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Stochastic Modeling of Soft Magnetic Properties of Elctrical Steels:
Application to Stators of Electrical Machines

R.Ramarotafik®’, A.Benabod, S.Clénet

1L 2EP/Arts et Métiers ParisTech, Centre de Lilllyagilevard Louis XIV - 59046 Lille Cedex, France
2L 2EP/Université Lillel, Batiment P2, Cité Sciertifie - 59655 Villeneuve d’Ascq, France

To take account of the uncertainties introduced orthe soft magnetic materials properties (magnetic bmvior law, iron losses)
during the manufacturing process, the present worldeals with the stochastic modeling of the magnetisehavior law B-H and iron
losses of claw pole stator generator. Twenty eigli28) samples of slinky stator (SS) coming from theame production chain have been
investigated. The used approaches are similar to tise used in mechanics. The accuracy of existing argteretic models has been tested
first using cross validation techniques. The well kown iron loss separation model has been implememteo take into account the
variability of the losses. Then, the Multivariate Gaussian distribution is chosen to model the variabty and dependencies between
identified parameters, for both behavior law and ion loss models. The developed stochastic model®wal predicting a 98% confidence

interval for the considered samples.

Index Terms— slinky stator, magnetic behavior law, iron lossesvariability, stochastic model

I. INTRODUCTION

OR optimal design of electrical machines, the krealgle
of magnetic steel properties, such as the maghetiavior
law and iron losses is of importance, especiallthim context

the same for all samples issued from the productioain.
This is due, for example, to the cutting tool wédrerefore, it
is of interest to have a stochastic approach iero@ take into
account the uncertainties introduced by the manuifimg on
the magnetic behavior law and iron losses. In fsittchastic

of more and more constraining requirements for gner models became in the last decade a great challamgeare

efficiency. In order to improve the accuracy of otfeal
devices modeling, many works have been concerndd the
modeling of iron losses [1-3] and magnetic behaléwor [4].
These models are found to be acceptable, when riet i
parameters, related to the geometry and physiagiepties,

particularly used in various fields such as civilanechanical
engineering. Generally speaking, it aims to ingzd8
uncertainties on input parameters of a model, had to study
their impact on the model output(s) [8-14]. The gused
common scheme for dealing with uncertainties usang

are assumed to be well known. However, such assomptstochastic model relies upon three steps, namelyléfinition

reveals itself insufficient as the manufacturingaafelectrical
machine, from the cutting of laminations till thedl magnetic
core shape, requires several industrial procedsas night
significantly impact the magnetic properties. Irctfathese
processes may introduce some residual stressehdkiatan
impact on the magnetic behavior law and iron logsethe
considered material [30-33].
properties of the magnetic steel, before and aftes
implementation of these different processes, amseigdly
modified, locally or globally. Moreover, the impaet these
processes is not necessarily uniform and can lead t
significant variability in the magnetic charactéds. Most of
the works investigate only the relationships betwdbe
magnetic properties and mechanical stresses anchado
emphasize the variabilities that can be introduddte work
presented in [5], reported that the vector magnatperty of
the electrical steel sheet depends on the mechastieas and
the direction of the magnetic field excitation ands to be
taken into account when designing the electricakhrimee.
Moreover, the work in [6] describes a method fotedéng
stress on the surface of magnetic materials, sschteels,
using measurements of magnetic Barkhausen emisgibese
results are interesting as they put in evidenceirigact of
mechanical stress on the local magnetic properties.
Nevertheless, the mechanical stress
manufacturing process, is not necessarily well kmawd not

of the mathematical model of the physical systeime t
probabilistic characterization and modeling of the
uncertainties on the model parameters and the gadipa of
these uncertainties through the model [11].

The present work is focused on the second stesistong
in modeling the uncertainties of the magnetic béralaw

Therefore, the magnetand iron losses. Then, the model that is constduistepplied

to describe the magnetic properties of the yoke tieenty
eight slinky stator samples (SS) used in claw-@dternators.
Studying this kind of stator is of interest as thanufacturing
process, consisting in a long strip of steel latidmathat is
progressively punched and rolled up in a spiral,wagy have
noticeable impact and variability. Note that the deling
approach is similar to those presented in the fafldatigue
crack growth in mechanical probabilistic modelimgdhich are
mainly interested in modeling the stochastic aspEcthe
fatigue of material, through Paris Erdogan modg].[1

The first part of this paper concerns the varigp#ispect of
the magnetic behavior law and iron losses, quaatifn the
aforementioned slinky stator samples. The mainativje is to
explain the outline of the experimental approachl e
obtained results, as further details can be coebut [15].
Development of stochastic model would be then based
these experimental data.

induced by theThe second part of this paper is related to thesldgment

of a stochastic model for the magnetic behavior. |alve



approach for simulating the inverse model H(B) vl also
presented. In fact, an inverse model is required viector
potential formulation when modeling a device, foample,
using the finite elements method. Finally, the dhipart
concerns the stochastic modeling of iron lossesbGitz,
although the stochastic model can be extendedtifar devels
of frequency.

A. Experimental protocol

EXPERIMENTATION ONSLINKY STATOR SAMPLES

sample, the potential sources of uncertainties not
significant. Therefore, if a significant variabylits identified
among the stators samples, this one can be linkedtlg to
the degradation of the magnetic properties due
manufacturing processes.

B. Magnetic behavior law and iron losses variability

In figure 2, the behavior lawRB{(Hmay, for 50Hz, is given
for all samples. The variability of B, for the considered ki,
interval is between 2% and 1% (from lower to higltf.
level).

Twenty eight slinky stator (SS) samples made from At the opposite, numerical models of electricalides can

standard grade
geometrical dimension and coming from a productibain of
claw pole generator are investigated. The core faatwring
process of slinky stators is based on a long stfipsteel
lamination that is progressively punched and rollgdin a
spiral way. Stators obtained from this way of mactdiring
are known as "slinky stators". This method is usededuce
the material waste. It requires special manufacturi

laminations MB800-50A, with the samequire the use of the inverse behavior law, i.é&h vihe

magnetic flux density B as input variable. Thighe case of
the standard vector potential formulation in 2Dt&relement
analysis for example. Then, from the experimentaBinay
curves, the inverse Jd{Bmay curves are deduced by
interpolating between experimental points for givBRax
values. Therefore, the identification of the vailigbof H
when fixing the magnetic flux density,B, becomes much

to

techniqgues and production machines. The rollingcgse higher as the B, level increases, and varies from 3.72% to

might then negatively influence the magnetic prtpsrof the
material, especially the iron losses that incré¢@ke

The main purpose of the experiment is to quantifg t
variability of the magnetic behavior law B-H andrirlosses
(Py) of the stator sample’s yokes. To this end, primand
secondary windings have been realized along tlodie yas for
the magnetic characterization of a toroidal samgéeh stator
sample has an excitation winding that creates anetagflux
in the yoke along its perimeter, and a secondanding is
added to measure the magnetic flux density (figurel

Fig. 1.Samples of stators

The experimental characterization is carried outlemn
sinusoidal magnetic flux density, for different é&w of
excitation field H,.x and at 50Hz.

The quantities of interest are the iron lossgsafd the
maximum magnetic flux density B, Their variabilities are
guantified using descriptive statistics and by ghting the
empirical Coefficient of Variation (Cv), which ie ratio of
the standard deviatioorto the mean..

1)

In order to verify that uncertainties are mainliated to the
magnetic properties, influences of the noise megmsants,

5.77%, as presented in figure 3.
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Fig. 3. Maximum excitation flied Kxvs maximum flux density By Cv
is much higher with increasing,g level

These variabilities are introduced by the manuf@atuthat
is constituted of several processes. The processishmost
likely to introduce variability in the behavior lavws the
mechanical stress when the strip of steel laminasorolled
up in a spiral way. Moreover, the punching can ats@duce

manual windings and geometrical tolerances haven be@ariability among the samples along with the weérthe

investigated [15]. Results showed that, for a giveator

punching tool. By considering the samples in tliigial state



after these processes, the observed variability gtobal one [16]. A hyperbolic approximation is, for exampldyet well
and it can not be distinguished which one is thestmoknown Froelich’s equation given by,
preponderant. Nevertheless, for the electrical nm&ch
designer, this global variability is the one ofergst. |H|
The iron losses PLare also investigated at 50Hz. Their B = .
variability is about 6% for all K., levels (figure 4). In order to a+b|H|
analyze this variability for both static and dynami
contributions, the loss separation technique isliegp by The coefficientsa andb are determined from a plot of 1/|B|
characterizing the whole samples for several leskB.,and vs 1/|H|. A transcendental function has been pteden [16]
frequencies. It is found that the Cv of static &xs$s more tg approximate the anhysteretic curve, and is essaa by,
significant compared to the Cv of dynamic losségu¢e 5)
[15].

)

B = atan (bH) (3)

where a and b are determined from experimental data.
Other models are based on physical considerateuns) as
energy approaches, and the existence of couplitvgelea the
magnetic domains. By applying Maxwell-Boltzmanntistics
and some algebraic calculations, the bulk magnéaizaan
be approximated with the well known Langevin equafil7],
which is given by,

M(H):Msa{cot)’(HJran— a } (4)

Hmax [A/m] a H +aM

samples where Mg is the saturation magnetizati@n,the mean field
parameter representing inter-domain coupling and given
by a=kT/m where k is the Boltzmann's constanfl the
temperature in Kelvin, anth the magnetic moment per unit
volume. The three parameteds, a, o) of the model are
identified from the experiment.

An interesting model, presented in [18], is basedtle
] Rty el e o i Rayleigh model and Brillouin equation. The Raylerghdel is
used for modeling minor centered loops and is glwen
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Fig. 5. Coefficient of Variation of static and dyna components of where the linear term represents the reversiblepooent,
losses of 28 SS samples at 50Hz and the quadratic term the irreversible componefit o

magnetization. Brillouin's equation allows approating the
As for the behavior law, the observed variability iron entire reversible anhysteretic magnetization cuarel its
losses is most likely the consequence of the mécalasiress expression is given by,
introduced by the punching and the rolling up spaal of the

strip of lamination. Moreover, the impact is maimgserved M(H) 23+1 2J+1H 1 1H

on the static losses that are directly linked te Kysteresis M = >3 COth[ 3 —j‘— COU{——] (6)
. sat a) 2] 2) a

behavior [33].

From these experimental observations, the mainctipge
of this paper is to develop stochastic models wikhtake into
account the variabilities for both the magnetic daebr law
and iron losses for a direct use in electrical devidesign.

where Mgy is the saturation magnetizatioh the quantum
number of the atom, amthe shape parameter depending on
the material properties and the temperature. Witmes
assumptions on the physical phenomenon of the ntiagtien
and combining (5) and (6), an expression for the

[Il.  ANHYSTERETIC CURVE MODELS AND CROSS VALIDATION I .
magnetization can be deduced and given by expreés)o

TECHNIQUE
A. Literature review Y |H| H
To describe the non-linear behavior law, some n®det M (H): MaLK—J+Mbtanh[T]L(—bj (7)
based on purely mathematical approximations, asepted in a



question is now can our model predict these nevervbsons
where M,, M, denote the reversible and irreversibleor which functions predict better these observatfoiNew
components of saturation magnetization, and determine differences can be calculated using the expression,
the rate of their approach to saturation. Thesarpaters are
identified again from experimental measurements. 1<

=3 (Yo (g 230-2)) (12

B. Coefficient of efficiency I =

The coefficient of efficiencyRzcan be used to measure the ] o )
accuracy of the fitting process. It takes valuesvben 0 and  WhereP is the prediction error. Obviously, we can postila
1, and evaluates the fraction of variance in theeoked data that the model that gives the smallBdtas a higher predictive
that can be explained by the model. A higher vahgicates POWer- On the other hand, the model that gives lem&lbut

better agreement. Its expression is given by, largerP corresponds to an overfitted model. ,
The Cross-Validation Technique (CVT) [19-22] is a

suitable method to carry out such analysis. Thifirigue is

Z(Bmeas(H )-B( Hi)) widely used in modern statistical analysis and daitzing. Its
R =1--12 ) (9) main purpose is to split the available data into subsets, by

Z(Bmeas(H i)_ B... H)) performing the analysis on one subset (training, sahd

= validating the analysis on the other subset (tgsset). It

allows the attempts to reduce overfitting and thekp to the
In this relation,n is the number of experimental datamodel selection. With a set of experimental datainén, the

BmeasiH )is the mean over the measured magnetic fyinciple of the method is as follow:

densities Brea{H;) andB'(H;) are respectively the measured - divide the experimental data set into equally sized
and the estimated (model) characteristics for the Subsets (ornearly equally) or folds,

correspondind; level. However Rz may be oversensitive to - for the k-th subset, estimate parameters using (11) with

extreme values or outliers. An improvement oRéfor model the (K-1) subsets excluding th&-th subset. Calculate
evaluation purposes is the adjusted coefficienefitiency prediction error using (12) for tHeth subset,
RZ, given by,

- repeat the second step for lefl1,2,...,Kand combine all

n-1 prediction errors to get a cross-validation predicerror.

R =1- (1- RY (10)
n-q-1 Technically, one can use a K-fold cross-validation a
leave-one-out cross-validation (in this caken). Let us
whereq is the number of parameters of the model. denote an estimate of the vector of parametersedt-th step

by a, and the number of points in this subddét The

C. Cross-Validation technique prediction error of the model per observation isegiby,

The coefficient of efficiency mentioned above caa b
applied to check the accuracy of the model for lakée 1& 1 R
experimental dataset. However, its drawback isitrddes not E, :—Z— (){ - f(x a )) . (13)
allow verifying the behavior of the selected modal future Kic N
as-yet-unseen data. Moreover, training an algoritand
evaluating its statistical performance on the sam@ yields  One can then choose the model that gives the shalle
an overoptimistic result. Assume that we have apdaf size prediction erroE,.
n such ag/ = (Y1, ¥»,...}) and we want to estimate a family of
parametersa=(a;, @,...a,) of the modelf(a) chosen to V. MAGNETIC BEHAVIOR LAW STOCHASTIC MODELING

represent the data. The least square techniquthearbe used  To develop a stochastic model for the magnetic deha
to find the values of the parameters, and consists |aw, the following steps are performed:

minimizing, - Comparison of existing anhysteretic models accyracy
using goodness of fit measures. The objective inib
n 2 the one that would present the lowest error rate.
F=Yy = (%0 X0 X o B0, 800.8,)) - (11) - |dentification of the parameters of the chosen rhéde
i= the whole samples.
- ldentification of the probabilistic model using iddied
Parameters are identified by minimizirg, and then the parameters.
functionf(a) is chosen to represent the phenomenon (model).- Validation of the model using a statistical testdan
Obviously, if more parameters are taken, the fittimill be identification of the Confidence Interval (ClI).

better. However, the question is what will be treddvior of
the model if new observations are available. Ineptiords,
assume that new observatiofys.1,...}h+i) are available, the



A. Deterministic anhysteretic model performance
comparison

trajectories (used for modeling subsets) chosedamaty, are
then identified by minimizing (11). The histograraad the

The accuracy of the Froelich (3), transcendentg), (4scatter plots of these parameters are presenfeglires 6 and

Langevin (6) and modified Brillouin (8) models isantified.

7 respectively. The linear correlation matrix ofeske

To this end, the Bu(Hmay) Characteristic measured on anparameters is summarized in table 4, and suppostmag

arbitrary chosen sample is investigated, and paemeare
identified by minimizing (11). The correspondingefficients
of efficiency are summarized in table 1. It is shothkat all
identified models allow predicting fairly and acately the
experimental data points.

TABLE |
COEFFICIENT OF EFFICIENCY IDENTIFIED FOR TH& ANHYSTERETIC
MODELS
Mpdm_ed Langevin Froelich Transcendental
Brillouin
R2, 0.990 0.975 0.989 0.985

Although the efficiency coefficient for the Langavnodel
is the smallest one, the difference with the othisranot
significant. Thereafter, considering the size of samples, a
3-fold CVT is applied: data points are split intgigb-samples,
respectively for H.=[500;1000] A/m, H.=[1150;1500]
A/m and H,=[1650;2500]A/m. For each fold, the
parameters of the model are identified from thdning
samples, and the error rate evaluated from thesktstThe
global error is then the average of the error fatehe 3 folds.
This procedure is performed on the 4 models, aedetinor
rate evaluated for each fold is presented in t&hland the
global error rate for each model in table 3.

TABLE Il
ERROR RATE FOR EACH FOLD AND EACH ANHYSTERETIC MODEL
1fold 2" fold 34fold
Froelich 1.64x16 2.02x10" 1.04x10°
Modified Brillouin 4.47x1CF 3.34x1¢° 1.03x10°
Langevin 1.33x18 1.04x10° 6.75x10°
Transcendantal 3.58x%0 2.79x10* 2.16x10°
TABLE Il
GLOBAL ERROR RATE FOR EACH ANHYSTERETIC MODEL
Global Errork,
Froelich 9.36x10
Modified Brillouin 6.042x10
Langevin 7.058x18
Transcendantal 2.009x30

According to these results, the modified Brillouimodel
presents the lowest global error compared to theranhodels.
This justifies its use to model the behavior lavitaf SS.

B. Parameters variability

In order to investigate stochastic model validatiater,
experimental data is split into two groups: the alod) subset
used to construct the stochastic model (contaimigieling
experimental data), and the test subsets to valittet model
[23]. The set of parametersif, My, a, b for 23 experimental

linear dependency between them.

TABLE IV
CORRELATION MATRIX OF ANHYSTERETIC MODEL PARAMETERS
Ma My a b
M, 1 -0,98 -0,66 -0,82
My -0,98 1 0,75 0,9
a -0,66 0,75 1 0,79
b -0,82 0,9 0,79 1

Therefore, the chosen probabilistic model shouldlble to
take into account both the variability of each paeter and
the correlation between the parameters. Unfortiyaie is
difficult to infer a probability distribution fromonly 23
realizations. Therefore, we have proposed a Muitt@
Gaussian (MG) distribution which is able to modaittb
variability and dependence between these parametdrs
algorithm for generating a MG distribution from exjmental
samples is presented in Appendix A.1.

C. Model validation

1) Statistic goodness of fit

Once the MG distribution is obtained, a Monte Carlo
simulation is performed for one million realizatgonThis is
achieved for each K, level and the corresponding,B
empirical Cumulative Distribution Functions F(x) QE) are
identified. In order to check the goodness of fitistics, the
identified and experimental CDF are compared, lastibted
in figure 8 for four levels of K. According to these figures,
an experimental CDF is well approximated by theutated
one. Thereafter, a two samples Kolmogorov Smirnid8)(
(Appendix B) test is then implemented to test thdl n
hypothesis K that they are issued from the same continuous
distribution, at a risk of 5%, against the hypoibdd, that
they are from different probability distributionofFall Hyax
levels, the p values (if p-value>5%, null hypotke not
rejected) of the test are between 0.5 and 0.9.elalsies then
allow not rejecting the null hypothesis, for allHlevels at a
risk of 5%. This validates the simulated CDF.

2) Confidence interval

The 98% confidence interval (Cl) of, & is identified for
all Hyax levels. Figure 9 shows that the modeling subset is
within the predicted 98% CI. Moreover, the predictand
experimental medians are also very close as showigure
10. Indeed, the error between the predicted anérarpntal
median is less than 1% for the whole level gf,HFinally,
test subsets are reported in figure 11 showingtttet also lie
within the identified ClI, although they have notheused for
the MG distribution generation. All these companisallow
then to validate the MG distribution chosen for tagiability
of the vector of 4 parameters and make. The model e
further used as input for stochastic finite elersearalysis in
scalar potential formulation [13, 14].
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6-Compute:H ax(k +1) = Hnax(k) + B,maX(H max{k)
B max H max k
7-1f |Hmax(k + 1)~ Hmax(K)| <&, setj=j+1, otherwise
redefine the initial value as,,(k+1) in step 4
8-Repeat steps 4-7 unfik n
9-Repeat steps 1-8 for all,B levels.

V. [INVERSE BEHAVIOR LAW MODEL SIMULATION

In the case of vector potential formulation in fenelement
analysis, one needs to define the magnetic flusithe® as
the input variable. Then, by considering the ingersodel
H(B), it is shown in figure 3 that the variabilitgf H,ax
becomes much higher when thg,Blevel increases, with a
coefficient of variation between 3.72% and 5.77%n{pared

to 2% fprthe direct B(H) n)od.el).. performed forX, and the CDF of kL for all By levels is
In this case, the MG distribution model of the paeters jyentified. These are compared with the experiniemas as
vector previously identified can be used directlysimulate jstrated in figure 12, for 4 levels of,B. Then, the KS test

the variability of Hha, for the studied stator samples, whenyt a risk of 5% for all B, levels is applied, and returned p-
considering the magnetic flux density,& as the input. To yalues between 0.1 and 0.8. These values allowsjetting
this end, the Newton-Raphson algorithm is implere@rés the null hypothesis that they are issued from thenes

One million realizations of the vector of paramstere

follows: distribution, at a risk of 5%. Moreover, the 98% & IHn.y IS
identified and compared to experimental trajectirefigure
1-Set the maximum flux density level & 13. According to this figure, all the experimentadljectories
2-Calculate the derivative (B)' given by (7), with Hpya{Bmay lie within the identified CI. Finally, predicteand
respect to Hax experimental medians are compared in figure 14.itAis
3-Generate the vectok = {M,, My, a, i}, according to shown in this figure, they are close: the maximuspadlrity is
MG distribution, whereX is of size (n x 4) 3.03% for the higher level that remains an accégtaiyor.
4-Set Hha(k) the initial value of Newton-Raphson As for the direct model B(H), the inverse stochastiodel
algorithm can be used directly as input for stochastic fimtements

5-SetX =X(j,4) analysis in vector potential formulation [13, 14].



1 1
0.75 0.75
= —
T 0.5 \LL>'</ 0.5
— Simulated — Simulated
0.25 O Experimental 0.25 O Experimental
3 &3
1?80 525 570 615 660 (960 725 790 855 920
Hmax [A/m] Hmax [A/m]
Bmax=1[T] Bimax=1.17 [T
1 1
0.75 0.75
— — Simulated =
0.25 0.25
1(1\[00 1200 1300 1400 1500 1%50 1937.5 2225 2512.5 2800
Hmax [A/m] Hmax [A/m]
Brmax= 1.38 [T’ Bmax= 1.55 [T’

Fig. 12. Experimental and predicted CDF aftfor four levels of B for the inverse behavior law: adequacy between the
experimental data and the simulation

2400
1925¢
E
<
x 1450
]
(S
T
975-
S5 1% fractile
500 : :
1 1.1375 1.275 1.4125 1.55
Bmax [T]

Fig. 13. 98% CI Ha{Bmay curves and experimental trajectories for the iggdehavior law: comparison
of the Cl and experimental trajectol
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2400
——— Experimental median

T 1925 — Predicted median
<
% 1450r 99% fractile 1
S
I

975 8

1% fractile
500 L L L
1 1.1375 1.275 1.4125 1.55
Bmax [T]

Fig. 14. Experimental and predicted{Bmay median curves for the inverse behaviour law: camspn show
good agreement.

VI. STOCHASTIC MODELING OF IRON LOSSES

A. Iron losses separation approach

Iron loss prediction in ferromagnetic steel
subjected to many studies. According to the phematogical
principle proposed by Bertotti [24], the so-callddss
separation approach, the average power loss penainime
Ps for electrical steel is decomposed in static agdathic
contributions. This latter contribution is composetl the
classical and excess losses, which are separatalgtigated,

Ps= Pstait Pelasst Pexc (14)

wherePg, are the quasi-static hysteresis losfggssare the
classical losses (macroscopic eddy currents) Rgdare the
excess losses (dynamic behavior of the magneticadtn
[27]. Analytical models have been proposed to itigate

these components that require the identificatiopasmeters.

(Preas™ PD)Z (18)

n
i=1

has nbee where PneasiS the measured iron lossesthe number of

experimental data arfél the predicted iron losses.

To develop stochastic model of iron losses of thesiered
samples, the same approach as for the magnetiwibeleav
is used.

B. Parameters identification-variability

The characterization is achieved for 5 levels af.B
(sinusoidal induction) and 6 levels of frequencyd®00 Hz).
As for the B(H) stochastic modeling approach, the
experimental data are split in two sets: a modedinigset used
to develop the stochastic model and a test subsealidate
the model. To identify the quasi-static loss paramsk, and
a, it is assumed that only the quasi-static behasgianvolved
at 5Hz. Then, coefficientk,, a, k. andk,,. are identified for

These are dependant on the chemical and physi@ch stator sample (modeling subset), for the whole

characteristics of the considered material [25-28jerefore,
for sinusoidal supply, the hysteresis losses can
approximated by the following well known equatiamposed

frequencies and By levels. Histograms and scatter plots of
e identified parameters are presented in figd®esind 16
respectively. The linear correlation matrix of th@arameters

by Steinmetz [29], where B is the peak value of the flux iS given in table 5.

density,f the frequency and the Steinmetz coefficient.

Physt = kh fBrZax . (15)
The classical losses can be computed using (18)rdag
the skin effect to be negligible, and the excessde are

calculated with expression (17).

PelassKe (meaQZ (16)

PexKexdfBrnad (17)
In order to identify the parametels, (a, k., ks, the iron

losses have to be measured for several magneticlénsities

and frequencies, and used to minimize the followurgtion,

TABLE V
LINEAR CORRELATION OF IRON LOSSES IDENTIFIED PARAMEERS
kn a ke Kexc
Kn 1 0.35 -0.17 -0.04
a 0.35 1 -0.1 0.26
ke 0.17 -0.1 1 -0.64
Kexc 0.04 0.26 -0.64 1

From this table, it can be observed that the dyndoss
parameterg, andke, are correlated. A MG distribution is then
chosen to take into account the variability andredation of
the four parameters. With this assumption, cotigia
between the four parameters, even if not significare taken
into account.
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C. Model validation disparity is 1.2%, which is acceptable. Finalhg test subsets

1) Goodness of fit statistic are compared with the 98% ClI in figure 20. It isetved that

A Monte Carlo simulation for one million realizatio is the test subset lies within the identified Cl. &lese criteria
performed, for each B, level at 50Hz, and the CDF of thethen allow validating the stochastic model of thenilosses.
total iron losses {Pis identified for each B, level. A According to all the criteria listed above, the el@ped
comparison with the experimental CDF is illustrabedigure ~ stochastic model is representative of the irondssariability
17 for two levels of By among the samples.

It can be observed that the experimental CDF art we Note that the developed model can be used to estin@l
approximated by the simulated ones. Moreover, te t for the iron losses at a frequency level of interpsoviding
samples Kolmogorov Smirnov (KS) test is then usedest the physical assumption are still verified (greagkin depth
the null hypothesis #that they are issued from the sam@vith regard to the lamination thickness). As ilkasion
continuous distribution, at a risk of 5%, agaifst hypothesis €xample, figure 21 shows the experimental irondsssurves
H; that they are Coming from different probab“ityfor 100Hz that lie within the 98% CI identified frothe
distributions. For the whole level of.B, the p values are model.
between 0.09 and 0.44 for 50Hz. These values ahow
rejecting the null hypothesis, for all.B level at a risk of 5%.

This validates the simulated CDF with the defindskr
criteria.

2) Confidence interval

The 98% CI is also identified for all levels of,B The
modeling subsets are compared with the identifieoh @gure
18. According to this figure, the modeling subdeaswithin
the predicted 98% CI. The predicted and experinhenta
medians are also compared in figure 19, and theirmesm

200 35
150 - 26.25
2 2
2100 2 175
[) [)
[a) [a)
50 8.75
0.051 0.0597 0.0685 0.0773 0.086 241 146 151
kh alfa
4
SX10 11000 o
5.25 [ 8250
2 35 : _ 2 5500 :
[} <5} H
3 8
1.75 { 2750
89 5575 725 8925 106 95 4425 535 6275 72
ke X 10>5 kexc x 10>4

Fig. 15.Histograms and probability densities (Gaures of iron losses parametéks o, ke, kex)
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Fig. 17. Experimental and predicted CDF of irorsé&sfor two levels of Rxat 50Hz: adequacy between the
simulation and experimental data
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Fig. 18. 98% CI of iron losses curves and modedinigsets at 50Hz: comparison of the Cl and expetahen
trajectories (23 experimental trajectories)
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Fig. 19. Experimental and predicted iron lossediarecurves at 50Hz: comparison
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Fig. 20. 98% CI of iron losses curves and tessstshat 50Hz: comparison of the Cl and test sulfSetajectories)

18 [
16 ) . .
Experimental trajectories
'§ 13r \
E 99% fractile
- 10 \ ]
a
! 1% fractile i
4 L L L
0.75 0.9375 1.125 1.3125 1.5
Bmax [T]

Fig.21. 98% Clof iron losses curveand experimental trajectoriat 100H:: comparison of the ClI and trajectol

law and iron losses using experimental data. Tharaaeh
VII. CONCLUSION was applied in the case of slinky stator samples ginesent
significant variability.

Several works have been focused on the quantificadi i - o
The deterministic modified Brillouin model was ckasto

the influence of the manufacturing process (cuttiswgd ! ! )
assembly process) on the magnetic properties ofnetig approximate the magnetic anhysteretic curve ofstmaples,
material, such as the magnetic behavior law and ifte using the coefficient of efficiency criteria and3gold cross
losses. However, models that take into account ethe¥alidation technique. On the other hand, the imss|model

influences and their variabilities for direct usethe design of Pased on the three loss contributions is used pooapnate
electrotechnical devices are still relevant. Traper proposed the iron losses of these samples. The used apm®ach
an approach to develop stochastic models that iete stochastic modeling are similar for both the maignathavior

account the stochastic aspect for both the magbefiavior law and iron losses. The probability distributiafghe model
parameters, both for magnetic behavior law and losses,



were assumed to verify a Multivariate Gaussianrihistion.

The chosen probabilistic models of the identifiedgmeters
have been validated by comparing simulated andrexpatal

CDF, and by implementing the two samples KS test atk

of 5%. The developed stochastic model for magrsltavior
law allows one to implement inverse simulationthia case of
the vector potential formulation in finite elemeanalysis.
Moreover, the stochastic iron losses model may $ed o
simulate the variability of the iron losses for quencies
levels, other than 50Hz, providing the physicaliagstions of
the loss model are still verified.

More generally, the proposed methodology can bdiegpp
to deal with the variability of magnetic core pariselectrical
devices. In fact, this methodology used to devetbp
stochastic behavior law and iron losses modelsdspendent
from the considered system or magnetic materiales€h
models can be then used as input for a stochastite f
element simulation to take into account the ungdits in
electrical machines [13-14] for a design or exiptigkevice
modeling purpose.

APPENDIX

APPENDIXA: GENERATINGMG DISTRIBUTION

Assume thaX is a p-dimensional column vectgra vector
(vector of the mean), an a positive definite symmetric
matrix (covariance matrix o). The probability distribution
function for the MGD is defined by

Fx) =t exd ~L(x-p) s
\(2n)s det(s) r{ 2

(x- ”)j . (A1)

The following algorithm can been used to draw vslue

from the distribution:

14

/ﬁ supcr] | B ¥ W-FY 0] 2

where n (respectively p) is the size of the sample and
IA:n ><(x) (respectively IA:n y(X)) the empirical distribution

Dn1n2

function. The null hypothesis is then rejected dewel a if
Dnyn, 2 K4(n.ny) whereK,(n,ny) is obtained from the table

of critical values of KS test.
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