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 Abstract – To take account of the uncertainties introduced on the 
magnetic properties during the manufacturing process, the 
present work focuses on the stochastic modelling of iron losses in 
electrical machine stators. The investigated samples are composed 
of 28 slinky stators, coming from the same production chain. The 
stochastic modelling approach is first described. Thereafter, the 
Monte-Carlo sampling method is used to calculate, in post-
processing, the iron loss density in a PMSM that is modelled by 
the finite element method. The interest of such approach is 
emphasized by calculating the main statistical characteristics 
associated to the losses variability. 
 

I. INTRODUCTION 

 
Proper modelling and dimensioning of electrical machines 

require the knowledge of magnetic steel properties, such as 
the magnetic behaviour law and iron losses. Usually, the 
dimensioning is reliable when the input data, related to the 
geometry and physical parameters, are assumed to be well 
known. In that context, many works have been concerned 
with the post-processing of iron losses calculation for the 
numerical modelling of electrical machines [2] in 
deterministic cases, meaning that uncertainties related to 
magnetic properties are neglected. Such assumption proves to 
be insufficient as the manufacturing of electrical machine 
magnetic parts, from the cutting of laminations till the final 
magnetic core shape, may introduce uncertainties on the 
magnetic properties, especially on the iron losses [1]. 
Therefore, the development of models that take account of 
these uncertainties is relevant for electrical machine 
designers. In [3], an experimental approach involving a 
sample of twenty eight slinky stators, manufactured from the 
same assembly line, is investigated to take account of the iron 
loss variability. Studying this kind of stator is of interest as 
the manufacturing process, consisting in a long strip of steel 
lamination that is progressively punched and rolled up in a 
spiral way, may have noticeable impact and variability on the 
magnetic properties of the material. Following this work, a 
stochastic model of iron losses parameters is developed in this 
paper. Note that the modelling approach is similar to those 
presented in the field of fatigue crack growth in mechanical 
probabilistic modelling. These models are mainly interested 
in describing the stochastic aspect of the fatigue of material, 
using the Paris Erdogan model [10]. 

In our case, the developed model is used for stochastic 
Finite Element (FE) post-processing calculation of the iron 

losses in the stator of a synchronous electrical machine, using 
the Monte Carlo Simulation Method.  

 
 

II. IRON LOSSES VARIABILITY 

A. Experimental approach 

Twenty eight samples of slinky stators made from the same 
standard lamination grade M800-50A and the same geometry 
are investigated. In a first step, the variability of the iron 
losses is quantified from the experiment. To this end, the 
magnetic characterization is carried out using an excitation 
winding that creates a magnetic flux in the yoke along its 
perimeter and a secondary winding that measures the 
magnetic flux density (Fig.1). Preliminary analysis has been 
realised, concerning the repeatability of measurements and 
the influence of manual windings. Results showed that these 
aspects do not present a significant variability. In the 
following, all samples have been characterized for 5 levels of 
the magnetic flux density Bmax (from 0.75T to 1.5T) and 6 
levels of frequency (5Hz to 200Hz).  

 

  
 

Fig.1.Stator samples 
 

Statistical analysis were performed on the measured iron 
losses, from one sample to another, and the variability was 
quantified in term of the coefficient of variation (Cv), which 
is the ratio of the standard deviation (Std) to the mean.  

At 50Hz, the calculated Cv is approximately 6% for all 
Bmax level. Iron losses for the 28 samples measured at 1.5T 
and 50Hz are illustrated in figure 2. 
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Fig.2.Iron losses at 1.5T and 50Hz of the 28 samples of stator 

 
The variability of the iron losses appears clearly and 

reflects the non repeatability of the residual constraints 
introduced by the manufacturing process. More detail on the 
experimentation may be consulted in [3].  

B. Stochastic modelling approach  

In order to account for this variability, the following steps 
have been considered: 

• Deterministic model-parameters identification: the first 
step consists in identifying the parameters of the 
deterministic model for each experimental trajectory. 
Therefore, classical least square fitting method may be 
implemented.  

• Probabilistic modelling of parameters: this step deals 
with the identification of the probability distribution 
functions (PDF) of the input parameters. This can be 
achieved in the context of a parametric approach for 
which classical probability distribution functions 
(uniform, Gaussian, lognormal) can be tested with 
Kolmogorov-Smirnov (KS) test, to check the goodness 
of fit statistics. More precisely, KS test defines null 
hypothesis H0 that consists in assuming that the 
experimental data are distributed according to the 
proposed probability density function, at a risk of α%. 
Then, by computing the maximum distance between 
empirical Cumulative Distribution Function (CDF) of 
the experimental data and the CDF of the candidate 
distribution, one can reject or not the null hypothesis at 
a risk of α%. In practice, and in many softwares, the 
distance between these CDF corresponds to a p-value, 
and the null hypothesis H0 is rejected if the p-value 
computed is less than the risk α%. It is also necessary to 
analyze the inter-dependence of the parameters of the 
model.  

• Validation of the model: the validation of the model 
consists in assessing numerical experimentation, related 
to the probability distribution of the parameters. Monte 
Carlo simulations may be used for instance. Moreover, 
the correlation structure between the parameters has 
also to be implemented. The KS test is then applied to 
validate the model in order to check if experimental and 
simulated CDF are the same. In our case, it is realized 
for each Bmax level.  

• Cross Validation (CV) techniques: for the selected 
model, one can apply a CV technique [10],[12] which 
consists in splitting the experimental data in two 
groups: the model is developed with the first group and 

then validated with the second group. This approach 
allows one to check the validity of the probabilistic 
model for the studied group of samples. 

B.1. Deterministic model-Parameters identification  

For a sinusoidal supply, the so-called loss separation 
approach, according to the phenomenological principle 
proposed by Bertotti [4], is implemented for modelling the 
iron losses of the samples: 
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where the first term corresponds to the quasi-static hysteresis 
losses, the second term take account for the classical losses 
(macroscopic eddy currents) and the third term is related to 
the excess losses (dynamic behaviour of the magnetic 
domains). In relation (1), the coefficients (kh, α, ke, kexc) are 
identified for each stator sample, for the whole frequencies 
and Bmax levels, with a least square fitting method. The 
variability of the identified parameters are given in table 1. 
 

TABLE I 
VARIABILITY OF IDENTIFIED PARAMETERS OF IRON LOSSES  

 
Parameters kh α ke kexc 

Mean 0.067 1.506 6.9x10-5 52x10-5 
Sd 47x10-4 23x10-3 9.19x10-6 4.90x10-5 

 Cv (%) 6.94% 1.57% 13.31% 9.41% 

  

B.2.Probabilistic modelling of the iron loss model parameters 

The parametric approach is used to model the variability of 
the iron losses parameters, and three candidate probability 
distributions are proposed (uniform, Gaussian, lognormal 
distribution). These candidate probability distributions are 
then tested using the Kolmogorov Smirnov (KS) test, at a 
risk of 5%. For the three candidate probability distribution 
functions, the p-values of the KS test, at a risk of 5% are 
summarized in table 2. 

  
TABLE II 

P-VALUES OF KOLMOGOROV SMIRNOV TEST FOR THE LOSS MODEL 

PARAMETERS 
 

 kh α ke kexc 

Gaussian p-value 0.63 0.73 0.6 0.89 

Lognormal p-value 0.53 0.75 0.82 0.75 

Uniform p-value 0.0 0.6 0.0 0.0 

 
For the first two lines in this table, the p-values are greater 

than the risk of 5%, meaning that, for all parameters of the 
iron loss model, the Gaussian and lognormal distributions are 
not rejected, at a risk of 5%. At the opposite, the uniform 
distribution is rejected, except for the parameter α.  Moreover, 
this table suggests also that higher p-value corresponds to a 
better adequacy between the data and the candidate 
probability distribution. Therefore, the following conclusion 
is made: 

� (kh, kexc) are more likely to be Gaussian distributed 
� (ke,α) are more likely to be lognormal distributed 



Finally, the Pearson linear correlation between the four 
parameters is summarized in table 3. One can notice that the 
correlation is significant for the parameters (ke,kexc). 
 

TABLE III 
LINEAR CORRELATION OF IDENTIFIED PARAMETERS OF IRON LOSSES 

 
 kh α ke kexc 

kh 1 0.35 -0.17 -0.04 

α 0.35 1 -0.1 0.26 

ke -0.17 -0.1 1 -0.64 

kexc -0.04 0.26 -0.64 1 

 

B.3.Stochastic Model validation 

The validation of the model consists in assessing numerical 
experimentation, regarding the PDF of the input parameters. 
It can be achieved by Monte Carlo simulation that involves 
two main steps: sampling of the probabilistic input variables 
and performing the deterministic computations to provide the 
statistic of the output of the model. If a Monte Carlo 
experiment is to deliver correct results, it has been repeatedly 
appreciated that correlation among input variables must be 
taken into account [9]. Indeed, such technique assumes that 
input variables are independent, meaning that their joint PDF 
is provided by the product of the marginal distribution. If all 
the input variables are Gaussian distributed, and only in this 
case, one can generate Multivariate Gaussian distribution 
(MGD) random vectors, and the correlation structure is 
defined by the Pearson linear coefficients [11]. If it is not the 
case, all the joint distributions among the input variables have 
to be specified. One can then use the Iman and Conover 
method [8].  

By definition, this method consists in inducing a desired 
Spearman rank correlation matrix while preserving the 
marginal distribution for each input variables. It must be 
noticed that the Pearson and Spearman correlations differ on 
their theoretical basis. The assumptions underlying the 
Pearson correlation are that the relationship between two 
variables is linear and both populations are Gaussian 
distributed. At the opposite, the Spearman correlation, 
measuring monotone association, is more flexible in handling 
nonlinear relationships and is independent of the distribution 
shape [9]. 

Therefore, the method takes in its inputs the marginal 
distributions of individual variables (this can be obtained by 
using Monte Carlo simulation) and the Spearman rank 
correlation matrix (identified from experimental data). The 
correlated vectors are then obtained by rearranging previously 
generated uncorrelated vectors, according to the rank index of 
a multivariate reference. The output of the method is a good 
approximation of the Spearman rank correlation matrix, and 
the same marginal distribution for each individual parameter 
[8][8-[9]9].  

The Spearman method has been applied for the iron losses 
parameters, regarding their marginal PDF. In the first step, 
100 000 realizations of the parameter vectors have been 
simulated independently with Monte Carlo simulation. The 
rank correlation matrix (table 4), identified from experimental 
data, and the simulated vectors have been then used as input 
for the Iman and Conover method.  

 
 

 

TABLE IV 
SPEARMAN RANK CORRELATION OF IRON LOSSES PARAMETERS 

 
 kh α ke kexc 

kh 1 0.27 -0.25 0.028 

α 0.269 1 -0.33 0.42 
ke -0.25 -0.33 1 -0.52 

kexc 0.028 0.42 -0.52 1 

 
In the output of the method, the results show that the 

marginal distribution of each parameter is maintained, and the 
obtained rank correlation matrix is very close to the desired 
correlation matrix in table 4. 

The parameter realizations from the Monte Carlo method 
have been then used to simulate the variability of iron losses, 
at 50Hz and for all Bmax level. Simulated and experimental 
CDF, for Bmax=1.5 T are illustrated in figure 3.  
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Fig.3. Experimental and simulated CDF for Bmax=1.5T, at 50Hz 
 
This figure illustrates the good approximation of the 
experimental data by the simulated CDF. Then, the KS test is 
applied for all Bmax levels, at a risk of 5%.  For a given Bmax 
level, the null hypothesis H0 assumes that the simulated and 
experimental CDF are the same. The results show that, for all 
Bmax levels, the null hypothesis was not rejected at a risk of 
5%, as the p-value of the test were between 0.24 and 0.5. 

B.4.Cross Validation Techniques 

For the CVT, the iron loss data are split in two subsets: a 
modelling subset (MS), including 23 trajectories, and a test 
subsets (TS), constituted of 5 trajectories. The probabilistic 
model is identified from the MS, and the approach described 
in the previous section is applied (Independent Monte Carlo 
simulation and implementation of the Iman and Conover 
method). From the results, a 95% confidence interval (CI) can 
be identified and compared to the MS trajectories, as shown 
in figure 4. 
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Fig.4. Modelling subsets and 95% Confidence Interval 



 
In this figure, all the MS trajectories lie within the 

identified CI. This one is compared with the TS trajectories, 
as shown in figure 5. It can be observed that the entire TS 
trajectories lie within the 95% CI identified from the MS.  
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Fig.5. Tests subsets and 95% Confidence Interval 

 
According to all these criteria, it can be considered that the 

developed stochastic model is representative of the iron losses 
variability among the studied samples. 

In stochastic context, the iron loss model can be written 
under the form given by (2), where the parameter θ denotes 
the outcome belonging to the random space.  
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One can use the random vector (kh(θ) ,α(θ) ,ke(θ) ,kexc(θ)) of 

the iron loss model obtained in the previous step to deal with 
the losses calculation in a post-processing step of a FE 
procedure  

III.  DETERMINISTIC FINITE ELEMENT MODEL AND 

UNCERTAINTY PROPAGATION 

To investigate the stochastic calculation of the iron losses 
in a synchronous electrical machine, a 2D FE model is used, 
for both scalar potential Ω and vector potential A 
formulations (Eq. 3 and 4). 

 

( )( )S Sdiv 0  with  µ − Ω = =H grad curlH J  (3) 

( )1 µ =curl curlA J  (4) 

with J the current density and µ the magnetic permeability 
described by the non-linear, and single-valued, magnetic 
behaviour law model proposed in [5]. Note that the variability 
on the behaviour law exists but is of second order versus the 
variability of the iron losses when considering the average 
B(H) curve from a stator to another. Therefore, in a first step, 
the variability of the B(H) curve can be neglected and 
assumed to be deterministic. 

The studied electrical machine is a 6 poles, 50Hz three-
phase permanent magnet synchronous machine with 36 stator 
slots (Fig.6) and 6 non-conductive ferrite magnets on the 
rotor. Considering the symmetry of the system, only a third of 
the synchronous machine is modelled using 10576 first order 
elements and 8202 nodes. 

 

 
 

Fig.6. Synchronous machine mesh  
 

IV.  RESULTS AND DISCUSSIONS 

No load simulations were performed for a remanent 
magnetic flux density Br=0.38T in the permanent magnets. A 
Monte-Carlo procedure, combined with the Iman and 
Conover method, is then performed to simulate sample of 
100,000 realizations of the statistical model according to the 
distribution of the parameters (kh, α, ke, kexc). Thereafter, and 
for each realization, the expression of iron losses (2) is 
applied in each element of the stator mesh. On each element, 
a sample of length 100000 of local losses is then calculated. 
In this way, a sample of the total losses is obtained by 
summing all the local losses on each element.. 

The random distribution of the stator iron losses PT(θ) are 
estimated, and found to be Gaussian distributed (Fig.6), 
according to the Kolmogorov-Smirnov statistical test. The 
mean and the standard deviation are given in table 5, showing 
close results between both formulations. The difference is due 
to the intrinsic numerical error associated to the discretized 
formulations but remains acceptable. The variability of the 
losses is quite large and, for the vector potential A 
formulation, it can be calculated that for a 95% confidence 
interval, the iron losses are included in the interval [3.43, 
4.37] W. 

 
TABLE V 

VARIABILITY OF IRON LOSSES FOR A AND Ω FORMULATIONS 
 

 A formulation Ω formulation 

 Mean 3.90 W 3.96 W 
Std 0.24 0.24 

Cv%  6.12% 6.11% 

 

2.8 3.35 3.9 4.45 5
0

0.45

0.9

1.35

1.8

Iron losses Pt [W]

f(
P

t)

 
 

Fig.7. Probability distribution of iron losses density for potential vector A 
formulation 



V. CONCLUSION 

Stochastic post processing of iron losses is presented in this 
paper. Iron losses variability of twenty eight SS samples have 
been first investigated, and stochastic model taking account of 
this variability is developed. The developed model was 
validated using statistical test and cross validation techniques 
in stochastic context. The stochastic model is then used to 
assess post-processing calculations of iron losses of a pmsm, 
which can be used to identify confidence interval. 
Nevertheless, although this approach is well suited for post-
processing calculations it can not be used to take account of, 
for example, the magnetic behaviour law or the geometry 
uncertainties. In fact, these parameters are intrinsic to the 
finite element resolution and the FE model must be calculated 
for each Monte-Carlo realization, which will lead to large 
computational times. In this context, further simulations will 
be achieved to reduce the computational time by using the 
polynomial chaos decomposition approach [6][6-[7]7]. 
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