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Abstract: In the course of most wood machining processes, operators are usually able to 

detect various problems simply by hearing the sound emitted by the process. This is especially true 

for wood peeling. Lathe checks formation has been identified as one of the typical situations that 

an experimented peeler can detect. Poplar and beech veneer samples have been produced on a 

laboratory microlathe, using working conditions deliberately favourable to checking. Forces, 

sound, and vibration levels were measured during the tests. The lathe check frequencies have been 

determined on both sound and vibration signals using a local Root Mean Square (RMS) averaging 

and a peak detection algorithm. This makes possible the evaluation of lathe checks distribution 

along the veneer length. The technique was validated by measuring the real veneer profile using a 

specific apparatus developed by IVALSA-CNR in Trento (Italy). 
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Résumé - Contrôle en ligne du déroulage du bois : Mesure acoustique et vibratoire 

des fréquences de fissuration du placage. Dans de nombreuses opérations d'usinage, les 

opérateurs expérimentés sont à même de déceler l’apparition d’un problème en écoutant les sons 

émis par le procédé. Cela est particulièrement vrai dans le cas du déroulage. La fissuration 

cyclique du placage a été identifiée comme l’un des phénomènes détectables par les opérateurs 

sur dérouleuse. Des placages fissurés de peuplier et de hêtre ont été réalisés sur une 

microdérouleuse de laboratoire, tout en mesurant les efforts, les vibrations et les sons générés par 

le procédé. Les efforts de coupe sont riches d’informations permettant de caractériser la genèse 
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des fissures. Nous avons déterminé les fréquences de fissuration aussi bien à partir des signaux 

acoustiques que vibratoires en utilisant d’abord une moyenne locale (Root Mean Square), puis un 

algorithme de détection de pics. Cette technique a été validée par la mesure des fréquences de 

fissuration à l’aide d’un appareillage spécifique conçu et réalisé par IVALSA-CNR de Trento 

(Italie). 

 

MOTS CLEFS : Déroulage/Acoustique/Vibration/Fissurations 

 

1 INTRODUCTION: 

 

Peeling is a wood process largely used for plywood, LVL and packaging production. Due to 

the shortage of large diameter logs all around the world, industries have to process lower quality 

logs and species. In the mean time, due to the increasing competition from other materials, e.g. 

plastic packaging, new procedures should take place in the peeling industry to improve the 

productivity, the yield and the quality of veneers. Some of the evolving technologies concern on-

line diagnosis and control systems. These will help the operators and quality control staff to fine 

tune peeling lathes in real time. 

One of the most comprehensive study was carried out by [14] for the theoretical understanding 

and modelling of the process. [11] and [4] proposed a program of lathe setting variation issued 

from force measurements. Those models are very interesting for a better understanding of the 

settings required to obtain a proper veneer quality but they need a specifically instrumented lathe 

(which is not the case while using microphones or accelerometers). Moreover, [12] noted that 

experienced operators are able to set and drive their devices “by the noise”. Hence, there must 

exists an acoustic or vibratory signature in the audible range originating from the mechanics of the 

peeling process.  

To our best knowledge, few works have been realized with acoustic or vibratory sensors as 

sources of data for wood machining. [13] have found a high correlation between the probability of 

having a sound pressure level larger than a certain threshold and the surface roughness of the 
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veneer. However, this correlation was better when considering an ultrasonic range (10 to 90 kHz) 

which doesn’t presumably reflect human sensitivity (the audible range lies between 20 Hz and 20 

kHz). 

This paper presents a part of the results of a research program intended to evaluate the 

possibility of using acoustic and vibratory measurements for on-line decision support system [5]. 

In order to simplify the problem, the microlathe of the LABOMAP at ENSAM (Cluny) was 

privileged in this first part. Its main characteristics are described by [2]. During all the tests 

presented in this paper, sound, force and vibration signals have been recorded and no pressure bar 

was in use.  

The first aim of this study is to identify the signatures of typical veneer defects. One of the 

most important defects regarding the surface quality and handling ability of a veneer is the lathe 

checks phenomenon. The mechanism of crack generation and growth has been described by 

numerous authors. It is well known that for homogeneous woods and without pressure bar, the 

lathe checks frequency and their depths are negatively correlated with the veneer thickness. A 

specific device developed in the “Non-destructive control” department of IVALSA-CNR has been 

used to measure lathe checks frequency of the veneers produced with the microlathe. 

 

2 MATERIAL 

2.1 The Microlathe 

 

The ENSAM microlathe (Figure 1) is a very stiff device which has been specifically designed 

for peeling tests, cutting force measurements and video observations. First, the tool, the pressure 

bar and their holders are mounted on two independent crowns. Both are part of a stiff piezoelectric 

dynamometric system set up on a sliding carriage. Loads exerted by the tools are measured 

continuously during the tests with geometrical parameters adjustment. The test piece, which is a 

disk no thicker than 30 mm, is mounted on a gearbox connected to a brushless servo motor. The 

machining speed range is from 0.01 to 10 m/s. 

[FIGURE 1] 
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The microlathe presents some characteristics required for this kind of experiments. Its stiffness 

is necessary for the accuracy of vibratory, force or acoustic measurements. The size of the sample 

moderates the effects of the natural variability of woods without being too far away from a good 

model of veneer with respect to the wood fibres length. It is assumed that the wood disk properties 

are constant along its width. This sample format also avoids excessive vibrations occurring at the 

end of the cutting process, which would be detrimental to the proper identification of lathe checks 

signature. 

 

2.2 The Acquisition Chain 

 

In order to better capture lathe operator's sensitivity, sensors were selected according to human 

audible range. Three types of sensors (Figure 2) were in use. A capacitor microphone (±0.25 dB 

between 8 Hz and 12.5 kHz) was fastened to the carriage in front of the cutting edge. This 

configuration keeps constant the distance between the sound source and the sensor at any time. 

Microphone position was defined after trials and errors in order to get the best possible signal from 

the cutting area while taking into account limited space available. Two accelerometers (±1 dB 

between 0.5 Hz and 17 kHz) were bolted right on the knife to maximise the accuracy of the 

measure: a first one very close to the cutting edge (the sensor’s mass must be negligible) in the 

radial direction called Yc and a second one under the knife in the cutting direction called Xc. Due 

to the extra space required by the Yc accelerometer, a larger knife was designed (60 mm instead of 

40 mm) with an usual bevel angle of 20°. This position allows a very high sensitivity to vibrations 

coming from the cut. Finally, a couple of piezoelectric gauges was prestressed between the small 

crown and the carriage. These gauges are still in place on the microlathe. 

[FIGURE 2] 

The sensors have been connected to a multi analyser system (PULSE by Brüel & Kjær). It is an 

acquisition and signal processing system which makes possible many real time analyses. The 

sampling frequency was set up to 65536 Hz. This allows an adequate processing of signals for 

frequencies up to 25.6 kHz according to the Shannon criteria and the real filter capabilities. 
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3 METHODS 

3.1 Trials 

 

Tests have been performed on two 20 mm thick disks free from any visible defect: one from 

beech and the other from poplar. The samples were stored underwater before the peeling tests. A 

20 mm wide and 80 mm long slot was cut on all the disks to determine exactly the start and end 

points of the veneer peeled during one turn. This way, it is possible to synchronise signal 

acquisition with observations on the resulting veneer. 

Apart from nominal thickness values, all the cutting parameters were kept constant for both 

species: linear cutting speed of 100 mm/s, zero clearance angle, no pressure bar, room 

temperature. The knife was previously run in by a 50 m cut at slow speed (0.5 m/s) and with small 

thickness (0.5 mm). Seven veneer samples were cut for each species with thicknesses respectively 

equal to 1.3, 1.7, 2.0, 2.3, 2.7, 3.0, and 3.3 mm. Veneers samples were cut after at least one turn 

around. This procedure ensures that the samples have the nominal thickness and avoids the 

transient phase occurring during round up. According to the results presented in [6], tool wear 

influence (especially on lathe checks phenomenon) could be considered as negligible since less 

than 70 meters of veneer were produced during this experimental campaign. 

The veneer samples were numbered and stored underwater before being characterized in 

IVALSA-CNR. A specific device was designed and realised by Dr. Martino Negri and Dr. Jakub 

Sandak to measure synchronously the profile of the checked surface with a laser and the effective 

thickness of the veneer with a LVDT sensor. The measurement principle was to open enough 

checks to make their detection possible without creating new ones. The apparatus will be 

described by designers in a following paper. To get an accurate measurement of the profile, the 

veneers were partially dried. Their density and moisture contents were measured to determine their 

shrinkage. The data were collected and stored using a Labview application specifically designed 

for that purpose. 
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3.2 Lathe check signatures 

 

Figure 3 shows the evolution of both force and vibration signals along the first milliseconds of 

the peeling of a 2.7 mm thick beech veneer. Because the linear cutting speed was fixed to 100 

mm/s, this corresponds to the firsts 12 mm of the veneer. The force signals represented are low 

pass filtered (Butterworth IIR [3], Fs=320 Hz). 

[FIGURE 3] 

The cutting force FXc rises to a maximum close to 270 N for a 2 cm width disk. Then, a crack 

suddenly propagates, because the energy required to create this crack becomes lower than the one 

accumulated in the veneer under the form of shearing deformation energy. The cutting force FXc, 

decreases dramatically during the opening of the check. The radial force component FYc decreases 

also after a small delay. Indeed, the energy required for crack propagation is taken mostly from the 

FYc component because the veneer still is in contact with the rake face during this phase. Then, 

the knife starts to cut again with a zero thickness veneer which contributes to the FYc fall. This 

constitutes a local cutting refusal phase as [14] noticed. Thereafter, the forces increase regularly to 

reach a new “lathe check formation state”. This means that the cut could be considered as an 

interrupted process, with each crack propagation phase constituting an excitation of the system. As 

it was suggested by [8] concerning routing (modelized while using a pendulum), force signals 

could be used to measure the “cracking frequency”. 

The vibratory lathe checks signatures, comparable to an impulse response, are also really easy 

to identify on both vibration signals. The local maximum of this fast oscillation is most of the time 

synchronized with FXc drop. Their duration, linked to the damping system, is depending on 

cutting conditions (cutting speed, clearance angle value) and on device mechanical characteristics. 

Yc sensor, the closest to the vibration source, is not surprisingly the most sensitive one. The 

microphone signal, visible on the Figure 4 (3 mm thick beech veneer) to not overcrowding the 

Figure 3, shows a similar behaviour even if the ratio between peaks magnitude characterizing 

lathe checks and overall signal level is lower than for accelerometers (Table I). 
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3.3 Lathe check detection 

3.3.1 Acoustic and Vibration Measurements 

 

The simplest way to detect lathe checks signature is to count the number of peaks higher than a 

preset threshold (count rate or cumulative count rate) as suggested by [10]. Nevertheless, this 

technique is sensitive to signal magnitude variations, and to the arbitrary threshold value. The Root 

Mean Square (RMS) average of a signal, noted X, is an averaging process proportional to the 

energy of a signal, rather than to its magnitude: 

 

∑
=

=
N

i
ixNRMS

1

²/1    for X={x 1 x2,… xN} 

 

[10] has also used RMS to get the mean vibration level during cutting. Local information is 

required to characterize the lathe checks phenomenon. This information is linked to the energy 

relaxation during crack propagation. That’s why a local RMS average is computed, since it gives a 

simple representation of the signals’ envelop. The length of the averaging window is determined 

by the duration of a peak and the number of peaks per unit of time. Both depend on the 

experimental settings as lathe check itself. To cope with various cutting speeds, everything should 

be considered in terms of veneer length rather than time units. Several averaging lengths, noted L, 

were tested. This process is equivalent to searching an optimal measuring precision. The 

corresponding computing window number nb is given by: 

tVc

L
nb

δ*
=  where 

To be close to the original signal, we determined the local abscissa (ti) associated to the 

maximum of the window denoting the value “i”. Then, for each window, the resulting “i” point 

coordinates are (ti, RMSi). Their drawing is a preset representation of the signal envelop. 

Vc: cutting speed (m/s) 
δt: inverse of the sample frequency (s) 
L: veneer length of the averaging window (m) 
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Microphone local RMS visible on Figure 4 is an example for a 3 mm thick beech veneer. This 

representative example will be discussed later in the paper. 

[FIGURE 4] 

Together with the RMS averaging, a peak detection algorithm was employed for the detection 

of the peaks corresponding to lathe checks. This algorithm is based on a gradient hill climbing 

technique to detect the local maxima in the signals. Each point in the signal is compared to other 

points in a sliding time window in order to detect the direction of the nearest maxima. The 

approach employed does not require any predetermined magnitude threshold. This ensures its 

efficiency for changes in average magnitude signal obtained with different cutting conditions 

especially thickness variations. Figure 4 and Figure 6 present typical results for example 

previously mentioned respectively for the microphone and Xc accelerometer.  

 

3.3.2 Lathe Checks Measurements 

 

An independent measurement of the lathe check frequency is required to validate the signal 

processing technique. Since the vibration signatures of lathe checks are related to crack lips 

opening, it is consistent to measure the distance between the beginnings of each crack. The easiest 

lip to identify is the second one, following the cutting direction (see Figure 5). Indeed, a little 

flexion of the veneer opens out the checks and makes the second lip stand proud.  

[FIGURE 5] 

The curve named “profile” on Figure 6 corresponds to the checked surface measurement of a 3 

mm thick beech veneer described as an example in the preceding section. It was obtained using the 

specific laser device previously mentioned. As it was verified, the shrinkage of the veneer during 

profile measurement could be considered as homogeneous along the veneer for both species. 

Simple swelling coefficients were applied to redraw the profile of the veneer at green state. 

[FIGURE 6] 

Each of the great drops on the signal corresponds to the point where the measuring head passes 

from the bottom of an opened check to its beginning. The distance between checks is given by the 
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time delay between two consecutive valleys, according to the linear speed of the veneer. To 

identify these valleys, the signal is low-pass filtered, (Butterworth IIR filter, Fs=200 Hz), then the 

first derivative is computed before using a valley detection algorithm available on Labview. A 

series of points “j” (position, magnitude) is obtained, as presented on Figure 6. 

 

4 RESULTS AND DISCUSSIONS 

4.1 Measurements efficiency 

 

The results shown on Figure 6 for Xc accelerometer or on Figure 4 for the microphone are 

representatives of severe lathe check conditions that can be obtained for thick veneers. The peak 

detection algorithm that was employed seems to be globally efficient. The large majority of the 

peaks are easily detected thanks to the local RMS computation that greatly simplifies the problem. 

The same conclusion holds for the equivalent poplar veneers in terms of thicknesses. 

In the same time, even if a very little number of peaks is not well traced back to the local 

veneer profile, the detection of checks beginning from profile measurement could also be 

considerate as an efficient technique. Nevertheless, for the thinnest tested veneers (1.3 mm), it was 

not possible to clearly extract peaks from background noise. A better algorithm has to be found for 

the detection of very small checks but it was not the purpose of the present study. Consequently, 

the corresponding profiles are not presented. 

As it is shown on Figure 6, there is a great correspondence between the check positions (on the 

x axis) obtained while using signal processing and profile measurements. Although they are not 

always strictly confounded, this point is not a severe drawback of the approach since the check 

frequency is much more important than the exact position of every check. Indeed, even if a local 

gap appears between the two signals, it will naturally vanish after a few numbers of checks. The 

main reason for this comes from the veneer lathe checks measurement. These took place along a 

line on the veneer, rather than on the whole surface. It was observed that the checks are not always 

well opened on all the width of the veneer samples. Small amounts of fibres were observed as a 

bridge over the two lips of some of the checks. This phenomenon is more pronounced on thinner 
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veneers. This is why a few numbers of checks are missing as it can be seen on Figure 6 around the 

70th mm. Moreover, the lip geometry is highly dependent on the local wood structure. For the 

measurement of a check position on the veneer analysed on Figure 6, there could be a more than 1 

mm difference between two measures along the two veneer borders. A solution could be the 

measurement of a real profile to get a 3D representation of the checked veneer surface. Anyway, 

those gaps cancel each other out when the number of checks detected increases enough. The 

vibration measurement seems to be less sensitive to these very local phenomena.  

[TABLE I] 

These observations, and especially the similarity of the two peak detection results, still holds 

true for Yc accelerometer and microphone signals with a few subtleties. The signal to noise ratios 

presented in table I are given by dividing the average peak levels detected by the overall level of 

the signal (global RMS). These ratios are almost always higher for beech than for poplar peeling. 

This reflects what is called the “density effect”. Indeed, the higher density of beech as regard to 

poplar (basic density respectively reach to 0.571 and 0.436 g.cm-3) requires higher forces level 

which corresponds to a general trend pointed out by [14] and [15] for peeling process and by [8] 

and [9] for other cutting process or modes. The energy relaxation during crack propagation is also 

more important in agreement with the results presented by [1] for ten tropical species in green 

conditions (basic density ranged from 0.21 to 0.91 g.cm-3). Thus, the induced vibration levels are 

increased, and the signal to noise ratios improved. It should also be noted that these ratios are 

usually better for accelerometers than for microphone. This is not surprising since the acoustical 

signal envelop is not as sensitive to lathe checks formation as accelerometers ones are. It might be 

possible to use a better adapted mathematical descriptor for microphone signals such as FFT 

analysis. In the end, all the three sensors sensitivity are positively correlated with the thickness of 

the veneer (Table I). Indeed, the lathe checks phenomenon is also greatly improved when the 

veneer thickness increases. The degree of this correlation is also better for beech than for poplar 

due to the density effect which promotes lathe checks formation. Yc accelerometer is the most 

sensitive sensor. Even if the greatest part of the mechanical excitation is transmitted in the cutting 

direction, rather than perpendicularly to this direction, the Yc signal was taken very close to the 
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vibratory source and in the direction of the first natural vibration mode of the knife. All these 

conclusions validate the use of this technique to characterize lathe check frequency. 

 

4.2 The use of lathe checks measurements 

[FIGURE 7] [FIGURE 8] 

The average values of the distance between two consecutive checks for beech and poplar are 

respectively pointed out on Figure 7 and Figure 8 versus thickness variation. Values issued from 

both accelerometers signals are almost confused which confirms their sensitivity to lathe check 

formation. As it was expected, the profile measurement overestimate often a little the distance 

between checks because some peaks are not detected for the reasons previously developed. The 

average distance between two consecutive lathe checks which represents the inverse of their 

frequency is linearly correlated to the thickness variation of the veneer. This is in agreement with 

the observations presented by [14] for a larger panel of cutting conditions and species. The author 

introduced Fi, ratio between the average distance between two consecutive lathe checks and the 

cutting pass. This criterion was found almost constant for a well established lathe check 

phenomenon.  

[TABLE 2] 

Table II summarizes the linear regression parameters and theirs associated correlation 

coefficient we have obtained. Note that the profile measurement fitting was only realized from 6 

points (no measurement for 1.3 mm veneers). The quality of the regression is very good (always 

significant at least 1%) especially for vibration and acoustic measurements. The slope of the 

straight line, which corresponds to the ratio Fi, is almost constant for the 3 sensors for both 

species. Moreover, it is higher for poplar than for beech which was not clearly pointed out by [14]. 

Indeed, the number of checks visible on the veneer is less important for poplar than for beech in 

case of a relatively thick veneer. When the lathe checks frequency is lower, the checks are deeper 

as it was observed for homogeneous species. The poplar thick veneers were the most damaged 

ones (few checks but very deep ones). At the end, even if the origin ordinate has no physical 

signification, their difference of signs gives interesting information. The negative values obtained 
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for poplar compared to the positive one obtained for beech confirm that the thickness limit of lathe 

check generation is lower for the beech.  

 

5 CONCLUSION 

 

The use of vibration measurements is well adapted to detect lathe check formation. A simple 

peak detection algorithm allows a somewhat precise determination of the lathe check distribution 

along the veneer. It is then possible to evaluate the lathe check rate of the veneer. This technique 

has to be tested on a larger range of cutting conditions (species, cutting speed, clearance angle, 

wood heat treatment, pressure rate), but it already shows a great potential utility as a source of 

information for a decision support system for peeling lathe operators. Indeed, this could be used to 

optimise the pressure rate especially for heterogeneous species like Douglas fir. 
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Table I:  The signal/noise ratio values for the three sensors (accelerometers Xc and Yc and the 

microphone) and its correlation coefficients with thickness variations. 

Table II: Linear regression parameters and associated correlation coefficient for average distance 

between two consecutive checks vs veneer thickness for both species and all sensors. 

 

 

Figure 1: The instrumented Microlathe. 

Figure 2: Sensors disposition. 

Figure 3: Lathe checks signature on both vibrations and forces signals in tangential and radial 

direction for a 2.7 mm thick beech veneer. 

Figure 4: Original, preset and peak detected from the microphone signal for a 3 mm thick beech 

veneer. 

Figure 5: Beech checked veneer. 

Figure 6: Peaks detected on both preset vibration signal Xc and veneer profile from laser sensor 

for the first 100 mm of a 3 mm thick beech veneer. 

Figure 7: Average distance between two consecutive checks measured by accelerometers, 

microphone and laser vs veneer thickness for beech. 

Figure 8: Average distance between two consecutive checks measured by accelerometers, 

microphone and laser vs veneer thickness for poplar. 
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TABLE I 
 

Thickness (mm) 1.3 1.7 2 2.3 2.7 3 3.3 r² 

Beech 
Xc 1.484 1.593 1.640 1.678 1.694 1.713 1.832 0.916 
Yc 1.585 1.636 1.653 1.711 1.751 1.779 1.906 0.932 

Microphone 1.259 1.295 1.326 1.363 1.420 1.430 1.512 0.973 

Poplar 
Xc 1.329 1.441 1.458 1.456 1.478 1.723 1.805 0.821 
Yc 1.384 1.525 1.528 1.531 1.572 1.808 1.874 0.850 

Microphone 1.207 1.248 1.238 1.250 1.179 1.338 1.379 0.459 
 
TABLE II 

 Beech Poplar 

  Linear Regression  r² Linear Regression  r² 

Xc Y=0.963 t + 0.172 0.982 Y=1.397 t - 0.446 0.990 

Yc Y=0.966 t + 0.163 0.983 Y=1.391 t - 0.446 0.990 

Microphone Y=0.930 t + 0.282 0.980 Y=1.189 t - 0.040 0.992 

Profile measurement Y=0.824 t + 0.669 0.901 Y=1.416 t - 0.294 0.975 
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FIGURE 1 
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FIGURE 7 
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FIGURE 8 
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