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Solution of Large Stochastic Finite Element Problems Application to
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This paper describes an efficient bloc iterative dweer for the Spectral Stochastic Finite Element Metod (SSFEM). The SSFEM was
widely used to quantify the effect of input data ugertainties on the outputs of finite element modelsThe bloc iterative solver allows
reducing computational cost of the SSFEM. The methibis applied on an industrial Non Destructive Testig (NDT) problem. The
numerical performances of the method are compared ith those of the Non-Intrusive Spectral Projection(NISP).

Index Terms—Finite Element Method, Stochastic Model, Quasi St Fields, Iterative Solver, Uncertainty Quantification.

the permeabilityu(x,0) (x denotes the spatial coordinates) and
| INTRODUCTION the conductivityo(x,8) on D can be written:
Accounting for inherent uncertainties of numericaidel M

parameters emerges nowadays as an important step to K(X,e):ZKi(e)hgi (X) , KE{H,G} 1)
perform robust analysis and reliability assessmientrder to i=1
quantify the effect of input data uncertaintiestbe quantities With Ipi(x) a function equal to 1 on;and O elsewhere. The
of interest, numerous techniques were developeé. Mbst magnetic fieldH(x,8), the magnetic flux densitB(x,0), the
popular method is the Monte Carlo Simulation (M@&thod. eddy current density(x,0) and the electric fieldE(x,0) are

Nevertheless, as the MCS method requires a largieuof then random fields. In the frequency domain, théskls
deterministic simulations to achieve high accuraicgecomes verify the following equations:

unfeasible for very costly numerical simulationsheTpast curlH (x.8) = J(x.0) + J~(x
decade has seen the rapid development of protabilis x )_ _( O+ 3o() (2
spectral approaches that are based on polynomiabsch curle(x,8) = —jwB(x,8)

representation. The polynomial chaos expansion JPC®here o is the angular velocity andy(x) a deterministic
methods have the advantage to exhibit a functierpfession source term. Boundary conditions are added to dZpsure

of the random quantity of interest. The Galerkiethod uniqueness of the solution. As the differentiadmgors ¢url,
(spectral stochastic finite element method (SSFE&&)) be div, grad) operate only on the spatial dimensigrpotentials
applied to solve the stochastic Maxwell equatidtjs Taking can be introduced, as in the deterministic casexpwess the
advantage of the Kronecker structure of the lisyatems, the glectric and magnetic fields. We consider in thaper the
storage requirement can be significantly reduced the glectric potential formulation where the stochastiagnetic
computation time of the solution of the linear eystis still ;0 qtiaisA(x,8) and the stochastic electric scalar potential

very high [2]. The non intrusive approaches like tRon . .
Intrﬂsivg ép]ectral Projection (NISpIg) method  are emft 0(x,0) are introduced such that the stochastic magneto-
harmonic problem (2) reads:

preferred to SSFEM because they are easier to ingpie[3].
Moreover, even though the linear systems to solve a curl(u_l(x,e)cur|A(X,9))+ 3)
numerous, they are smaller yielding to a natural 0(x,9)(ij(x,9)+grad¢(x,9)):JO(x)

parallelization. However, the convergence proof Hrelerror . : ul ra .
bounds are not so well established as with the S5 [9], we deflnect::Ie funct|02nal spacé HD)Z and H{D) such that:
an iterative bloc solver taking advantage of therécker H :{VDL (D)/curlv OL (D),v><n|rE =0
form of the matrix is presented. It enables thaictidn of the yorad :{VD L2(D)/ gradv L2(D),v|r _ 0}

E

SSFEM memory requirements. In this paper, we prepos
some improvements of the iterative solver. It Wélapplied to e denote by ¥©) the space of random variables with finite
solve a non destructive testing (NDT) problem. Thgsriance. The unknown vector potentia(x,8) and scalar

computational costs and results obtained with tBEEM will : . - cyr 2
. . . potentialp(x,0) are respectively sought in"f{D)0L*©) and
be compared to those given by the adaptive NISBepted in in HUYD)JL2(O). A weak form of (3) can be derived by

3].
3] applying the weighted residual for all belonging to

(4)

curl 2 .
Il. SPECTRAL STOCHASTIC FINITE ELEMENT METHOD H (D)DL (@)

-1
Consider a conducting domain D with a bounddry E[ill (x,8)curlA (x,8) [eurlu(x, B)dy] +

subdivided into M disjoint subdomains; @n which the
permeability and conductivity are supposed to eloan but E[JG(X,Q)(J'(DA(X,Q) +gradp(x,8)) (x, )dy] ()
constant and equal t@(8) and o;(6) respectively € the D
outcome belonging to the event spa@¢. We suppose that = E[j.]o(x) u(x, 6)dy]

D



where E[X@)] denotes the expectation of the random variable

X(8). To solve numerically the problem (5), a discrigem
has to be determined on finite dimensional spadeshvare
subspaces of 4!(D), H"*D) and L1}©®).

A. Spatial dimension discretization

Usually, with the finite element method, the apjmuation
functions used in computational electromagnetics #re
Whitney shape functions [5]. We consider a mesb @fith ng
nodes, n edges, pfacets and nelements. The space Vit
nodal shape functions and the spacé W edge shape
functions will be used as approximation subspaée4?64D)
and H"(D) respectively. In the following, the nodal arde
shape functions are respectively denotgamdw;.

B. Random dimension discretisation

In the present work, the stochastic dimension $srétized
using the Polynomial Chaos Expansion (PCE). Wigslewas
the first to suggest the use of the Hermite chaosepresent
Gaussian processes. In [7], Xiu and al. generdfizeconcept
to more general processes. Let consider

a vedB

ny .
A(X,8) =D D A Wi (X)W, (6)

i=L o0z}

. (12)
00,0)= D > bigWo ()W, (6)

i=1 o0z
Substituting (12) in the weak form (5) and applyithg nP
test functions wq(X)W4(0) and the P test functions
gradw,'(X)W4(0) leads to a linear equation system:

A®U =B® (11)

The size of the square matX is equal to (NP)x(NP), with
N=ng+n, the vectorU of the unknowns pandg; is of size
NP The matrixA® has the following Kronecker structure:

M
AS:(IPDAO)+Z(S}* OHM+S? OHT)
i=1
With |, the identity matrix of size PxR, is the mean matrix
obtained by considering the deterministic magneatobaic
;oblem taking the means of the reluctivity and tog

(12)

&(6)=(§1(8),...,Eu(B)) of M independent random variables. Weconductivity (denotqui‘l and ;) on each subdomain;D

denote § the probability density function @(6). Any output
Y of a given model, having as input the random @e&(0),

can be written as mapping &' - R. The quantity Y is a
random variable and we have 6y£Y(&(6)). Let consider

Y;(&i(0)) a univariate orthogonal polynomial of order j with

respect to the probability measurk. A multivariate
polynomialsW(&(0)) defined as

M
VO =@ =W & (8) with e=(0s..on) ()
1=1

The symmetric matriceS* and S° are of size PxP and
correspond to the random dimension and their cdeffts

(S")ap and §°%)gp (for all a andB in Z"5) are defined such
that:

(S!)op = El(1(0) -, O)¥s ()]
(S7)up =El(0;(8) —T;)W, (B)Wy(6)]

The matricedd;* andH;® are symmetric and of sizexN.. The
coefficients H*); are given by:

(13)

are orthogonal with respect to the joined probgpili (HP)jk:ICU”W{@:U”W‘de if (j,k)OfLn,

measure, = |—| f, That is to say:
Isism

E[W,(©0)W;®)]=0 if azp (8)

If Y(8) has a finite variance, the PCE refers to th

representation of the random variableB)(as a linear
combination of multivariate polynomialg,(6):

V(@)= D y,Wa(0)

aON™

)

In practice, the expansion (9) is truncated up e t

polynomials of ordep. If we denote ¥, the space of the M-

tuples a which satisfy #f|j1<p, then the total number of

polynomials in the PCE basis is equal to:
p=(M+p)!

Mip! a1

5 (14)

=0 ifelse

énd the coefficientsH;°)x by:

G :jmjw{mv'l‘dy i (j.k) DL,
D.

(HO)c :j_t)jgradwg) radwXdy, if (j,k)OJn, NP (15)
D

(H?)j = [gradw} widy, if (j.K) OfLny]*Jny, N]

D;
We can notice that the matrX® is never stored entirely but
only the 4M matrice§", S°, H¥ andH°.

I1l. ITERATIVE BLOC SOLVER

Later, we denote by# the space of multivariate polynomialsone way to solve the linear system (11) is to usssical

W,(8) such thand ZV.
C. Discrete stochastic problem
In the following, we will consider the finite dimsional

spaces WIC," and WG, whereA(x,8) andd(x,8) will be
approximated, that is to say:

iterative solver and do particular matrix vectoroghuct.
Another way is to use an iterative bloc solver. Ud@an initial
solution of the linear system (11). Based on [4pl@c Jacobi
iterative solver has been proposed in [9] to sdhe linear
system (11). The relationship between the soluiotained at
the iterations i and i-1 can be written:



position of the probe in the tube. We can seetti@tvariation

of A® is not the same at the upper edg®;) and the lower
edge Q®d,,). To evaluate the level of clogging, the idea
=T consist in correlating the difference of magnituddsAd;,

andAd,, to the amount of deposit at the inlet foil (Fig. 1
As the matrix (p0A,) is bloc diagonal of size P, for each

iteration i we solve P independent linear systefrgze NxN. Magnetite
We can notice that the left hand side matrix isagis\the same telopeme pradnsl) Al ge“f‘"‘““ e

and equal té\q. At each iteration i, we solve one linear system
of size NxN with multiple and independent right Hasides:

M
(IpOAQU =+ > (SFOH! +S7 OHY) Ut +B°

< (16)

Ao X=V a7
where the matriceX andV are of size NxP and defined by: i | ey ~—Tube Support Plate
oving probe (TSP)
XCD=U(j-D*N+Lj*N),01<j<P (18)

VED =TG- *N+Lj*N), O1<j<P

The first advantage of this approach lies in a indsgarallel
computing. At each iteration step, the P lineartesys AG,,
resolutions can be performed simultaneously. In case, a

BiCG solver has been used to solve (17). Morecsiace the

matrix A, is the same for all the linear systems to solve, a
unique . pre_condltlon_ner can be applied to reduce ﬂﬁ‘\g 1. Geometry of the stu(ljied system and thegitmgdetection principle.
calculation time. Théinv preconditioner was used whereas in

[9] it was a diagonal preconditionefhe residual’
iteration i is given by:

I,.I =ASUI _BS

for each From the control signal magnitude, a clogging SAxia
indicator is usually extracted as:
M RatiOgay = 491, = 424, (22)
:(|PDAO)U'+[Zs}‘DH}‘+s;’DH?]U'—BS (19) APou
i=1 Deterministic simulations are achieved using a tdini
M element model with 1.789.946 spatial unknowns. e t
:{ZSF OHM+S? O H;’](u‘ - Ui‘l) probabilistic model, four parameters are assumedbéo
i=1 random uniform and independent variables: the coindties
By denoting X|b, the norm of the vectoX, The stopping and relative permeabilities of the magnetite (cloggroduct)
criterion is then defined by: and the support plate of steam generator tubesrvhds of
variation of the four considered random variablesgven in
(20) Table 1. These intervals have been determined &xpertise

(i) —|pi s

eV =r'| /|B

ith H Hz H 2 and measurements made on samples of magnetiteix\iref
With respect to [9],to accelerate the convergence of th%olynomial chaos order to p=4, leading to P=70

iterative procedure, we define a local stoppingedone; for  ,  igimensional polynomials in the random dimensighe
each column of the matr?k such that : quantities of interest are the flux difference betw the two
i Hr'H2 * HXIJHZ 1) coils of the probe (50 positions of the probe iasitie tube)
i~ Hri—lH HXIOH and the Sax ratio. We carry out the simulation gisihe

) . 2 2 ) _ SSFEM method with the dedicated iterative bloc solv
With X' the j-th column of the matriX (also called j-th presented in section Il and with the Non-IntrusSpectral

mode). This I_ocal criterion is such that the m(_mlézm high Projection (NISP) where a sparse adaptive grid seduto
norms (contribute more to the global solution) avell compute the multidimensional integrals [2]
computed and those with low norms, which contribuéakly TABLE | '

to the glObal SOlUthﬂ, are less constrained. INTERVALS OF VARIABILITY OF THE UNIFORM AND INDEPENICENT RANDOM
VARIABLES OF THE MODEL

IV. APPLICATION AND RESULTS

Relative Permeability Conductivity (S.m)
Our industrial application concerns the detectigiagnetite Uniform[ 1.3 ;2.7 Uniform[ 45 ; 75 ]
investigation of clogging in tube support plate steam [Tube Support Plate Uniform[ 60 ; 100 ] Uniform[ 071 181G]

generator of nuclear power plant, which may produce ) ]

detection is performed by an Eddy current NDT téghe, (BLOC) to the classical BiCG iterative solver wiplrticular
called the SAX ratio, using differential bobbin kcsignal. In ~ Matrix vector product for one position of probeidiesthe tube
Fig. 1, we give the variation of the fld® in function of the (W€ chose the position 16). With the BICG solvee whole



linear system (11) is considered during the iteeaproces. In
the case of the BLOC solver, at each iteration,irfeal
systems of size NxN are solved (see (16)).
preconditioners are retained for the comparidoiag for the

problem. A bloc iterative method based solver igppsed to
solve the resulting linear system. The SSFEM coatjrtal

Twbme and the statistical moments of the solutice @mpared

to those given by the anisotropic adaptive NISPhaoet The

Jacobi preconditioner aminv for the preconditioner based onlarge-scale application confirms the success ofpttuposed

the approximation of inverse of the matfy. As reported in
Fig. 2, the number of matrix vector products ofesi¢ (N is
equal to spatial degrees of freedom) of the ble@ttve solver
increases linearly with the number of random vdes
(number of stochastic dimensions), whereas, thishb@r with
the BIiCG increases exponentially. Notice that tAewv
preconditioner contributes slightly to the accdiera of the
two solvers due to singularity and bad conditionimigthe
linear system resulting from #-potential formulation.

iterative solver to reduce the SSFEM computational
complexity. The solver can be certainly improvedapplying
an efficient preconditioner to solve the multipight hand

b side linear system.

200000

150000

100000 ~

140000 | BICG — Diag —— ] :
BICG — Ainv  ===+@-=== 50000 | / |
- BLOC - Diag —= i 4 |
BLOC — Ainy ke
100000 | 3 1 5 ‘ ‘ . ‘
0 10 20 30 40 50
r 1 Fig. 3. Number of matrix vector product of size Ntbe SSFEM and the
‘_ NISP for each probe position. The SSFEM is equippét bloc iterative
60000 - A solver (BLOC) and the NISP is equipped with adaptimisotropic sparse grid
with two stopping criteria.
r 1 TABLE Il
STATISTICAL MOMENTS OF THE IMAGINARY PART OF THESAX RATIO,
20000 r 1 COEFFICIENT OF VARIATION AND THE NUMBER OF MATRIXVECTOR PRODUCT
OF THESSFEMAND THENISP
0 1 1 L Il
] 1 ) 2 3 & Mean S-dev. Skewness Kurtosis CV Mat-vec
Fig. 2. Number of matrix vector product of size Baihe as deterministic
system) of the preconditioned BiCG and Bloc iteatsolver for different NISP 0.598 0.093  -0.871 2.761 15% 5.900.000
numbers of random variables SSFEM 0595 0103  -1.185 3539  17%  7.300.000
In the second step, the SSFEM and the NISP methcs
applied for all probe positions inside the tube.e T¢thosen VI. REFERENCES

solver for the SSFEM is the bloc iterative one wiflobal
stopping criterion (20) equal to f0and a local stopping

criterion (21) equal to 1D The stopping criterion of the

adaptive anisotropic procedure in the NISP has lo@sen

equal to 10 and 10. The computation cost of the SSFEM,[3I

reported in Fig.3, is almost the same for the wipaisitions of
the probe. By contrast, computational costs of MISP
method are higher between the positions 10 antt 2&8pends
on the position probe, where the variability of tbentrol
signal is primarily located [7]. Furthermore, ithche observed
that performances of the NISP are closely relabethé prior
stopping criterion. Both method leads to very clettistical
moments on the variation of the flux. The statatimoments
of the random SAX ratio obtained with the SSFEM auiith a
NISP €=10°) are given in Table II. In that case, relativeoesr

of 10%, 30% and 28% are obtained respectively am t

standard deviation, the skewness and the kurtoSish®
imaginary part of the random SAX ratio. Accordihg tsize of
the problem and the high sensitivity of the rathXSthe error
between the two methods is acceptable.

V. CONCLUSION

In this paper, the SSFEM is developed in orderrtapagate
uncertainties on the input data through an eddyreatir
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