality

and morbidity rates, as well as high treatment costs.(1,2) Hip

fracture risk is best predicted by site-matched measurement of

areal bone mineral density (aBMD) with dual-energy X-ray

absorptiometry (DXA).(3) However, aBMD alone is not sufficient

to account for bone strength. A significant risk of fracture also

exists for men and women with and aBMD higher than the

osteoporotic range.(4–6) Further, increases in aBMD following

therapy do not fully explain the observed efficacy of osteoporosis

drug treatments.(7,8)

The proximal femur is a complex structure composed of

cortical and trabecular bone. Its mechanical strength is

determined by multiple factors including material properties

and structural parameters (such as size and shape of bone,

cortical thickness, cortical porosity, and trabecular structure).(9)

Although bone mass as measured with DXA reflects most of

these factors it does not provide an accurate picture of the

strength of the proximal femur. Being a 2D projectional

measurement, aBMD is, for instance, unable to distinguish

between differential changes occurring in cortical and trabecular

bone at the femoral neck (FN). There is substantial interest in

developing diagnostic means for clinical risk with improved
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sensitivity to the various bone properties that affect strength and

to their changes in treatment follow-up.

The cortical shell at the proximal femur determines a large

part of bone strength. This is supported by experimental

evidence,(10,11) analysis of clinical data,(12,13) and finite element

modeling, which indicate that the FN cortex supports at least

50% of the load borne by the proximal femur.(14) Furthermore, it

has been suggested that bone loss in old age is mainly cortical

(and is mediated by the reduction of cortical thickness and the

increase of porosity).(15,16)

Given the role played by cortical bone in the mechanical

stability of the FN, an assumption was made that separately

measuring the cortical and trabecular bone compartments and

combining the results would be a critical aspect to enhance the

diagnostic capabilities of a new technique. X-ray quantitative

computed tomography (QCT) is the only technique, so far,

that offers the capability of in vivo measurements of the two

compartments at the hip, but radiation exposure is a limiting

factor.(17) The spatial resolution of current clinical whole-body CT

scanners limits the achievable accuracy of the determination

of cortical thickness to about 0.8 to 1mm.(18,19) A significant

improvement in spatial resolution in the hip with current

CT technology would require an unacceptably high radiation

exposure. Regarding the prediction of fracture risk, recent

studies could not demonstrate an important benefit of using

QCT over DXA,(20,21) but showed a significant contribution of

cortical thickness in the prediction of fracture loads(10) and hip

fracture discrimination.(21) Magnetic resonance imaging (MRI)

may give access to enhance information of bone properties, but

access to the method, as for QCT, is limited. The feasibility of in

vivo quantitative ultrasound (QUS) measurements at the hip has

been demonstrated, with a good clinical performance for hip

fracture discrimination.(22,23) Interestingly—and similar to results

previously obtained at the finger phalanges(24)—a thorough

analysis of signals transmitted through the proximal femur

suggested that different propagation pathways through the

trabecular or cortical compartments could be identified,

leading to the concept of multimodal QUS assessment of the

proximal femur, by which both the trabecular and the cortical

compartments could be assessed separately.

Simulation studies of measurements at the proximal femur

QUS(25) predicted the existence of a guided wave propagating

circumferentially exclusively in the cortical shell of the neck.

Such a wave is not influenced by the trabecular compartment

properties.(26) Hence, variations of the time-of-flight (TOF) of this

wave should reflect only the variations of geometric (size, cortical

thickness), material (mass density, elasticity), and structural

(porosity) properties of the cortical compartment.(24,27,28) The

measurement of this guided wave is all the more interesting in

that the strength of the FN has been associated to bone matrix

mineral content,(29,30) cortical porosity,(31) and cortical thick-

ness,(32,33) all of these properties contributing to the propagation

characteristics of the guided circumferential waves. The issue

of specifically measuring ultrasonically the cortical part of the

proximal femur, however, has so far not been addressed.

In this work the results from an ex vivo pilot study with a

novel QUS modality that targets the cortical shell of the FN are

reported. The aim was twofold: (1) testing the concept that this

QUS modality reaches a targeted measurement of the neck

cortical compartment and is sensitive to variations of its

properties; (2) assessing the potential of the modality to predict

femur strength.

Nine human femurs were subjected to the following: (1)

ultrasound measurements with the newly developed system

dedicated to cortical bone assessment; (2) QCT measurements

to assess site-matched cortical bone properties; (3) DXA to

provide a reference; and (4) mechanical tests to assess femur

strength.

Materials and Methods

Specimen preparation

Nine left femurs from female donors aged 66 to 98 years (mean

age 83 years old) were obtained from a multiorgan collection.

Ethical approval for the specimens was granted by the Human

Ethics Committee of the Centre du don des Corps at the

University René Descartes (Paris, France). The tissue donors or

their legal guardians provided informed written consent to give

their tissue for investigation, in accord with legal clauses stated

in the French Code of Public Health. There was no information

on causes of death. Prior to measurements, femurs were cut

approximately 11 cm below the lesser trochanter.

The femurs were kept frozen at �208C after dissection. Before

QUS and mechanical measurements, which were done in Paris,

femora were sent frozen to Kiel for scanning with CT. Samples

were thawed before the measurements. In between the QUS

and mechanical tests, which were conducted within 24 hours in

Paris, the specimens were stored in the refrigerator at þ48C.

QUS

The FN is measured with ultrasound by through-transmission in

the anteroposterior direction with a pair of identical transducers

placed confocally on each side of the neck (Fig. 1). Cylindrically

focused, single-element transducers (IMASONIC, Voray sur

l’Ognon, France) with the following characteristics were used:

center frequency¼ 571 kHz; –6 dB bandwidth¼ (297–761 kHz),

focal length¼ 50mm, active aperture size (transducer lateral

dimension� height) 29� 80 mm2. In contrast to spherical

focusing, which produces a peak acoustic intensity at a focal

point, cylindrical focusing results in a peak intensity on a line at

the focal distance. The measurement plane is defined by the

transducers axis (ie, ultrasound beam axis) and the focal line. The

focal line (beam height) extended over a height close to the

aperture height (80mm), which is larger than the FN diameter.

The beam width (in a direction orthogonal to the measurement

plane) measured at the focal distance by the full-width at half-

maximum was 5.2mm. This means that the signal at the receiver

transducer results from the interaction between the incident

ultrasound field and an approximately 5-mm-thick transverse

cross-section of the FN. Specimens and transducers were

immersed in a tank filled with water at room temperature.

A pulse generator (Sofranel 5052PR; Panametrics, Sartrouville,

France), used to generate spike pulses, was connected to the

emitting transducer. The signal was amplified (preamplifier Data
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Precision D1000 Dual Pre-amp; Analogic, Peabody, MA, USA),

digitized with an oscilloscope (TDS 1012; Tektronix, Beaverton,

OR, USA) and transferred to a computer for signal processing.

Each measurement consisted of several acquisitions that were

averaged to attain a sufficient signal-to-noise ratio.

A system allowing translations along three orthogonal axes

and rotations around these axes was designed to achieve

a precise positioning of the specimen with respect to the

transducers. The distance between the transducers was fixed

to 100mm for all the measurements. The positioning of the

specimen essentially consisted in orientating the measurement

plane with respect to the FN axis (see Fig. 1). The neck axis was

defined as the line passing through the base of the great

trochanter and the apex of the femoral head. In the ‘‘reference’’

position (Fig. 1), the measurement plane is positioned

perpendicular to the FN axis, with the transducers axis aligned

in the anteroposterior direction. Measurements are expected to

be sensitive to the orientation and position of the ultrasound

beam with respect to the neck.(25) Accordingly, each femur

was measured for nine positions of the FN with respect to the

measurement plane:

� Positions P1, P2, and P3 were achieved by translating the

transducers in a direction parallel to the neck axis; P2 was the

reference position and P1 and P3 were� 3mm away from P2;

� Positions P4, P5, and P6 were achieved by rotating the

ultrasound beam axis around the inferosuperior axis; P5 was

the reference position (after repositioning following step 1)

and P4 and P6 were angle positions at� 5 degrees from P5;

and

� Positions P7, P8, and P9 were achieved by rotating the beam

axis around the neck axis; P8 was the reference position

(after repositioning following step 2) and P7 and P9 were

angle positions at� 5 degrees from P8.

Note that the measurement configuration achieved here

could in principle be achieved in vivo.

The signal recorded in the experimental configuration

considered here is generally complex. It results from multiple

overlapping waveforms, each corresponding to a different

pathway through the tubular-like FN structure or to a different

kind of guided waveQ5.(35) Attention was focused on the TOF of

the first arriving signal (FAS). The FAS is the first detectable event

in the received signal transmitted through bone. It was

hypothesized that the FAS is associated to the propagation of

a circumferential wave guided in the cortical shell of the FN. The

arrival time (TOF) of the FAS was defined as the time at which the

amplitude of the waveform exceeds a threshold of 1.6 SD of the

random noise of the signal before the arrival of the waves. The

average value of the TOF determined at positions P1 to P9,

denoted TOFm
Q6, was calculated. In addition, reference measure-

ments were performed in water, without the specimen, before

and after the measurement of each specimen; the TOF of this

reference signal is denoted TOFw. The estimated uncertainty on

TOF due to variations of water temperature was estimated

to� 0.3%.

DXA

The aBMD (g/cm2) of all specimens was measured using DXA

with a QDR 4500 A (Hologic, Waltham, MA, USA). Image

acquisition and analysis were done as recommended by the

manufacturer. The degassed specimens were immersed in water

and measured in the anteroposterior direction. aBMD was

measured for the total proximal femur (TBMDDXA) and in the

neck region (NeckBMDDXA).

QCT

A 64-row CT scanner (SOMATOM Sensation; Siemens, Erlangen,

Germany) in Kiel was used. A solid calibration phantom

(Siemens) placed below the tank and scanned simultaneously

with each femur was used to convert Hounsfield units (HU) into

bone mineral density. CT scan acquisition was performed with

64� 1mm detector collimation, 120 kV, 250 mAs, and a pitch of

1. Transverse images of 1mm thickness were reconstructed with

a 0.7-mm increment and a field of view (FOV) of 150mm,

resulting in an in-plane pixel size of 293mm (matrix

size¼ 512� 512 pixels). A high-resolution kernel (B40s) was

used.

QCT data were analyzed in Erlangen using the dedicated

software MIAF-Femur (Medical Image Analysis Framework–

Femur option; University of Erlangen, Erlangen, Germany), which

was developed at the Institute of Medical Physics. The two most

prominent features of this software are its 3D segmentation and

analysis approach and the automatic determination of a neck

coordinate system (NCS). The description of the analysis

procedures has been reported.(36,37,10)

The FN region was further subdivided into four quadrants:

inferoanterior (IA), inferoposterior (IP), superoposterior (SP), and

superoanterior (SA).(10)

Fig. 1. Setup configuration in the ‘‘reference’’ position. Ultrasoundwaves

propagate roughly parallel to the measurement plane. The orientation of

the ultrasound beam coincides with the measurement plane. In the

reference position, the transducers axis is aligned with the anteropos-

terior direction. Arrows refer to the rotation/translation motions for the

positioning of the transducers in positions P1 to P9 (seeQ4 text).
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The following QCT variables, defined for the cortical part of the

neck region, were used in the analysis:

� Volumetric BMD averaged over the entire FN cortical

compartment (BMDCortAll);

� Volumetric BMD of the FN cortical compartment in each of

the four quadrants (BMDCortSA, BMDCortSP, BMDCortIA, and

BMDCortIP);

� In the two inferior quadrants, average cortical bone thickness

(ThickCortIA and ThickCortIP) of a 1-mm-thick slice perpen-

dicular to the neck axis and located at the origin of the NCS.

Because the superior cortex is very thin, it is expected that the

thickness estimation in this region be inaccurate given the

spatial resolution. Accordingly, thickness variables in the

superior cortex were not included in the analysis;

� Volume of the entire FN cortical compartment (VolCortAll);

and

� Density-weighted areal moment of inertia (AMIMCortAll) of

the FN cortical compartment.

Mechanical tests

Mechanical tests were performed in one-legged stance

configuration in order to reproduce cervical fractures consistent

with clinical observations. The protocol was identical to that

described, for instance, in Bousson and colleagues.(10) Briefly, the

distal portion of the shaft was fixed in a steel cylinder filled with

low–melting point alloy (MCP 70; Melting & Chemical Product,

Wellingborough, UK). The shaft axis was positioned at 25 degrees

to the vertical direction using a metal shim. A universal testing

machine (INSTRON 5500-R; Intron Ltd, Buckinghamshire, UK)

instrumented with a 100-kN load cell was used. A vertical

compressive force was applied to the femoral head at a speed

of 10mm�min�1 until bone fracture. A polymethylmethacrylate

mold was used to distribute the applied forces on the head.

The failure load (strength) Fmax (in Newtons, N) was defined at

the maximal recorded load.

Data analysis

The wave can be transmitted along different pathways. Two

possible pathways are illustrated in Fig. 2: either directly in a

straight line through the medullary canal (Fig. 2B, short distance,

low speed of sound inmarrow) or circumferentially in the cortical

shell (Fig. 2B, long distance, high speed of sound in cortical

bone). TOF results from a combination of distances and speed of

sound. The hypothesis that the FAS is indeed associated to the

propagation in the cortical shell waveguide and not to the

propagation through the medullary canal needs to be validated.

Toward this goal, measured TOF values for positions P1 to P9

were compared to an estimated value TOFd of the direct wave

TOF (Fig. 2B). The direct wave propagating in a straight line from

the anterior to the posterior side of the neck is transmitted

successively through: (1) a water layer coupling the emitter to

the specimen; (2) the anterior cortex; (3) the medullary canal; (4)

the posterior cortex; and (5) finally through a second water layer

coupling the specimen to the transmitter. Accordingly, TOFd is

the sum of the different values of TOF corresponding to the

different layers (Fig. 2B):

TOFd ¼ TOFw1 þ TOCc1 þ TOFw3 þ TOFc2 þ TOFw5 (1)

where subscripts w and c stand for propagation paths in water

(speed of sound Vw) and cortical bone (speed of sound of bulk

longitudinal waves Vc), respectively. The literature shows that the

speed of sound in water and marrow are very similar38; a good

estimate of TOF through the marrow-filled medullary canal is

thus TOFw3, where the speed of sound in water is taken in place

of the speed of sound in marrow. For the calculations,

Vc¼ 4000m/s and Vw¼ 1500m/s were used.(27) The TOF

difference between the reference signal in water (TOFw,

Fig. 2A) and the direct wave (TOFd, Fig. 2B) is as follows:

DTOFd ¼ TOFw � TOFd ¼ TOFw2þ TOFw4� TOFc1� TOFc2
DTOFd ¼ ðe1 þ e2Þð1=Vw � 1=VcÞ

(2)

where e1 and e2 are the thicknesses of the anterior and posterior

cortices. DTOFd is an increasing function of the cortical thickness.

Accordingly, an upper bound for DTOFd is obtained for a thick

cortex value. To compute this upper bound, thickness values

in the upper range of those usually measured were used:

e1¼ e2¼ 3mm. If this leads to an upper bound of 2.5ms, then

DTOFd is expected to be lower than 2.5ms. For the measured TOF

at positions P1 to P9, DTOF¼ TOFw – TOF was calculated. A value

of DTOF larger than 2.5ms is a strong indication that the

measured signal is not the direct wave but a wave that has

Fig. 2. Ultrasound wave paths in through-transmission and definition of

partial times-of-flight (see Equation (1)). (A) propagation in water (TOFw)

corresponding to the reference signal. (B) propagation in straight line

through bone (direct wave, TOFd); (C) downward or upward propagation

of a guided ultrasound wave in the cortex. e1 and e2 stand for thicknesses

in the anterior and posterior cortex.
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propagated between emitter and receiver significantly faster

than the direct wave; ie, with a circumferential wave path in the

cortical shell as shown in Fig. 2C. Note that although the path

length is longer for the circumferential propagation than for the

direct wave, the wave guided in the cortical shell can still arrive

earlier because it propagates at the much higher speed of sound

in cortical bone than the direct wave does in marrow.

The distribution of each variable was tested for normality

using a Lilliefors test. A two-way analysis of variance (ANOVA)

was conducted to compare between-specimen variability

(differences between specimens) to within-specimen variability

(different measurements of a same specimen) of TOF; values

were computed for Fisher’s F and significance p associated with:
(1) the variability due to the different TOF measurements; and (2)

the variability due to the different femurs. Univariate correlations

between all variables were computed (Pearson’s coefficient, r).

Specifically, the relationships between TOFm on one hand, and

QCT andmechanical variables on the other handwere examined.

The possible added value of combining different measurements

performed with different techniques (QUS, DXA, QCT) to predict

Fmax, was investigated with a stepwise regression including all

the explaining variables for which the univariate correlation with

Fmax were significant. For all analyses, p values smaller than 0.05

were considered significant. Statistical analyses were conducted

using MATLAB statistics toolbox (MATLAB; The Mathworks,

Natick, MA, USA).

Results

The normal distribution hypothesis was not rejected for the

QUS, QCT, DXA, and mechanical datasets.

The variability of TOF for all the specimens, at the

measurement positions P1 to P9, is shown in Fig. 3. For all

specimens and all positions P1 to P9, DTOF was between 5.5ms

and 10.8ms, which is larger than the estimated upper bound for

DTOFd (2.5ms) associated with the direct wave. This means that

the FAS is arriving much earlier than the direct wave and

corresponds to a wave guided in the cortex (Fig. 2C).

Two-way ANOVA showed that the within-specimen variability

(F¼ 1.7, p¼ 0.13) was negligible compared to the between-

variability (F¼ 102.6, p< 1� 10�6). Note that one specimen

(#263G) was excluded from the ANOVA because it could only be

measured on six positions instead of nine due to technical

problems unrelated to the measurement protocol. For further

data analysis, only the average TOFm was considered for each

specimen.

Descriptive statistics are given in Table 1 and intercorrela-

tionsQ7 in Table 2, where univariate correlations with TOFm are

highlighted because they are the principal results of the study.

Among QCT variables, TOFm only significantly correlated: (1) with

volumetric BMD averaged over the whole cortical compartment

(BMDCortAll, R2¼ 0.54) and in the anterior quadrants (BMDCortIA,

R2¼ 0.90, Fig. 4; BMDCortSA, R2¼ 0.57); and (2) with the moment

of inertia (AMIMCortall, R2¼ 0.71). There was no significant

correlation between TOFm and cortical thickness. DXA variables

explained 59% (NeckBMDDXA) and 67% (TBMDDXA) of TOFm,

respectively. For all the specimens, the mechanical loading led to

a fracture of the neck (no trochanteric fracture occurred).

Fig. 3. Summary of TOF values at measurement positions P1–P9

(from left to right), for each specimen. The reference TOF in water

was about 66.7ms.

Table 1. Mean, SD, and Range of the Measured Quantities: QUS

Variables, QCT Variables, and DXA Variables

Mean SD Range

QUS variables

TOFm (ms) 58.86 1.3 56.50–60.74

Fmax (N) 5815 1926 3695–10249

QCT variables

BMDCortAll (mg/cm3) 515.29 127.24 349.79–677.62

BMDCortSA (mg/cm3) 330.60 101.33 189.00–452.24

BMDCortIA (mg/cm3) 616.97 146.45 415.58–820.67

BMDCortSP (mg/cm3) 289.06 130.14 84.83–487.99

BMDCortIP (mg/cm3) 728.11 160.62 399.43–930.85

ThickCortIA (mm) 2.55 0.25 2.15–3.04

ThickCortIP (mm) 2.63 0.36 2.08–3.35

VolCortAll (mm3) 5.15 1.09 2.97–6.33

AMIMCortAll (g.cm2) 6.70 3.05 2.20–12.17

DXA variables

TBMDDXA (g/cm2) 0.62 0.16 0.32–0.87

NeckBMDDXA (g/cm2) 0.50 0.13 0.25–0.64

QUS¼ quantitative ultrasound; TOFm¼ average time-of-flight; Fmax¼
strength; QCT¼ quantitative computed tomography; DXA¼dual-energy

X-ray absorptiometry; BMD¼bone mineral density; FN¼ femoral neck;

BMDCortAll¼ volumetric BMD averaged over the entire FN cortical

compartment; BMDCortSA¼ volumetric BMD of the FN cortical compart-
ment in the superoanterior quadrant; BMDCortSP¼ volumetric BMD

of the FN cortical compartment in the superoposterior quadrant;

BMDCortIA¼ volumetric BMD of the FN cortical compartment in the
inferoanterior quadrant; BMDCortIP¼ volumetric BMD of the FN cortical

compartment in the inferoposterior quadrant; ThickCortIA¼ average

cortical bone thickness in the inferoanterior quadrant; ThickCortIP¼
average cortical bone thickness in the inferoposterior quadrant;
VolCortAll¼ volume of the entire FN cortical compartment; AMIM-

CortAll¼ density-weighted areal moment of inertia of the FN cortical

compartment; TBMDDXA¼ areal BMD for the total proximal femur;

NeckBMDDXA¼ areal BMD for the neck region.

Journal of Bone and Mineral Research QUS OF CORTICAL BONE IN THE FN PREDICTS FEMUR STRENGTH 5



T
a
b
le

2
.
P
er
so
n
C
o
rr
el
at
io
n
r
C
o
ef
fi
ci
en

ts
B
et
w
ee

n
In
d
iv
id
u
al

V
ar
ia
b
le
s

TO
F m

F m
a
x

B
M
D
C
o
rt
A
ll

B
M
D
C
o
rt
SA

B
M
D
C
o
rt
IA

B
M
D
C
o
rt
SP

B
M
D
C
o
rt
IP

Th
ic
kC
o
rt
IA

Th
ic
kC
o
rt
IP

V
o
lC
o
rt
A
ll

A
M
IM
C
o
rt
A
ll

TB
M
D
D
X
A

N
ec
kB
M
D
D
X
A

TO
F m

1
�
0
.8
9
�

�
0
.7
3
��

�
0
.7
5
��

�
0
.9
5
�

�
0
.5
3

�
0
.5

�
0
.5
7

�
0
.2

�
0
.6
4

�
0
.8
4
�

�
0
.8
2
��

�
0
.7
7
��

F m
a
x

1
0
.6
9
��

0
.6
4

0
.8
��

0
.4
1

0
.5
7

0
.4
3

0
0
.6
3

0
.8
4
�

0
.8
8
�

0
.7
7
��

B
M
D
C
o
rt
A
ll

1
0
.9
7
�

0
.8
5
�

0
.8
8
�

0
.9
�

0
.1
1

0
.1
2

0
.6
6

0
.9
�

0
.7
8
��

0
.8
2
��

B
M
D
C
o
rt
SA

1
0
.8
6
�

0
.8
9
�

0
.8
��

0
.1
1

0
.2
8

0
.6
5

0
.8
8
�

0
.7
1
��

0
.7
6
��

B
M
D
C
o
rt
IA

1
0
.6
7
��

0
.6
5

0
.5
3

0
.1
7

0
.7
2
��

0
.8
9
�

0
.8
4
�

0
.8
4
�

B
M
D
C
o
rt
SP

1
0
.7
2
��

�
0
.0
5

0
.3
2

0
.4
9

0
.7
2
��

0
.5
1

0
.5
4

B
M
D
C
o
rt
IP

1
0
.0
9

�
0
.2
7

0
.5
5

0
.7
2
��

0
.7
6
��

0
.8
3
��

Th
ic
kC
o
rt
IA

1
�
0
.3
4

0
.4
3

0
.2
6

0
.5
6

0
.5
4

Th
ic
kC
o
rt
IP

1
�
0
.1
1

0
.1
4

�
0
.2
8

�
0
.3
3

V
o
lC
o
rt
A
ll

1
0
.8
6
�

0
.8
3
��

0
.8
1
��

A
M
IM
C
o
rt
A
ll

1
0
.8
8
�

0
.8
4
�

TB
M
D
D
X
A

1
0
.9
7
�

N
ec
kB
M
D
D
X
A

1

TO
F m

¼
av
er
ag

e
ti
m
e-
o
f-
fl
ig
h
t;
F m

a
x
¼
st
re
n
g
th
;
B
M
D
C
o
rt
A
ll
¼
vo

lu
m
et
ri
c
B
M
D

av
er
ag

ed
o
ve
r
th
e
en

ti
re

FN
co
rt
ic
al

co
m
p
ar
tm

en
t;
B
M
D
C
o
rt
SA

¼
vo

lu
m
et
ri
c
B
M
D

o
f
th
e
FN

co
rt
ic
al

co
m
p
ar
tm

e
n
t
in

th
e

su
p
er
o
an

te
ri
o
r
q
u
ad

ra
n
t;
B
M
D
C
o
rt
IA
¼
vo

lu
m
et
ri
c
B
M
D

o
f
th
e
FN

co
rt
ic
al

co
m
p
ar
tm

en
t
in

th
e
in
fe
ro
an

te
ri
o
r
q
u
ad

ra
n
t;
B
M
D
C
o
rt
SP

¼
vo

lu
m
et
ri
c
B
M
D

o
f
th
e
FN

co
rt
ic
al

co
m
p
ar
tm

en
t
in

th
e
su
p
er
o
p
o
st
er
io
r

q
u
ad

ra
n
t;
B
M
D
C
o
rt
IP
¼
vo

lu
m
et
ri
c
B
M
D
o
f
th
e
FN

co
rt
ic
al
co
m
p
ar
tm

en
t
in

th
e
in
fe
ro
p
o
st
er
io
r
q
u
ad

ra
n
t;
Th
ic
kC
o
rt
IA
¼
av
er
ag

e
co
rt
ic
al
b
o
n
e
th
ic
kn

es
s
in

th
e
in
fe
ro
an

te
ri
o
r
q
u
ad

ra
n
t;
Th
ic
kC
o
rt
IP
¼
av
er
ag

e
co
rt
ic
al

b
o
n
e

th
ic
kn

es
s
in

th
e

in
fe
ro
p
o
st
er
io
r
q
u
ad

ra
n
t;

V
o
lC
o
rt
A
ll
¼
vo

lu
m
e

o
f
th
e

en
ti
re

FN
co
rt
ic
al

co
m
p
ar
tm

en
t;

A
M
IM
C
o
rt
A
ll
¼
d
en

si
ty
-w

ei
g
h
te
d

ar
ea
l
m
o
m
en

t
o
f
in
er
ti
a
o
f
th
e

FN
co
rt
ic
al

co
m
p
ar
tm

en
t;

TB
M
D
D
X
A
¼
ar
ea
l
B
M
D
fo
r
th
e
to
ta
l
p
ro
xi
m
al

fe
m
u
r;
N
ec
kB
M
D
D
X
A
¼
ar
ea
l
B
M
D
fo
r
th
e
n
ec
k
re
g
io
n
.

� p
<
0
.0
0
5
.

��
p
<
0
.0
5
.

6 GRIMAL ET AL. Journal of Bone and Mineral Research



Cortical ultrasoundmeasurement (TOFm) explained 79% of the

failure load (Fmax) variance (Fig. 5). Note that even after removing

the rightmost point (Fmax around 10 kN) on Fig. 5, the correlation

is still high and significant (R2¼ 0.69; p¼ 0.01). After adjustment

for bone size (cross-sectional area), the TOFm explained 86% of

Fmax and DXA variables explained 60% (NeckBMDDXA) and 78%

(TBMDDXA) of the failure load variance. QCT variables for

which the correlation with Fmax was significant were BMDCortAll

(R2¼ 48), BMDCortIA (R2¼ 64), and moment of inertia (AMIM-

CortAll, R2¼ 71).

The stepwise regression yielded a model with only TOFm as a

significant explaining variable of Fmax. This result should be

balanced by the fact that the study only involved a small number

of specimens.

Discussion

In this ex vivo study the feasibility of QUS measurement of the

cortical bone compartment at the FN was established. Nine

femurs were subjected to QUS, QCT, and DXA measurements,

and mechanical tests. On one hand, the ultrasound TOF was

found to be highly sensitive to properties of the IA cortical part of

the neck, as evidenced by the strong correlation of TOFm and

volumetric BMD in the IA quadrant. On the other hand, TOFmwas

strongly correlated to femur strength, indicating the ability of

QUS to probe critical determinants of bone strength in the

cortical compartment of the FN.

QUS measurements of the proximal femur have been recently

reported using a prototype clinical device and have been shown

to efficiently predict fracture risk.(22) The prototype scanner uses

spherically focused transducers moving in a 2D scan to achieve

an image of QUS variables (attenuation and speed of sound) at

the proximal femur. With this approach, different regions can be

measured, such as the great trochanter, the shaft, or the

surrounding soft tissue. In their study, the authors depicted

signals that were interpreted as arising from a guided wave

transmitted in the cortex of the shaft below the minor trochanter

or even in the inferior part of the neck. However, an analysis to

support this interpretation was lacking. In the present study, an

analysis was done of ultrasound propagation in the FN, a very

relevant fracture site for hip fractures. A thorough analysis and

comparison of the arrival time of the FAS with the upper bound

of the arrival time of the direct wave supports a propagation

guided circumferentially along the cortical shell. Furthermore,

this is consistent with previous model predictions.(25)

An interesting finding of this study was the strong correlation

of TOFm with BMDCortIA, which was much stronger than with

BMD in other quadrants. This leads to the question of which part

of the femur neck is actually probed by our ultrasound approach.

The circumferential guided propagation can follow two direc-

tions, upward and downward (Fig. 2C). The contribution to the

TOF may thus arise from either direction, which is not equivalent

because FN displays a strong asymmetry, the superior part being

much thinner than the inferior part that carries most of the load

during walking.(39) The TOF measured is likely that of waves that

have propagated in the lower part of the neck. This assertion is

consistent with results of numerical simulations of our

ultrasound experiment. Simulations were conducted, following

the method described in Grondin and colleagues,(25) for three

typical FN cross-sectional shapes with different thickness in the

inferior quadrants (Fig. 6). The simulated wavefields clearly show

that the wavefronts of circumferential waves are in advance of

the direct wave front. The large thickness in the inferior part

favors high propagation velocities. The upward and downward

circumferential waves propagate along similar distances; hence,

the signal retrieved at the receiver is associated to the fastest

wave, eg, the downward circumferential wave. This wave path

is consistent with the strong correlation between TOFm and

BMDCortIA.

It is remarkable that the proposed ultrasound method is

particularly sensitive to the variations of BMD in the anterior and

inferior neck region because there is evidence that this cortical

region is particularly subject to remodeling and consequently

may undergo large variations in its properties, particularly in

porosity. Bousson and colleagues(40) found porosity values in

the inferior cortex varying from 4.96% to 38.87% (mean,

15.88%� 9.87%). Several studies pointed that the cortical bone

properties in the neck, and in particular in the anterior and

inferior regions, were different in fracture cases and postmortem

Fig. 4. Time-of-flight (TOFm) versus cortical volumetric BMD in the infer-

oanterior (BMDCortIA) quadrant.

Fig. 5. Time-of-flight (TOFm) versus strength (Fmax).
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controls. Bell and colleagues(31) found that porosity in the

anterior cortex of the fracture group was 41% higher than in

controls. These changes in porosity are associated with increased

indices of Haversian remodeling(41) and with the formation of

‘‘giant canals,’’ the proportion of which was found to be larger in

the anterior quadrant.(31,42) At the FN between fracture cases

and postmortem controls, Loveridge and Reeve(43) showed

differences in mineralization, and Loveridge and colleagues(44)

showed differences in mineralized matrix hardness. Fracture

cases had a lower mineralization level, particularly in the inferior

quadrants (–3.3%), and lower hardness in the inferior (–2.5%)

and anterior (–3.9%) regions. Such variations, which are critically

indicative of cortical bone status, are likely to be captured

by a measurement configuration that specifically favors the

propagation in the lower region of the neck cortex.

Considering the circumferential propagation involved in the

measurements, TOF decreases when the wave speed increases

but increases with the size of the circumference. The size and the

shape of the bone are thus a priori important determinants of

TOF. These relationships between TOF and bone size and shape

can partially explain the correlation found between the moment

of inertia (AMIMCortAll) and TOFm (R2¼ 0.71). However, data

interpretation is complicated by the fact that the parameters

are not all independent. In particular, BMD and the moments of

inertia are correlated. For example, BMDCortIA explains 68% of

the variability of moments of inertia. The consequence of these

correlations and the small sample size studied here makes

it difficult to determine the true contribution of the bone

geometrical variability to the TOF variability, independently from

BMD. The relative contributions of bone size, shape, and material

properties to the TOF can be best explored in experimental

studies conducted on a much larger sample size. The impact of

bone geometrical variability on TOF can also be documented

using numerical simulations of wave propagation in a

configuration similar to the experiments. Numerical simulations

in which all the FNs had the same material properties but

individualized geometry reconstructed from CT scan data sets

had been previously conducted. It had previously been found

that the minimum moment of inertia of the mid-neck cross-

section is an important independent predictor of the TOF

(R2¼ 72).(25)

TOF is in part determined by the wave speed, which in turn

depends on the material properties of the waveguide. In our

setup, the wavelength of ultrasound in the cortical bone is

about 8mm. Accordingly, the ultrasound circumferential guided

wave probes’ effective material properties (apparent density and

apparent elasticity) were averaged over one wavelength, not

only over the cortical thickness but also in the circumferential

direction. These effective properties strongly depend on cortical

porosity.(45)

The dependence of the speed of sound on cortical thickness in

addition to the dependence on material properties is specific to

wave propagation in waveguides.(46) However, no significant

correlation between TOF and the cortical thickness of the

inferior quadrants was found. There may be several reasons

for this: (1) there is only a 10% to 15% variability in cortical

thickness compared to the 25% variability of the BMD in the IA

quadrant; and (2) between-specimen variability of ThickCortIA

and ThickCortIP is around 300mm, which is very close to the

resolution of the CT scans. Hence, the variability and the

precision of thickness estimates may be insufficient, making it

difficult to observe any correlation between TOF and cortical

Fig. 6. Simulations of ultrasound wave propagation in three cross-sections of FN (trabecular bone not represented). Images of the simulated wave field

are given at four time steps (8, 12, 18, and 22ms after the time reference t0, from left to right). The circumferential waves in the cortical shell (Cinf and Csup in

the inferior and superior parts, respectively) are seen in advance of the direct wave front (d). Cross-sectional shapes were drawn after an image(29) (B) and

the inferior thickness was artificially decreased (A) or increased (C). The circumferential wave front propagates faster in the thick inferior cortex than in the

thin superior cortex.
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thickness. High-resolution CT scans should be performed in

future studies to clarify the relationships between TOF and

cortical thickness.

TOF is thus potentially an interesting parameter because it

captures a wealth of information, including material, geometri-

cal, and structural characteristics, that pertains to strength.

Further characterization of cortical bone at the neck, indepen-

dently from its geometrical features, might be of interest to

provide an estimate of the cortical status. Such a characterization

would require deriving the wave speed from TOFmeasurements.

To achieve this goal, the length of the pathway must be known.

Combining QUS-based measurements of TOF with X-ray–based

measurements of bone geometry might be a solution. Low-dose

CT might be sufficient for this purpose, but increased

examination cost and time of such a multimodality approach

have to be balanced against the increase in predictive power for

fracture risk.

In this work, for the first time, a comparison between QUS of

FN cortical bone and FN strength is presented. TOF and strength

were found to be strongly related (R2¼ 0.79). In fact, the

relationship between TOF and strength are mediated by the

above mentioned causal relationships that exist between TOF

and the propagation path length (ie, bone size and shape) and

guided wave speed (ie, material properties such as mass, density,

stiffness, and porosity). Although a clear relationship between

TOF and cortical thickness in this study could not be shown, the

fact that our QUS modality involves guided waves, the speed of

which are influenced by the thickness of the wave guide, is

potentially clinically significant considering, eg, the results

reported by Crabtree and colleagues,(32) who found that the

mean cortical width in fracture cases was significantly lower in

the IA (22.2%; p¼ 0.002) and inferior regions (18.8%; p< 0.001).

The QUS modality used in this study probes cortical bone only

and is not sensitive to the properties of the trabecular

compartment, as shown by a recent simulation study by our

group (data not shown). The high correlation between TOF and

strength suggests that cortical bone determines a large part of

bone strength assessed in a one-leg-stance mechanical test

configuration. This has already been pointed out in several

publications.(10–13) With the cylindrically focused transducers

used here, the whole FN cross-section is sonicated in a single

shot that allows a simple and fast measurement of the cortical

compartment without the need for scanning the ultrasound

beam through the neck. A simple, time-based discrimination on

the signal allows extraction of the component associated with

the guided propagation in the cortical shell. The downside

counterpart of line focusing is the absence of an image. However,

technical solutions exist, such as arrays of transducers, to

combine fast 2D scanning with line focusing in a single

apparatus. Such a technical approach would also permit a

combined assessment of both trabecular and cortical compart-

ments.

In this study on nine specimens, the correlations between QUS

and DXA with strength were found to be very similar: R2¼ 79%

for QUS, R2¼ 78% for DXA (total proximal femur). Both cortical

and trabecular bone compartments contribute to the DXA

values, which correspond to an average of a 2D projectional

measurement of BMD. It is remarkable that the QUS measure-

ment performs as well as DXA by solely probing the cortical

compartment. As mentioned above, several studies have

pointed out the important contribution of cortical bone to

strength.

This study has several limitations. Although a limited set of

specimens (n¼ 9) was studied, the distribution of the mechani-

cal, QCT, and DXA values, compared to those found in

comparable studies, are well within the range of reported

values. Nevertheless, the results need to be tested in a larger

independent set of specimens. This study only investigated a

one-legged-stance configuration that exclusively leads to

cervical fractures, as expected. This choice was constitutive of

the present study because the interest was in FN, and not

trochanteric, properties. Mechanical tests simulating fracture

after a fall on the trochanter would have led to various fracture

types,(47) which may not be as well related to the type of QUS

measurement presented in this work. In particular, trabecular

bone may be more important for strength in regard to

trochanteric fractures,(48) but it has been shown that other

QUS measurement modes also allow the assessment of this type

of fracture risk.(22) Another limitation, the spatial resolution of

QCT scans (in-plane pixel size of about 200mm), may have led to

an underestimation of the respective correlations with TOF.

The question arises regarding the in vivo applicability of the

method to measure the cortical part of the FN. In a pilot clinical

study, Barkmann and colleagues(22) demonstrated that femur

QUS is feasible and shows a good performance for hip fracture

discrimination. Signals from waves propagating preferentially in

the inferior part of the neck cortex could be observed but were

not actually used for the discrimination of fracture cases because

for some subjects the FN signal amplitude was too low. These

results with the first hip QUS scanner reinforce our idea that

measurement of the inferior cortex could be performed in vivo.

Optimal positioning of the ultrasound beam with respect to the

FN could be achieved automatically using an ultrasound imaging

modality and selection of region of interest following Barkmann

and colleagues.(22) The approach developed in our ex vivo study

was designed to favor the transmission and fast measurement of

a wave guided circumferentially in the neck cortex. A specific

measurement protocol and signal processing was adopted to

reach robust estimates of TOF with respect to small uncertainties

in transducer positioning. Such a protocol, basically consisting of

multiple measurements performed at different positions and

angles, which represent small deviations from a reference

position at the center of the neck, and averaging TOF for the

different positions, is suitable for an in vivo implementation.

Although it was previously shown that ultrasound can measure

the hip,(22) the in vivo performance of our approach will not be

clear, however, until a range of experimental data has been

analyzed in patients for challenging conditions; eg, signal-to-

noise ratio, intervening soft tissue, transducer positioning, and

measurement precision. Further improvements of the method

include (1) differential measurement of the lower and upper neck

cortex, the latter being also critical regarding neck stability,

which can be achieved by focusing the beam specifically on the

corresponding part of the neck to be measured; (2) separate

assessment of the geometry and material properties of the

neck with advanced signal processing to measure both TOF and
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wave speed(35); and (3) combining QUS modalities to probe both

the trabecular and cortical compartments.

Conclusion

In this ex vivo study it was shown that QUS measurements

favoring the propagation and the measurement of a wave

propagating circumferentially in the cortical shell of the FN were

strongly correlated with femoral bone strength. More specifical-

ly, TOF was found to be highly sensitive to the variations of

regional cortical bone properties in the inferoanterior cortex. This

supports the notion that TOF reflects a combination of cortical

tissue elastic properties—which are in turn affected by

mineralization and porosity—and geometrical properties, all

of them known to be relevant for femoral neck strength.

Specifically, this study has shown the relevance of measuring the

FN cortical shell with ultrasound. Following the findings in this

work, novel hip QUS systems for clinical assessment could be

devised to complement the assessment of the trabecular

compartment with assessment of the cortical compartment

for the benefit of enhanced risk prediction and monitoring of

drug-induced changes in bone properties. It is also possible that

combining X-ray and ultrasound measurements would provide

better indicators of bone quality. Although the methodology for

assessing bone using ultrasound is much less developed to date

than using X-rays, the potential of ultrasound extends far beyond

the currently available QUS techniques and is largely unexploit-

ed. Ultrasound waves are intrinsically suited to probemechanical

properties, and have the best chance to noninvasively yield an

improved estimation of bone fragility combined with advan-

tages such as lack of ionizing radiation and cost-effectiveness.
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