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Abstract— Industrial processing (cutting, assembly…) of steel laminations can lead to significant modifications in their 
magnetic properties. Moreover, the repeatability of these modifications is not usually verified because of the tool wear or, 
more intrinsically, to the manufacturing process itself. When investigating the iron losses, it is generally observed that the 
hysteresis losses contribution are more likely to be affected. In the present work, twenty eight (28) samples of slinky stator 
(SS) are investigated, at a frequency of 5Hz and 1.5T. A stochastic model is then developed, using the Jiles-Atherton model 
together with a statistical approach to account for the variability of the hysteresis loops of the considered samples.  
 
Index Terms—hysteresis, Jiles and Atherton, slinky stator, variability  

I. INTRODUCTION 

For optimal design of electrical machines, the 
knowledge of magnetic steel properties is of importance, 
especially in the context of more and more constraining 
requirements for energy efficiency. In order to improve 
the accuracy of electrical devices modeling, many works 
have been concerned with the modeling of the hysteresis 
behavior of soft magnetic materials, and its 
implementation for the numerical simulation of 
electrotechnical devices [1-4]. These models are found to 
be acceptable, when the input parameters, related to the 
geometry and physical properties of the materials, are 
assumed to be known accurately. However, such 
assumption reveals itself insufficient as the manufacturing 
of an electrical machine, from the cutting of laminations 
till the final magnetic core shape, requires several 
industrial processes that might significantly impact the 
magnetic properties of the considered material. Several 
works concerned the influence of cutting [5-7] and 
assembly techniques [8] on the magnetic behavior law 
and iron losses. Results showed a deterioration of the 
magnetic permeability and an increase of iron losses. 
Moreover, when iron losses separation techniques are 
investigated [5], it was found that hysteresis losses are 
more likely to be affected by this deterioration, when it is 
not significant for the dynamic losses. When considering 
the hysteresis loops, it was observed that the impact of 
cutting techniques makes the hysteresis loops less squared 
and more S-shaped. Moreover, the widening of the loops 
can be noted, hence an increase in the coercive fields [7]. 
These results are of interest as it allows one to consider 
such impact for the improvement of the modeling of the 
real behavior of the material. For instance, several works 
focus on the modeling of the effect of cutting process on 
the magnetic properties of the material [7], [9], [10].   

Nevertheless, the mechanical stress induced by the 
manufacturing process, is not necessarily well known and 
not the same for all samples issued from the production 
chain. This is due, for example, to the cutting tool wear 
which induces therefore a variability of the magnetic 
properties of these samples. A statistical approach is 
presented in [12] and deals with the quantification of the 
magnetic properties variability of 28 slinky stators (SS), 

and more specifically on the iron losses. Results showed 
that, when the iron loss separation technique is 
investigated, it was again observed that the variability of 
the hysteresis contribution is indeed more significant for 
the considered samples. According to these results, it is of 
interest to have a stochastic model of the hysteretic 
behavior of the material.   

Stochastic modeling became in the last decade a great 
challenge, and are particularly used in various fields such 
as civil and mechanical engineering. Generally speaking, 
it aims to investigate uncertainties on input parameters of 
a model, and then to study their impact on the model 
output(s) [13-15].The proposed common scheme for 
dealing with uncertainties using a stochastic model relies 
upon three steps, namely the definition of the 
mathematical model of the physical system, the 
probabilistic characterization and modeling of the 
uncertainties on the model parameters and the 
propagation of these uncertainties through the model [13].  

The present work is focused on the second step, and 
aims at developing a quasi static hysteresis stochastic 
model of Jiles-Atherton (J-A) [22] to account for the 
variability of the quasi-static magnetic behavior law of 28 
SS samples issued from a production chain.  

The first part of this paper concerns the experimental 
and variability aspect of the hysteresis loops, quantified 
on the aforementioned SS samples. The main objective is 
to recall the outline of the experimentation and the main 
results, as further details can be consulted in [12],[14]. 

The second part of this paper is related to the 
stochastic modeling approach adopted in this paper. It 
was deduced from existing works, especially in the field 
of the stochastic modeling of fatigue of material. 

Finally, the last part of the paper concerns the 
application of the approach for the stochastic modeling of 
the hysteretic behavior of the SS samples, using Jiles and 
Atherton model. 

II.  EXPERIMENTAL PROCEDURE-VARIABILITIES  

A. Experimental procedures 

Twenty eight SS samples supplied by the same 
manufacturer, and made from standard laminations grade 
M800-50A, with the same geometry are investigated. The 
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core manufacturing process of SS is based on a long strip 
of steel lamination that is progressively punched and 
rolled up in a spiral way. Stators obtained from this way 
of manufacturing are known as "slinky stators". This 
method is used to reduce the material waste. It requires 
special manufacturing techniques and production 
machines. The rolling process might then negatively 
influence the magnetic properties of the material, 
especially the iron losses that increase [11].  

The main purpose of the experiment is to quantify the 
variability of the hysteresis loops of the stator sample’s 
yokes. To this end, primary and secondary windings have 
been realized along their yoke, as for the magnetic 
characterization of a toroidal sample: each stator sample 
has an excitation winding that creates a magnetic flux in 
the yoke along its perimeter, and a secondary winding is 
added to measure the magnetic flux density (figure1).  

The experimental characterization is then carried out 
under sinusoidal waveform, at 5Hz and 1.5T. The 
quantities of interest are the characteristic points of the 
hysteresis loops of the considered samples, such as the 
remanent flux (Br), the coercitive field (Hc), the maximum 
excitation field (Hmax) and the iron losses (Ps in [W/kg]) 
corresponding to the area of the measured hysteresis loop. 
Their variabilities are then quantified using descriptive 
statistic and by calculating the coefficient of variation Cv, 
which is the ratio of the standard deviation σ to the 
empirical mean µ. 

 

 
Figure 1:  Samples of stators wound manually 

 
In order to verify that uncertainties are mainly related 

to the magnetic properties, influences of the noise 
measurements, manual windings and geometrical 
tolerances have been investigated [12]. Results showed 
that, for a given stator sample, the potential sources of 
uncertainties are not significant. Therefore, if a significant 
variability is identified among the stators samples, this 
one can be linked directly to the degradation of the 
magnetic properties due to manufacturing processes. 

B. Hysteresis loops variability 

Hysteresis loops of the considered samples, measured 
at 5Hz and 1.5T are presented in figure 2.  Moreover, the 
variability of the characteristics points of the hysteresis 
loops for the considered samples are summarized in table 
1. 

 
TABLE I  

COEFFICIENT OF VARIATION OF HYSTERESIS LOOPS POINTS 
 

 Br (T) Hc (A/m) Hmax (A/m) Ps (W/kg) 

µ 0.73 177.22 1724.73 0.62 

σ 0.029 10.35 79.08 0.03 

Cv % 3.98 5.84 4.59 5.63 
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Figure 2:  Hysteresis loops of SS samples measured at 

5Hz and 1.5T 

These variabilities are linked directly to the magnetic 
properties of the considered samples. The objective of 
this paper is then to develop a stochastic version of the 
Jiles and Atherton model to account for these 
variabilities. 

III.   STOCHASTIC MODELING APPROACH 

In the literature, several papers in various fields 
of engineering have been concerned by the 
development of stochastic models for representing the 
behavior of a random phenomenon. A relatively vast 
literature dealing with such modeling can be found in the 
field stochastic aspect of the fatigue of materials, based 
on Virkler experimental data [17]. These data concerned 
the stochastic aspect of crack length of 68 samples, made 
with the same aluminium alloy and with the same 
dimensions. 68 individual crack growth curves, each 
giving the number of cycles as function of crack length, 
are then obtained. These observations resulted in different 
statistical analyzes to identify the probabilistic 
distribution of the input parameters of the used behavior 
law, as for instance the Paris and Erdogan model [16]. 
One can find also some works accounting for the 
stochastic aspect of Young’s modulus [21].  

According to these works, we have defined the 
following steps to account for the uncertainties of the 
hysteretic behavior of the samples. 

A. Deterministic model selection 

The first step is to compare the accuracy of existing 
deterministic models. To this end, the objective is to 
identify the parameters of the deterministic model from 
experimental data. The coefficient of efficiency R² can be 
used to measure the accuracy of the fitting process. It 
takes values between 0 and 1, and evaluates the fraction 
of variance in the observed data that can be explained by 
the model. A higher value indicates better agreement. 
Assume that we have a sample of size n such as y = (y1, 
y2,…yn) measured at x = (x1, x2,…xn), related to the 
behavior of a phenomena, and we want to estimate a 
family of parameters a=(a1, a2,…aq) of the model f(a) 



chosen to represent the data. The least square technique 
can then be used to find the values of the parameters. The 
expression of R² is given by the following relation: 
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Where E(y*(xi)) is the mean over the measured points, 
y*(xi) and y(xi) are respectively the measured and  the 
point estimated by the model for the corresponding xi 

level.  
R² may be oversensitive to extreme values or outliers. 

An improvement over R² for model evaluation purposes is 
the adjusted coefficient of efficiency R²a given by, 

 ( )22
a R1

1qn

1n
1R −

−−
−−=   (2) 

B. Stochastic modeling of input parameters 

       With the selected deterministic model, the next 
step consists in identifying its parameters for all 
experimental data. In order to verify the prediction of the 
stochastic model latter, one can split randomly the 
experimental data in two subsets: Modeling Subsets (MS) 
to develop the probabilistic model, and Test Subsets (TS) 
to test the prediction of the model. The parameters of the 
deterministic model are then identified on MS. The 
probability distribution functions (pdf) of the parameters 
are thereafter identified, and this can be achieved in a 
context of parametric approach for which classical pdf 
(uniform, Gaussian, lognormal) can be tested with 
Kolmogorov Smirnov (KS) test. In practice, the test 
consists in assuming that the experimental data are 
distributed according to the proposed pdf at a risk of α%. 
This assumption is known as null hypothesis H0. Then, by 
computing the maximum distance between empirical 
Cumulative Distribution Function (CDF) of the 
experimental data and the CDF of the candidate 
distribution, one can reject or not the null hypothesis H0 
at a risk of α%. The result related to the rejection or not 
of H0 is most of the time interpreted in term of p-value. 
Therefore, one can reject H0 if the p-value returned by the 
test is less than the risk α%. Moreover, and if all the 
proposed pdf are not rejected by the test, on can retain the 
pdf that return the highest p-value.  

C. Correlation analysis 

This step deals with the analysis of the inter-
dependence between the input parameters identified in the 
previous step. Quantification of this dependence structure 
is of importance as it impacts mainly the variance of the 
output of the model, whereas the mean is not generally 
changed. The works presented in [19] stipulate that the 
correlation structure must be taken into account, 
especially when it is around 0.7.  

Assume that we have a couple of random 
variables X1 and X2. If they are Gaussian distributed, and 
only in this case, one can quantify the intensity of the 
dependency using the Pearson coefficient, defining a 

linear intensity between both random variables. This 
coefficient is calculated with the following relationship: 
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If both random variables are not Gaussian 
distributed, it may be useful to quantify the intensity of 
this dependence with the Spearman rank correlation [24]. 
This coefficient is a non parametric one, calculated from 
the rank of X1 and X2. In this case, the intensity of both 
random variables is not necessarily linear. Moreover, if 
X1 and X2 are Gaussian distributed, it is as powerful as the 
Pearson correlation coefficient rp and allows one to 
overcome the assumption about a linear form of 
dependence between X1 and X2, especially for a limited 
number of data.  

The expression of this coefficient is given by the 
following relationship: 
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Where Ri=Rank(xi) and Si=Rank(yi) and R and 

Sare respectively the mean of the rank of x1 and x2. 

D. Validation of the model 

            The validation of the model consists in performing 
Monte Carlo simulations, which consists simply in 
performing multiple model evaluations of the 
deterministic model, using random numbers to sample 
from pdf model inputs (ie sampling is guided by the pdf 
of each parameter). This approach is straightforward, but 
the main challenge of the simulation is to account for the 
dependency structure between the parameters. If all the 
parameters are then distributed according to a Gaussian 
distribution, a Multivariate Gaussian distribution (MGD) 
may be chosen to account for the marginal distribution 
and the correlation between them [14]. If it is not the 
case, Iman and Conover [24], can be implemented. This 
method is applicable for all type of distributions and is 
useful in inducing desired rank correlations among the 
input parameters.  

            The theoretical basis for the method is briefly 
described below [24], [25]. Suppose that [C] is a desired 
correlation matrix and [X] is a random row vector. 
Because [C] is positive-definite and symmetric, [C] may 
be written as [C] = [P][P’], defined as Chlosky 
decomposition. Then the transformed vector [X][P’] has 
the desired correlation matrix [C]. The detailed procedure 
is as follows. Let the number of input variables be 
denoted by k, and let n be the sample size. 
Let [X] be an n×k  matrix whose columns represent k 
independent random permutations of an arbitrary set of n 
scores. The usual scores, as presented in the original 
paper of Iman and Conover are the Van Der Waerden 
scores, which are generated by Φ

−1{ i / (n + 1)}, where      
Φ −1 is the inverse function of the standard normal 
distribution, and i = 1,..., n. For a sample of size n = 20, 



the matrix [X] has a random mix of the Van Der Waerden 
scores Φ−1(i/21), i = 1..., 20, in each column. For k= 2, the 
20 Van Der Waerden scores are independently 
permutated twice to create two columns of the random 
mix. Suppose that [C] is the desired rank correlation 
matrix (2×2 matrix in this case) and [C] = [P][P’], where 
[P] can be computed using the Cholesky factorization 
scheme. The Cholesky factorization factors a symmetric, 
positive-definite matrix [C] into the product of a lower 
triangular matrix [P] and its transpose [P’]. As mentioned 
above, [X][P’] results in an n×k matrix, denoted as [X*], 
which possesses the desired correlation matrix [C] for the 
k input variables. Further, let [A] be an n×k matrix whose 
elements are actual input values (k input variables with n 
observations each). To induce the desired correlation 
between the input variables, the input values in each 
column of matrix [X] are rearranged to have the same 
ordering as the corresponding column of matrix [X*]. 
This method is easy to use, distribution-free (non-
parametric), and preserves the exact marginal 
distributions of input variables. 

Results of the simulation can be then used to determine 
the uncertainty related to the output of the model and to 
perform statistical analysis. It may be useful to check if 
the marginal distributions of each parameter are preserved 
and if the correlation matrix obtained with the method are 
close.  

E. Cross Validation techniques 

                For the selected probabilistic model, a Cross 
Validation techniques (CV) is applied to analyze its 
prediction behavior [21]. This technique consists in 
identifying first a Confidence Interval CI and then by 
comparing the identified CI with MS and TS trajectories. 
The objective is then to verify if all MS lie within the 
identified CI. Moreover, comparison of TS and CI is also 
of interest as it allows one to analyze the prediction of the 
model. Therefore, and if all TS lie within the CI, one can 
imagine that the variability of over samples of stator 
issued form the considered production chain is inside the 
identified CI. 

IV.  HYSTERESIS LOOPS SS SAMPLES STOCHASTIC 

MODELING  

J-A model describes, from a physical point of view the 
hysteresis phenomena inside soft magnetic materials. The 
mechanism of the original model can be consulted in [22].  
In order to take account for the hysteresis variabilities 
among SS samples, inverse J-A model is used [30], ie, B 
is used as input, and given by the following relationship: 
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In this relation, Manh and Mirr denote respectively the 
anhysteretic magnetization and the irreversible 
magnetization.  

(Ms, k, c, a, α) are the parameters of the model, and 
are determined from the measured hysteresis 

characteristics. An identification method of the 
parameters is presented in [31], from some points of the 
hysteresis loop. However, this technique is known to be 
unstable numerically, and the convergence is not 
systematic. An improvement over the parameters 
identification is now available, and based especially in 
optimization techniques. Moreover, some works are 
related to the consideration of variable parameters, 
according to some physical observations. In [32], a 
variable pining parameter modeled by Gaussian function 
is proposed, assuming that k is higher for lower level 
magnitude of the applied excitation field, and lower for 
higher magnitude level. The expression of k is given by 
the following relationship: 

k=k0×exp(-H²/(2×σ²) (6) 
Where k0 corresponds to the original value of 

parameter k, H the applied excitation field, and σ the 
standard deviation of the Gaussian function. The modified 
J-A model is then defined by 6 parameters to be identified 
from experimental measurements. Another variant is 
given in [23], when considering the same assumption. 
Another parameter is added, and the previous relation 
becomes: 

k=k1+k0×exp(-H²/(2×σ²)) (7) 
Where the first term is independent of the excitation 

field and the second term a Gaussian function. In this 
case, the J-A model is defined by 7 parameters.  

The three models were tested on the hysteresis 
behavior of a sample f stator, in order to choose among 
the most accurate one, in term of R²a. The identified 
parameters using classical least square fitting technique 
and the coefficient of efficiency R²a for each model are 
presented in figure 2.a, 2.b and 2.c. Graphically, it can be 
observed that each model presents a good approximation 
of the data.  However, and when comparing the 
coefficient of efficiency R²a, M1 and M2 present higher 
value compared to M0. Moreover, and as M1 is only 
defined by 6 parameters, it was chosen to model the 
hysteresis behavior of all the samples. First of all, data 
were splitted randomly in two subsets: 20 MS, and 8 TS. 
The parameters of the model M1 were then identified for 
all MS. Therefore, the 6 parameters (Ms,k0,c,a,α,σ) of the 
model become random but not constant anymore, and 20 
realizations of the vector of parameters are obtained. 
Their histograms are presented in figure 3.  

KS test at a risk of 5% was then performed for 3 pdf 
candidates, namely Gaussian, Lognormal and Uniform. 
The p-values returned by the test are summarized in table 
2. 

It can be observed in this table that the null hypothesis 
H0, assuming that the 6 parameters are distributed 
according to the 3 candidates pdf are not rejected, at a 
risk of 5%. However, as the Lognormal distribution 
presents the highest p-value, it has been chosen to 
represent the variability of the 6 parameters.  
The rank correlation matrix of the 6 parameters was then 
calculated and given in table 3. It can be observed that 
there is a strong correlation between them.  
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Figure 2:  Parameters and coefficient of efficiency of the 

three considered deterministic models 
 
 

TABLE II   
P-VALUES OF KOLMOGOROV SMIRNOV STATISTICAL TEST AT A RISK OF 

5% OF THE 6 PARAMETERS 
 Ms k0 c a α σ 

Gaussian 0.71 0.55 0.89 0.86 0.95 0.78 
Lognormal 0.76 0.7 0.93 0.98 0.99 0.82 
Uniform 0.31 0.47 0.71 0.04 0.06 0.53 

 
In order to validate the model, Monte Carlo simulation, 
coupled with Iman and Conover method was performed. 
It was achieved by simulating independently 500,000 
independent realizations of the 6 parameters according to 
Lognormal distribution. These realizations and the 
correlation matrix defined in table 3 were then used as 
input for Iman and Conover method. In the output of the 
Iman and Conover method, it was noticed that the 
marginal distributions for each parameter were not 
changed. Moreover, the disparity between the given rank 
correlation matrix, and the one simulated with the method 
was less than 1%. 
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Figure 3:  Histograms of parameters of M1 model 
 

TABLE III 
RANK CORRELATION MATRIX OF THE 6 PARAMETERS OF M1 

 
 Ms k0 c a Α σ 

Ms 1 -0.509 -0.837 0.959 0.942 0.567 
k0 -0.509 1 0.746 -0.415 -0.362 -0.918 
c -0.837 0.746 1 -0.787 -0.759 -0.778 
a 0.959 -0.415 -0.787 1 0.99 0.516 
α 0.942 -0.362 -0.759 0.992 1 0.470 
σ 0.567 -0.918 -0.778 0.5162 0.470 1 

 

The deterministic hysteresis behavior of the samples was 
then simulated 500,000 times with the random 
parameters. For the 4 characteristic points of hysteresis, 
KS test was performed at a risk of 5% and the p-values 
returned by the test are summarized in table 4. Therefore, 
and at risk of 5%, the null hypothesis related to the 
equality of the distributions of the experimental data and 
the simulated one is not rejected, for the 4 characteristic 
points.  

The medians of the 4 hysteresis characteristic points are 
then identified and presented in table 5. It can be 
observed that they are close 
 

TABLE IV 
P-VALUES OF KOLMOGOROV SMIRNOV KS STATISTICAL FOR THE 4 

HYSTERESIS CHARACTERISTIC POINTS 
 

 Br Hc Hmax Ptot 

p-values 0.42 0.078 0.53 0.21 

 

 

Ms =1727481.13 
k   = 386.53 
c   = 0.55 
a   = 1175.61 
α   = 0.0019 
R²a= 0.93 
 

Ms = 1696792.45 
k0   = 434.50 
σ   = 1.67 
c   = 0.54 
a   = 1135.67 
α   = 0.0019 
R²a= 0.97 
 

Ms =1717876.52 
k1   = 189 
k0   = 247.11 
σ   = 0.99 
c   = 0.54 
a   = 1203 
α   = 0.0020 
R²a= 0.97 
 



TABLE V 
EXPERIMENTAL AND SIMULATED MEDIANS OF THE CHARACTERISTIC 

POINTS OF HYSTERESIS 

 
 Br Hc Hmax Ptot 

Experimental 
median 

0.740 180.78 1702 0.627 

Simulated 
median 

0.734 176.31 1726.6 0.619 

Disparity % 0.87% 2.4% 1.3% 1.24% 

Finally 95% CI is identified, as summarized in table 6, 
and compared with MS and TS. These comparisons are 
presented in figure 4. 
 

TABLE VI   
CONFIDENCE INTERVALS IDENTIFIED FROM THE STOCHASTIC MODEL  

 

Br (T) [0.6355; 0.8161] 

Hc (A/m) [157.58; 205.13] 

Hmax (A/m) [1595.29; 1842.13] 

Ps (W/kg) [0.542; 0.717] 

It can be observed that MS and TS lie within the 95% 
identified CI. All these criteria allow then one to validate 
the hysteresis stochastic developed model, and its 
prediction behavior.  

V. CONCLUSION 

In this paper, a stochastic modeling of the quasi-static 
hysteresis of 28 SS samples is developed using the J-A 
model. The samples are issued from a production chain, 
and showed variability in term of hysteresis iron losses. 
This variability reflects the non uniformity of the 
deterioration of the magnetic properties, introduced by 
the manufacturing process. The stochastic modeling 
approach was then defined, by means of existing works. 
Moreover, the dependency structure was considered using 
Iman and Conover method. The model was finally 
validated using statistical test and Cross Validation 
Techniques, and showed good results. The developed 
model can be used for finite element simulations. 
However, and in order to minimize the numerical time 
consumption, it may be is suitable to develop model to 
account for the dependency structure between parameters. 
In this case, polynomial chaos expansion and copula 
technique may be used.   
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