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A space-time approach in digital image correlation: Movie-DIC
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ABSTRACT

A new method is proposed to estimate arbitrary velocity fields from a time series of images acquired by
a single camera. This approach, here focused on a single spatial plus 2 tme dimension, is specialized to
the decomposition of the velocity field over rectangular shaped (finite-element) bilinear shape
functions. It is therefore assumed that the velocity field is essentially aligned along one direction, The
use of a time sequence over which the velocity is assumed to have a smooth temporal change allows
one to use elements whose spatial extension is much smaller than in traditional digital image
correlation based on successive image pairs. This method 1s first qualified by wsing synthetic numerical
test cases, and then applied to a dynamic tensile test performed on a tantalum specimen. lmprovements
with respect to classical digital image correlation techniques are observed in terms of spatial resolution,

1. Introduction

In solid mechanics, digital imaging is used to detect and
measure the motion and deformation of objects, From these
observations follow various evaluation procedures of mechanical
parameters [1]. To achieve this goal, different optical techniques
are used [Z]. Among them, digital image correlation (DIC) is
appealing thanks to its versatility in terms of scales ranging from
nanoscopic [3.4] o macroscopic [5,6] observations with essen-
tially the same type of algorithms,

DIC always involves a compromise between spatial resolution
and uncertainty [7.8]. As the technique exploits the comparison of
zones of interest, or elements between a deformed and a
reference image, the information is carried by the pixels
contained in those regions. A key characteristic is thus, f§, the
number of pixels per kinematic degree of freedom. On the one
hand, low uncertainties call for a large f (i.e., large elements), but
the description of the displacement will be coarse, and hence may
be unsuited to capture rapidly varying displacement fields, The
resulting systematic error may be prohibitive for a specific
application. On the other hand, small elements may be more
flexible to account for a complex displacement field, but as the
information content, or fi, is small, large uncertainties will result.
This trade-off has to be salved for every application, depending on
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the “complexity” of the expected displacement field. However,
one may have access to a large number of pictures thanks to
camcorders or high-speed cameras. Traditionally, 20-DIC oper-
ates on image pairs [9-11], and hence a long temporal series is of
little use. On the contrary, if the overall displacement over the
entire time sequence is large, one may have to break the analysis
inte time intervals that are finally “chained” to obtain the entire
displacement field. When updating the reference picture [12], this
procedure involves cumulative errors that are prejudicial to the
displacement uncertainty,

The principle of the proposed approach is to extend to the time
domain the regularization strategy used spatially. If the velocity
field evolves smoothly in dme, the above discussion about the §
parameter may be readily applicable to include the time
dimension. Thus, for the same f§f value, small elements along the
space direction{s) may still offer a good accuracy provided a
sufficient number of images is considered along the time axis for
each element. This temporal series may be used to compensate for
the poor guality of each individual image,

Some approaches post-process o posterion the measured velocity
fields to extract, say, the coherent part of the latter [13] or to filter
the measured data [14]. The objective of the present work is to
propose an g priori approach in which a space-time decomposition
is sought. The main advantage of the proposed method is the large
number of pictures used that may allow one to reach the same
uncertainty level with a small amount of spatial information,
counter-balanced by a large amount of temporal data.

Sequences of images can be obtained from standard movies. To
benefit from the large number of images, a temporal regularization



is called for. For instance, one may seek for steady-state velocity
fields | 15], or in the present case velocity fields that are decomposad
over a set of piece-wise linear fields in space and time. This type of
description is developed in the same spirit as global approaches
[16,17], and in particular to finite-element based correlation
algorithms whereby the displacement field is described by finite-
element shape functions of the space variables [8,18).

Along those lines different strategies can be considered, The
direct transposition of DIC is to search for displacement fields in
space and time simultaneously. This route is not followed here
since the sought fields are velocities and strain rates. It is well
known that (time or space) derivatives will increase the noise
level, and thus the displacement-formulated stratesy may reveal
unreliable, Therefore, the choice was made to focus directly on the
velocity field as the main unknown to the problem. It will be
shown that in spite of the fact that this velocity is the time
derivative of displacement, good performances will be reached.

I the present case, a 2D approach is developed, namely, 1D in
space and 10 in time. [t is referred to as DIC applied to analyze maovies
{or Movie-DIC). The paper is organized as follows. First, the principle
of the method is described. Then, artificial pictures are generated and
the technigue is camied out 1o determine o priod perfor-
mances. Last, the spatio-temporal approach is applied to analyze
the lkinematics of a sample in a split Hoplinson pressure bar test.

2, Principle of the spatio-temporal analysis

The first step of the analysis consists in creating the so-called
spatio-temporal map. For each picture, where xy are the image
coordinates, taken at several instants of time ¢, the gray level for a
particular (chosen) position {xy) i5 represented as a function of tme
t. Therefore, for a fixed y coordinate a sequence of images becomes
an fixt) map. The stacking principle is depicted in Fig. 1. The
restriction to a single spatial coordinate (¥ being fixed) is suited for
problems where the velocity is essentially along the x axis.

The measurement technique is based upon the conservation of
the brightness [19,20]. The advection of the texture by a velocity
field v (along the x-axis) is expressed as

fixsvdet4dn=foer L

where the increment dt corresponds to one time interval between
successive images (i.e. a “time pixel"). The aim is to estimate the
velocity feld v(xt) by using the brightness conservation. Mini-
mization of the quadratic difference t over space and time is used

= f f [ftx, fi—fie+vix 0y det+dry? dudr 2y
AdL

The velocity field is decomposed over a basis of functions ¢
and ¢ as follows
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Fig. 1. Construction of a spanio-temporal map.

In the present case, finite-element shape functions are chosen,
and their simplest form is adopted, namely, a piece-wise bi-linear
description of the velocity field. However, it is conceivahble to
consider other sets of either continuous functions [15] or even
discontinuous functions [21,22].

The proposed scheme is to solve this non-linear problem
iteratively by a progressive adjustment of the velocity to the
tangent linearized problem. The initialization of the unknown
velocity field is here chosen to be equal to zero, v™x.t)=0.
However, if a predetermination of the velocity field is available, it
is straightforward to include it at this stage. The wvelocity
" W r) at step nt+1 of this iterative scheme is determined from
the Taylor expansion of the objective functional

= f f (™, b—dt)—Fulx 0w ™ vy de—Fix 0 dadi i)
L

with fyixt)=afix )/ In this expression ™ is a short hand
notation for the value ¥’ such that x' + v x' t—dn dr = x. Note that
the above expression is a specific choice out of many equivalent
ones that differ only through second order terms. The advantage
of this particular form is that the correction field is multiplied by
[ffxr), which may be computed once for all iterations, This will
ease the computational work as shown in the following,

One difficulty of the above approach, in particular for low
quality images, is the use of a space derivative that may render
the procedure sensitive to noise. A filtering of the images may be
used. Mote that in this case, the band filtering used in space and
time should be adjusted so that their bounds are in proportion of
the mean velocity.

The decomposition (3] is introduced in Eq. (4) and minimiza-
tion with respect to oy leads to a linear system

z (l _[l""“i‘x}'ﬁif"w_jmﬂ?:ltlﬁmr]] d.xdt) 4""' n

[
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This elementary step is written in a compact form as
Myaly " =B (6)

The reason for the specific choice made in Eq. (4) is now clear,
namely, matrix M is computed once for il at the first iteration, and
it does not depend on the current evaluation of the velocity feld.
However, the second member, B is dependent on v, but its
evaluation is much less demanding computationally than M. At each
step, the “deformed” image fix+v™ de,t+dt) is corrected by using
the velocity field estimate at the previous step in order to compute
the second member. By inverting (6), the unknown degrees of
freedom aff'*"" are obtained, and thus the corresponding velocity
field is estimated. Comvergence, based on a4 measure of the norm of
a™* Y g ig reached in a few iterations {typically less than 100 By
integrating the velocity feld with respect to time, the displacement
and thereafter the strain fields are obtained.

In order to validate the approach, the objective function is
considered, Its value, normalized by the image size (fy = 1),

R= /i) (7)

gives the mean gray level difference of the matching of fxt) with
fuxt+dry) using the measured velocity field, It is thus a global
measure of the guality. Moreover, because t is a space-time
integral of the sguare of a residual field,

5= Lo n-vet)def seet—fone-+do) )



that gives the local contribution of each pixel to the global
residual. To make this density dimensionless, it is rescaled by the
dynamic range of the original image line A= max[f{,t=0)-
min[f{, { = 0]

The algorithm will be checked below against test cases for
which the velocity field will be known exactly. In those cases, two
quality indicators are introduced, namely, the systematic error §
and the corresponding standard uncertainty o

n My
n= AR —ATes)
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where Age i5 the prescribed value and Apegs its measured
counterpart, The quantities A; will denote velocity, displacement,
strain or strain rate daga.

The directly measured quantity is the velocity field v. From the
latter, the longitudinal strain rate Dy, is computed as
Dixi.f) = g{x.n (o
which, from the present choice of basis for the velocity (i.e., linear
in space and time), is a piecewise constant function in x, and
piecewise lincar and continuouws in time. The derivation is
performed by centered finite differences.

From the velocity field it is also possible to compute the
displacement field (trajectories) from an explicit time integration,
and sub-pixel linear interpolation of the velocity, which is an
exact result because of the choice of the shape function

1
x:r}=x|}tr=0r+f; vix(r'),t)de’ {11)
The velocity field is computed on the entire space-time domain,
In the sequel, in order to use a Fourier-based filtering of the
spatio-temporal image, it is useful to extrapolate the observed
domain to a larger domain. For instance elements that are not
present over the space interval at the initial time, fg, may enter
the observed scene at a later time, £;. In this case, when needed,

we assume that a constant velocity was followed in the time
interval [£p:£f;]. This conventional procedure allows us to minimize
edge effects for the Fourier filtering, yet it is to be underlined that
the extrapolated domain is removed after filtering, and hence this
ad hoc extrapolation procedure has a very low impact on the
measurement over the observed scene, If instead a zero padding is
used, edge effects are observed to be detrimental to the quality of
the determined velocity field,

The corresponding longitudinal strain ey, is expressed as

&

Ea(Hil) = = (A1) 12
The derivation is carried out by a centered finite differences
scheme,

3. A priori analyses

The three maps shown in Fig. 2 are artificially generated so
that the correlation length of the first line was approximately
equal to 3 pixels. The size of each map is equal to 256 = 256
pixels because a wide range of mesh sizes 2' pixels (i=3 ...7 along
the time dimension, and i=1 ...7 along the space dimension) are
used, with a reasonable computation time (eg., 8 = B-pixel
elements require less than 20 s of computation time on a standard
PC). Moreover, small mesh sizes along the time dimension are nog
considered except for the discontinuous map because in practice
the aim of this method is to use many time steps (o compensate
for the small amount of information along the space dimension,

As mentioned in Section 2, images may be filtered in Fourier
space, but this operation has its principal axes along the space and
time directions, and hence it is unsuited to the spatio-temporal
maps, The chosen strategy was first to correct this map, The
evaluation of the velocity field allows for the trajectories to be
determined, and hence for each point (x.f) one may trace back
the trajectory geing through this point up to the origin of
time (x%g(x.t.0). The “corrected” map g(x.t) is built so that
Elxo(x0))=fTxt). By hypothesis, g{x1) should be time invariant
(and equal to fix,0)). In this transformation, the boundary of the
domain becomes more or less lozenge shaped (a lozenge would be
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Fig. 2. Spatio-temporal map corresponding to a constant velocily (a), a parabalic velocity fleld (1) and a discontinuous velocity field (¢).



obtained for a uniform and constant velocity field). This corrected
map g is embedded in a larger rectangle and the missing
information is completed using (conventionally) a constant
velocity as explained in the previous section. A low pass Gaussian
filter is applied over the g field and the inverse transformation
g—f is applied to restore back the original domain shape, The
extrapolated data are thus removed. The standard deviation of the
Gaussian filter is equal to 1 pixel for all the studied cases.

3.1. Constant velocity

In this first case, the prescribed velocity is constant and equal
to (1++/5)/4 = 0.81 pixel per image. This specific number, half the
golden mean, is chosen because it induces sub-pixel components
of the displacements that are close to a uniform distribution (i.e.,
the standard deviation of the sub-pixel component distribution is
0290 to be compared with 1//12=0289 for a uniform
distribution]. The spatic-temporal map corresponding to this case
is shown in Fig. 2(a). In the present caseé a bilinear gray level
interpolation is uwsed. Further, it is worth noting that the
measurement basis contains the studied velocity field.

The present case is a typical baseline analysis in classical DIC
techniques [23.8]. It allows one to check the implemented
algorithms, Let us first consider the velocity field. The only
parameters are the sizes £ and ¢ of the spatial and tempaoral
discretizations. The systematic error and the standard uncertainty
are shown in Figs. 3(a) and (b). A decrease of the standard
uncertainty is ohserved with increasing element sizes, be it spatial
or teporal, The larger the element, the larger the number of data
(i.e., pixels), the more accurate the measured velocity, Differences
between the prescribed and measured velocity fields for 8 =« 8-
pixel elements are shown in Fig. 3(c).

The second studied quantity is the displacement field for
which the systematic error and the standard uncertainty are given
in Figs. 4(a) and (b). A decrease of the uncertainty is observed
when the element size increases, while the systematic error is
approximately constant. Differences between the prescribed and

measured displacement fields are shown in Fig. 4{c) for the largest
element size, 128 x 128-pixel. The shape of the map is due to the
fact that the displacement of the first line of the map is followed.
The values of the displacement field are ranging from 0 to 256
pixels, whereas the velocity level is close to 0.809 pixel per image.
The wvalues of the measured displacement fields are in good
agreement with the prescribed ones.

A good way of estimating the quality of the displacement field
determination is to construct the corrected spatio-temporal map,
£, where the effect of the estimated velocity is removed (the one
used for the Fourier filtering). The result is shown in Fig. 4{d) for a
small element size, 8 = B-pixel. For larger element sizes, no
difference can be perceived with bare eyes. The spatial position is
corrected from the beginning to the end. The particular shape of
the map is caused by the fact that there is no information outside
the bounds of the image, Therefore, the repositioning cannot be
performed at these locations.

For real applications, the actual velocity field is unknown,
Thus the quality evaluation that is used is the residual,
Joeti=fix+wix, 0 de 0+ de), computed from the estimated velocity
field. Fig. 5{a) shows the normalized mean residual for different
element sizes and Fig. 5(b) the residual map for a particular
element size (8 = 8 pixels). In that case, the residuals are virtually
constant for all element sizes, and the higher values are located
close to the left edge of the map, presumably because of an
imperfect extrapolation procedure. It is to be noted that edges
are always a weak point in DIC analyses based on a similar
methodology,

in many situations, the end user of the measurements is more
interested in strain andfor strain rate fields than in the displace-
ment or velocity fields. The latter are interpreted in terms of
mechanical behavior, whereas the former include rigid body
components that are usually not useful to understand or capture
the true mechanical response of a system under investigation.
However, the strain or strain rate fields require spatial derivations
that amplify the noise level. The systematic error and standard
uncertainty of the strain fields are shown in Figs. 6(a) and (b). [n
this particular case, the prescribed strain field is equal to zero.
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Fig. 3, Systematic error (a) and standard uncertainty (b) as functions of the element sizes for the measured velocity field. Difference between the prescribed and measured
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Fig. G(c) shows the difference between the prescribed and
measured strain fields for elements of size 8 = 8 pixels. This feld
is similar to the displacement ficld and the effect of derivation is
observed,

In arder to validate the benefit of the proposed approach with
respect to classical tools, the test case with a constant velocity
field is an appropriate example, A classical tool would ignore the
time dimension and thus it consists in analyzing two consecutive
lines. These lines are partitioned into intervals (i.e. “zone of
interest”, or ZOI), over which the mean displacement is searched
for, independently for each interval, It is to be emphasized that
such a "classical” tool is seldom used in one space dimension.
However, there is no limitation in this respect. No convergence
was obtained for Z0I sizes smaller than 8 pixels, For this
size (=8 pixels) up to 32 pixels, the displacement field
uncertainty decreased from 0,023 to 0.006 pixel. This uncertainty
is always worse than the one abtained in the spatio-temporal
framework.

A global 1D-DIC approach is also performed. It is based on a
continuous kinematic basis (linearly varying displacement field)
over a partition of the line into 1D-elements, or intervals as in the
previous case. This treatment is similar to the spatio-temporal
approach at the exception of the incorporation of time in the
kinematics. The prescription of a continuous displacement [(here
equivalent to velocity since only two consecutive lines are
considered)] field helped significantly the convergence since
elements as small as 3 pixels could be handled without
convergence problems. For {, =4 pixels, the uncertainty was
observed to amount to 0.042 pixel. In the same range as above,
from £, =8 to 32 pixels, the uncertainty decreased from 0.020
down to 0.005 pixel. Thus continuity revealed useful to reduce the
uncertainty level, yet at a level higher than the proposed spatio-
temporal approach.

As 2 last comparison with classical approaches, the maximum
displacement that would allow for convergence is evaluated, it
was found that for velocities as large as about 1,5 times the
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correlation length, the computation converged. This allows one to
consider velocities as large as G pixels per time step, Being able to
handle such large displacements without any special initialization
is another benefit of the proposed method.

To summarize, the time regularization that is propased herein
allows one to extend considerably the range of convergence of the
DIC algorithm. Moreover, it reduces the uncertainty level. Note
that the rather large level of uncertainty as compared to
traditional DIC is due to the fact that in one dimension the
number of pixels used to determine a kinematic degree of
freedom is small compared with 2D approaches.

3.2, Parabolic velocity field

The expression of the velocity field in this second test case
reads

at?x?

= 13
v ST (13)

with a =1+ +5)/4= 081 pixel per image, In that case, the degree
of the prescribed velocity is higher than that of the measurement
basis. Thus systematic bias due to the projector error on the
discretization basis is expected to penalize large element
discretizations.

Fig. 2(b) shows the spatio-téemporal map corresponding to the
chosen velocity field. First, the systematic error and the standard
uncertainty for the measured velocity field are analyzed as
functions of the element size in Figs. 7{a) and (b). When the
discretization becomes too crude, the fwo gquantities increase
because the measurement bkasis is not rich enough to capture a
parabolic field. For instance, for an element size equal to
128 « 128 pixels (Fig, 7{d}). the difference between the prescribed
and measured velocity fields is less satisfactory than for sizes 32
x 32 pinels (Fig. 7(c)) even though fewer degrees of freedom are
measured in the first case.

Moreover, the difference clearly shows the underlying mesh
(made of four elements in the first case), and its maximum is
located on the edges and in the middie of the elements. However,
even for a large element size, the map is reconstructed accurately
as can be seen in Fig. 8(c). Although the description of the velocity
is poor, the mean trend is well captured. The gray level residuals
as functions of the element size are shown in Fig. 8{a) and the
difference between the measured {with 32 x 32-pixel elements)
and prescribed trajectories are shown in Fig. 8(b). In this case too,
the residuals are approximatively identical for tested element
sizes. Figs. 9(a) and {b) show the change of the strain error and
uncertainty for different element sizes. The optimum size is
observed to be 32 = 32 pixels in the present case. (Mote, however,
that this optimum size is dependent on the observed velocity
field.)

1.3, Discontinuous velocity

In this last synthetic example, the prescribed velocity field is
discontinuous, For times 1-100 and 141-256, the velocity is equal
to 0. In between, the wvelocity 15 constant and equal to
v={1++/5)/4 pixel per image. The spatio-temporal map is shown
in Fig. 2(c).

The same analysis as previously shown is carried out.
However, the conclusions are not the same. The change of the
systematic error and the standard uncertainty (Figs. 10{a) and (b))
for the displacement fields with the element size shows that both
quantities reach a minimum for a small spatial size, typically 2
w 32 pixels or 4 = 16 pixels, along the direction transverse to the
discontinuity.

Maoreover, the differences shown in Fig. 10(c) for the displace-
ment fields provide an additional information because they give
exactly the position and intensity of the perturbations associated
with the chosen measurement basis, From Fig. 10{c) it is
concluded that the error is the most important exactly where
the discontinuity is located and not near the edges.
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The gray level residuals are shown in Fig. 11(a). The residual
decreases when the element size along the time dimension
decreases too, The minimum value is reached for a size equal o 4
= 128 pixels. Over the discontinuity line, the difference between
the prescribed and measured displacements leads to a systematic
error, which is partially corrected by the second discontinuity
seen in the corrected image. However, this incomplete cormection

induces a non-vanishing strain field, which in reality does not
exist.

Unlike the other tested maps, the image is not completely
corrected by using the displacement field (Fig. 11{b)). A solution is
to use enriched shape functions as in eXtended Finite Element
techniques [24]. This second solution is implemented in DIC
techniques when only two pictures are analyzed [22].
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4, Application to a tensile test Hopkinson pressure bars [25-28]. In the present case, out-of-
plane displacements remain small 50 that no correction procedure

In this last part, a real experimental case is studied. A cylinder- is used [29]. The spatio-temporal map is shown in Fig. 1, whose
shaped tantalum specimen is subjected to a tensile test in split size is 201 = 351 pixels in space and time, respectively. A pixel



represents a size equal to 165 pm and the frame rate is equal to
30,000 fps.

The sample is first subjected to a tensile pulse followed by a
quiescent pericd when the loading wave has traveled out of the
specimen, Wave reflection at the end of the bar leads to a second
tensile pulse episode. During the second pulse, failure occurs
through a localized necking instability.

First, at a given position (Fig. 1), the corresponding velocity,
displacement and strain maps are given in Figs. 12{a), (b) and (c),
respectively, for 4 x 64-pixel elements, This size is chosen by
using the results of Section 3.3. The present approach is also
compared with a Q4-DIC code in which a spatial piece-wise
bilinear (Q4 finite element) kinematics is implemented [8]. In that
case, a series of 20 displacement fields are obtained for different
instances of time, For the spatio-temporal analysis, 40 maps are
generated for the tantalum sample corresponding to several
vertical positions. For each of them, a computation is carried out

a

independently. The displacement field for image no. 35 is
computed by using both techniques as shown in Fig. 13(a). A
good alignment of the camera with the sample axis allows for the
present analysis. In terms of transverse displacements that may
violate the 1D-approach, they were measured with Q4-DIC. The
average transverse displacement is estimated to amount to about
0.02 pixel, and hence a 1D approach is legitimate. More precisely,
the displacement field given by Q4-DIC is the average of the lines
where it is measurable (i.e, over 18 pixels). For the spatio-
temporal approach, it is exactly the same operation, although an
interpolation is not needed since the displacement field is directly
computed for each line. A good agreement between the two
techniques is observed. Beyond position 350 pixels, noise is
observed because of the small element size (i.e. 6 =6 pixels)
chosen for the (4-DIC approach, Another advantage of the spatio-
temporal approach is its tolerance to large values of the
displacement field.
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Fig. 12. Velocity {a), displaczment (b} and engineering strain (¢} maps for the studied test.
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When cumulated, a small velocity level may eventually induce
large displacements that are difficult to estimate by using
standard DIC techniques. This explains why the displacement
field for the image corresponding to time no. 175 is measurable
with the spatio-temporal approach (Fig. 13(b)). For this picture,
necking is very important and the engineering strain field is more
suited to see the exact position and intensity of this phenomenon.
Moreover, even if the result is shown for a given time, it is
possible to obtain the same field at different times and conse-
quently to follow the growth of necking. This result shows that
localized phenomena can be captured with a spatial resolution
that is smaller than that allowed by classical 2D-DIC techniques
[30-32].

To compare the present results with previous studies, gray
level residuals are shown in Fig. 14(a), for different element sizes,
and the difference between the computed and measured
trajectories is given in Fig. 14(b). The levels of the residuals are
higher than those for the discontinuous velocity field. This is
partly due to the acquisition noise of the images, and presumably
also to the second discontinuity along the space dimension.
However, even though higher than in artificial cases, the overall
level is sufficiently low to allow us to deem the present results
trustworthy.

5. Conclusion

A novel approach was developed to determine velocity fields
based on the global registration of a series of digital images. The
velocity field is decomposed onto a basis of continuous functions
using 0Q4Pl-shape spatio-temporal functions. Displacement,
strain and strain rate fields are subsequently estimated.

The performance of the algorithm is tested on several test
maps in order to evaluate the reliability of the estimation, which
is shown to allow for either an excellent accuracy for continuous
velocity fields, or reasonable estimates for discontinuous velo-
cities, Inm the latter case, it is shown that the space/time
discretization has to be adapted to properly capture the specific
features of the velocity field. Last, this method is used to analyze a
tantalum specimen subjected to a tensile test in Hopkinson bars
where the performance of the technigue is compared with a
finite-element based DIC approach. A good agreement between
both techniques is observed.

The space-time approach is particularly suited for experi-
ments in which small resolution pictures obtained by, say,
camcorders or high speed cameras, yield a large amount of
images, This is for instance the case of split Hopkinson pressure
bar experiments. The time regularization proposed herein enables

for the use of fine spatial discretizations with reasonable
uncertainty levels to capture localized phenomena such as
necking. It is an alternative to local 2D-DIC approaches [30-32)
and an extension of Q4-DIC [8]. Discontinuous enrichments such
as those proposed for a Q4-DIC scheme [33] may be added in the
future.

The generalization to 2D spatial discretizations, or 3D
discretizations coupled with 1D time discretizations is currently
investigated. The output will then be 3D and 4D velocity fields
that can be used, for instance, to identify or validate the
parameters of constitutive equations.
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