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This paper explains the effect of a motion platform for driving sim-
ulators on postural instability and head vibration exposure. The
sensed head level-vehicle (visual cues) level longitudinal and lat-
eral accelerations (ax,sensed = (x_head and Ay sensed = Ay_head> Ayv = Ay_veh
and a,, = ay_yen) Were saved by using a motion tracking sensor and
a simulation software respectively. Then, associated vibration dose
values (VDVs) were computed at head level during the driving ses-
sions. Furthermore, the postural instabilities of the participants
were measured as longitudinal and lateral subject body centre of
pressure (Xcp and Ycp, respectively) displacements just after each
driving session via a balance platform. The results revealed that
the optic-head inertial level longitudinal accelerations indicated a
negative non-significant correlation (r=—.203, p=.154 >.05) for
the static case, whereas the optic-head inertial longitudinal accel-
erations depicted a so small negative non-significant correlation
(r=-.066, p=.643 >.05) that can be negligible for the dynamic
condition. The Xcp for the dynamic case indicated a significant
higher value than the static situation (t(47), p <.0001). The VDV,
for the dynamic case yielded a significant higher value than the
static situation (U(47), p <.0001). The optic-head inertial lateral
accelerations resulted a negative significant correlation
(r=-.376, p=.007 <.05) for the static platform, whereas the
optic-head inertial lateral accelerations showed a positive signifi-
cant correlation (r=.418, p=.002 <.05) at dynamic platform con-
dition. The VDV, for the static case indicated a significant higher
value rather than the dynamic situation (U(47), p <.0001). The
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Ycp for the static case yielded significantly higher than the dynamic

situation (£(47), p=.001 < 0.05).
Crown Copyright © 2013 Published by Elsevier B.V. All rights
reserved.

1. Introduction

There are so many implications to be fullfilled in the area of driving simulators. The most important
of them is to sustain the reality for the represented dynamics. The major leading problems are the re-
stricted workspace of the driving simulator and whether a motion base exists integrated with the driv-
ing simulator. The first driving simulators were fixed-base and the simulation was principally
performed by the visual stimulus (Bertin & Berthoz, 2004; Stratulat, Roussarie, Vercher, & Bourdin,
2010) to create the self-motion perception. This perception is based upon the principle of visual scene
flow on the retina referring to the velocity, direction of the motion and the relative distances
(Bremmer, Kubischik, Pekel, Lappe, & Hoffmann, 1999).

For the static platformed driving simulators, illusory self-motion ‘vection’ often occurs because the
driver is stationary and the visual scenario is mobile (Berthoz, Pavard, & Young, 1975; DiZio & Lackner,
1989; Draper, 1998; Hettinger, 2002; Hettinger, Berbaum, Kennedy, Dunlap, & Nolan, 1990; Hettinger
& Riccio, 1992; Kolasinski, 1995; Lepecq et al., 2006; McCauley & Sharkey, 1992).

The incompetencies in the domain of driving simulators, whether they are fixed or motion base
simulators, might make the motion sickness an inevitable topic for the development of the researches
undertaken.

The methods of evaluating and measuring the motion sickness divesifies depending on the type
of the research. In general, there are some ways to assess the sickness level. Some methods refer to
the measurements of head level, postural, vehicle and motion platform level dynamics; whereas the
verbal methods imply the evaluation via Simulator Sickness Questionnaires (SSQ). Driving simula-
tion sickness was assessed between dynamic and static simulators in some studies (Curry, Artz,
Cathey, Grant, & Greenberg, 2002; Watson, 2000). A relation was made between the illness and
the head movements of the pilot in absence and presence of the motion base (Kennedy, 1987).
A significant reduction in motion sickness occurs when an individual adopts a postural position
was expressed in (Reason & Brand, 1975). “Postural instability theory” was introduced also to
define relations between perception and the control of action by (Riccio & Stoffregen, 1991). This
approach considers the behavior of the individual as fundamental in motion sickness etiology.
The postural instability theory of motion sickness presumes that motion sickness is resulted and
estimated by instabilities in control of the spine. This was attributed to constraints in motion of
the head. Relations were declared between head motions and motion sickness through the mech-
anisms of Coriolis (with actual inertial cues: motion platform) and pseudo-Coriolis (through visual
cues) stimulation (Kennedy et al., 1987; Reason & Brand, 1975). Coriolis stimulation occurs when
the head is tilted out of the axis of rotation during actual body rotation (Dichgans & Brandt,
1973; DiZio & Lackner, 1988, 1989; Guedry, 1964; Guedry & Montague, 1961). Pseudo-Coriolis
stimulation occurs when the head is tilted as perceived self-rotation that is induced by visual stim-
uli (Dizio & Lackner, 1989).

In a moving-base simulator, the subjects’ head movements were similar to those in the actual vehi-
cle according to those studies in (Dichgans & Brandt, 1973; Dizio & Lackner, 1988, 1989; Guedry, 1964;
Guedry & Montague, 1961; Kennedy et al., 1987) where the head movements in fixed-base simulators
were often in conflict with the inertial stimulus, which increased the discrepancy of the simulation
(Dizio & Lackner, 1989).

Another research on the motion platform effects revealed that using active platform driving
simulator yielded more realistic optic-head inertial cues, in other words less conflict, at the lateral
dynamics for the passenger condition when the simulator was operated as autopilot mode (Aykent,
Merienne, Paillot, & Kemeny, 2013).
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vibration exposure at driving simulators. Human Movement Science (2013), http://dx.doi.org/10.1016/
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Everyday driving experience proposes that drivers are less susceptible to motion sickness than pas-
sengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in
laboratory research using whole body motion devices. A similar effect was experimented in the con-
text of simulated vehicles in a visual virtual environment. A yoked control design was used in which
one member of each pair of participants played a driving video game (i.e., drove a virtual automobile).
A recording of that performance was displayed (in a separate session) by the other member of the pair.
Thus, the two members of each pair were exposed to identical visual motion stimuli but the risk of
behavioral contamination was minimized. Participants who drove the virtual vehicle (drivers) were
less likely to report motion sickness than participants who viewed game recordings (passengers). Prior
to the onset of subjective symptoms of motion sickness movement differed between participants who
(later) reported motion sickness and those who did not, consistent with the postural instability theory
of motion sickness. The results verify that control is an important factor in the etiology of motion
sickness, and extend this finding to the control of non-inertial virtual vehicles (Dong, Yoshida, &
Stoffregen, 2011).

A study has been executed about relations amongst postural instability, motion sickness and vec-
tion. 9 males and 4 females (mean age = 19.85 years) were exposed, while standing, to an optical sim-
ulation of body sway. Head motion was registered using a motion tracking system. Postural
instabilities were monitored prior to the onset of motion sickness. Vection was reported by most par-
ticipants, including all who became sick. A discriminant analysis indicated that parameters of postural
motion accurately predicted motion sickness. The results confirm that postural instability can provoke
motion sickness and propose that measures of postural motion may serve as crediable predictors of
motion sickness (Smart, Stoffregen, & Bardy, 2002).

Another work has been realized on relations between unstable displacements of the center of pres-
sure and motion sickness. Standing participants were subjected to optic flow in a moving room. Mo-
tion sickness was induced by motion that simulated the amplitude and frequency of standing sway.
Instabilities were determined in displacements of the center of pressure among participants who be-
came ill; those instabilities occurred before the onset of subjective motion sickness symptoms. Pos-
tural differences between ‘sick’ and ‘well’ participants were observed before exposure to the
nauseogenic stimulus. During exposure to the nauseogenic stimulus, sway increased for participants
who became sick but also for those who did not. Nevertheless, at each point during exposure, sway
was greater for participants who became motion sick. The results yield that motion sickness is pre-
ceded by instabilities in displacements of the center of pressure (Bonnet, Faugloire, Riley, Bardy, &
Stoffregen, 2006).

However, there are not so many publications on the subjects’ head level vibration exposure and
postural instability interactions with the existence and absence of a motion platform (vehicle model:
visual longitudinal and lateral acceleration ay, = ax_ven and ay, = a,_en respectively, human head level:
longitudinal and lateral acceleration ay nead = Gxsensed aNd dy_head = Qy.sensed)- Because of this fact, the
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Fig. 1. Structure of the SAAM driving simulator.
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participants’ head level vibration exposure and postural instability interactions in absence and in pres-
ence of the motion platform were surveyed in this article.

This paper also surveys if there is any correlation between the optic-head inertial level accelera-
tions in case of static and dynamic simulators. Optic-head inertial level accelerations stand for the
real-time registered and measured visual and vestibular level accelerations. Moreover, the paper tack-
les how the vestibular level exposed vibration dose values (VDV) differ from each other by activating/
deactivating the motion platform of the driving simulator (Fig. 1). Furthermore, this study aims to
investigate the motion platform effect on drivers’ body centre of pressure (CP) displacement. Finally
it tries to find out a relationship between the optic-head inertial acceleration cues correlations with
the head level sensed VDV and the bodies’ CP displacements of the subjects.

Here, the visual level acceleration refers to the acceleration values registered from the vehicle mod-
el that moves in the visual environment for the driving simulator. Whereas the head level acceleration
represents the subjects’ head accelerations connected to the right ear by using a headphone (Fig. 3)
(Aykent et al., 2013).

2. Materials and methods

The research method presented in this study was to compare the motion platform’s contribution on
postural stability and head level vibration exposures of the subjects.

In order to achieve those objectives, the subjects were asked to drive a specific driving scenario on
the simulator.

In the data analysis part, the superposition principle of motion was used for evaluating the sensed
longitudinal and lateral dynamics at head level (Fig. 3).

The measured longitudinal acceleration at head level is calculated by Eq. (1) where

Oy sensed: Sensed longitudinal acceleration (m/s?)

ay: Longitudinal translational acceleration at head level (m/s?)
0: Pitch angle at head level (°)

g: Gravitational acceleration (m/s?)

Qy.sensed = Oxp - COSO + g - Sin 0 (1)

The measured lateral acceleration in head level is calculated by Eq. (2) where

0y sensed: Sensed lateral acceleration (m/sz)

ayy: Lateral translational acceleration at head level (m/s?)
@: Roll angle at head level (°)

g: Gravitational acceleration (m/s?)

(y sensed = Ay - COS @ + g - SIN @ (2)

Oy sensed ANd 0y sensed Were measured from the participants’ right ear levels for the same driven scenario
for the static and dynamic platforms via using the sensor in Fig. 3.

In compliance with ISO 2631-1, RMS acceleration values in each axis are defined to more closely
reflect the health hazard exposed in the human body. Coefficients are described by ISO 2631-1 on
the basis of the frequency and the direction of vibration being exposed to the body. Coefficients of
wy = 0.426 (cephalocaudal axis) and w,=0.067 (anteroposterior and mediolateral axes) were used
to obtain frequency weighted RMS acceleration in each axis (Egs. (3)-(5)where T is the period of each
driving session in seconds). For the evaluation of the health effects, k,=1.4, k, = 1.4 are chosen. The
VDV, and VDV, were calculated at “head” levels by substituting to the “a, and a,” for the head level
(Abercromby, Amonette, Layne, et al., 2007; Aykent, Paillot, Merienne, & Kemeny, 2012a; Benson &
J., 1988; Griffin, 2004; ISO 2631-1, 1997).

VDV = { /t o a4(t)dtr 3)

-0
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VDV, = {/ (ky - @ - ay) (t)dt} (4)
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=0

1

VDV, — { /[ Tk o ay)4(t)dt}4 5)

Jt=0

2.1. Dynamic driving simulator

The SCANeRstudio and X-Sens measurements are separate measures given as from vehicle level
(vehicle model which moves in the visual environment) and as from vestibular level sensed (head
dynamics from right ear alignment) respectively. Vehicle level dynamics from the visual environment
also affects the head level dynamics. The head dynamics of the drivers are influenced only by the vehi-
cle level dynamics for the static platform case whereas the drivers’ head movements are affected by
both the vehicle level dynamics and inertial level dynamics (hexapod motion platform) for the dy-
namic platform condition.

This research work was accomplished under the dynamic as well as static operations of the SAAM
(Simulateur Automobile Arts et Métiers) driving simulator (Fig. 1). The dynamic driving simulator
SAAM involves a 6 DOF (degree of freedom) motion system (Fig. 1, Tables 1 and 2 (Aykent et al.,
2013)). It is exploited on a RENAULT Twingo 2 cabin with the original control instruments (gas, brake
pedals, steering wheel). The visual system is realized by a 150° cylindrical view (Fig. 1). With the driv-
ing cabin of the simulator, the multi-level measuring techniques are available: vehicle model and mo-
tion platform dynamics levels real-time data acquisition via SCANeRstudio driving simulation
software, head level dynamics real-time data acquisition via XSens motion tracker, arm and neck mus-
cles dynamics measurement via Biopac EMG (electromyography) device, human’s centre of pressure
displacements measuring equipment Technoconcept to check postural stability (Aykent et al.,
2012a; Aykent, Paillot, Merienne, & Kemeny, 2012b).

Fig. 1 illustrates the SAAM moving-base driving simulator. It could be operated as with static or
dynamic platform by switching the “motion platform” module off and on respectively. As seen in
the figure, in general there are three dynamical systems of the SAAM driving simulator. They are vehi-
cle dynamics, motion platform dynamics (motion system) and human head dynamics (proprioceptive
system). By manipulating or controlling the vehicle dynamics that moves in the vision system and the
motion platform dynamics via motion drive algorithms, their effect on human head dynamics can be
compared.

In this article, the effect of having an inertial stimulus (motion platform is active and passive sep-
arately for the same driving scenario in Fig. 5) on human head dynamics and postural instability were
discussed.

Oy sensed aNd 0y senseq WeTe measured to obtain the head level longitudinal and lateral accelerations
of the subjects. a,, and a,p,which were given in Fig. 2, registered from the vehicle model driven in real-
time via the driving simulation software at the same driven scenario for the static and dynamic plat-
forms via using the sensor in Fig. 3.

Fig. 2 describes the motion cueing algorithm used for the dynamic platform case in this research
(Aykent et al., 2013). The motion cueing algorithm was included in the SCANeR studio driving simu-
lation software via dll plugin in order to accomplish the real-time driving experiments with the par-
ticipations of the subjects.

2.2. Head level data acquisition

In order to save the acceleration data from the head level, a motion tracking sensor was used
(Fig. 3). The motion tracker can measure the data such as the roll, pitch, yaw angles and rates as well
as the accelerations in X, Y and Z. The data are calibrated due to three dimensional quaternion orien-
tation. The sampling rate for the data registration during the sensor measurements was 20 Hz. For the
calibrated data acquisition, the alignment reset was chosen which simply combined the object and the

Please cite this article in press as: Aykent, B., et al. The role of motion platform on postural instability and head
vibration exposure at driving simulators. Human Movement Science (2013), http://dx.doi.org/10.1016/
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Table 1

Limits of each degree of freedom (DOF) for the SAAM driving simulator.

DOF Displacement Velocity Acceleration
Pitch +22 deg +30 deg/s +500 deg/s?
Roll £21 deg +30 deg/s +500 deg/s?
Yaw +22 deg +40 deg/s +400 deg/s?
Heave +0.18 m +0.30 m/s +0.5¢g
Surge +0.25m +0.5 m/s +06¢g
Sway +0.25m +0.5 m/s +0.6¢g

Table 2

Classical motion cueing algorithm parameters.
Symbol Longitudinal Lateral Roll Pitch Yaw
2nd order LP cut-off frequency (Hz) 03 0.7
2nd order LP damping factor 0.3 0.7
1st order LP time constant (s) 0.1 0.1 0.1
2nd order HP cut-off frequency (Hz) 0.5 0.5 2
2nd order HP damping factor 1 1 1
1st order HP time constant (s) 2 2 2

heading reset at a single instant in time. This had the advantage that all co-ordinate systems could be
aligned with a single action (Aykent et al., 2013; XSens Technologies BV 15, 2010). The details about
the XSens motion tracking sensor are given in (Aykent et al., 2013; XSens Technologies BV 15,
2010).0x_nead and Ay sensed; dy_nead aNd Ay sensed are equal to each other and they represent the measure-
ments at the participants’ ears as in Fig. 3 depending on the superposition principle of the translational
and the rotational motions based on Eqs. (1) and (2).

2.3. Vehicle level data acquisition

Vehicle level data registered by SCANeRstudio software can be splitted as; command data (steering
wheel angle, gas, brake pedal input, etc.), motion platform level (translational and angular accelera-
tions of the hexapod platform), vehicle level data (vehicle dynamics, engine, etc.), frequential analysis
of the motion platform and vehicle levels (by using FFT (Fast Fourier Transform)) (Aykent et al., 2013).

2.4. Postural level data acquisition

Postural stability of the subjects were identified by using a stabilotest of Technoconcept (Fig. 4).
The measurements were performed as eyes open, after the driving sessions at the simulator. The data
acquisition was done for 30 s at 40 Hz. Fast Fourier Transform (FFT) of the longitudinal and lateral dis-
placements of the centre of pressure (CP) for the participants’ bodies were registered at static and dy-
namic platform conditions. The participants were asked to get on the postural stability platform just
after the completion of each driving session.

2.5. Protocol

Two conditions were driven by the driver-subjects for the specific scenario on the simulator real-
time. The experiment protocol involved two phases of the driving situations as static and dynamic
platform conditions on a country road scenario (Fig. 5).

Fig. 5 also depicts the X-Y trajectory and the vehicle velocity profile which were realized in the
experiment phases. The whole experimental phase was completed with a constant velocity of
60 km/h in 120s.

Please cite this article in press as: Aykent, B., et al. The role of motion platform on postural instability and head
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Fig. 2. Motion cueing algorithm.

Fig. 3. Head level data acquisition during the experiments.

2.6. Subjects

The experimental procedure was done for static and dynamic platform cases. 47 subjects (N = 47,
35 males and 12 females) aged (mean: 31.32 years, SD: 8.05 years) and with driving licence experi-
ence (mean: 11.81 years, SD: 7.72 years) (SD: standard deviation) participated in experiments. 9 par-
ticipants were carrying glasses (8 males, 1 female) and all the subjects were measured as with shoes
worn.

3. Data analysis

The role of having a motion platform on postural instability and head level vibration exposures was
discussed here for the sensed longitudinal and lateral dynamics regarding driving simulators.

In order to assess this, the head and vehicle level longitudinal and lateral accelerations (ay, a,) were
collected by using a motion tracking sensor (Fig. 3) and SCANeRstudio software respectively.

Pearson’s correlation was computed between the conditions of static and dynamic driving simula-
tor situations in order to assess the optic-head inertial coupling. According to this; if the acceleration
at vehicle level is negatively correlated to the acceleration at head level, it represents a less realistic
driving simulation session. And if they are positively correlated to each other, it reveals a convergence
to the reality.

Subjects were asked to complete a specific driving scenario under two types of operating condi-
tions (static vs. dynamic platform) on the driving simulator. Each subject was tested once in each

Please cite this article in press as: Aykent, B., et al. The role of motion platform on postural instability and head
vibration exposure at driving simulators. Human Movement Science (2013), http://dx.doi.org/10.1016/
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Fig. 5. Vehicle’s velocity and X-Y trajectory during the experiments.

condition. Thus, it was a within-subjects variable for the two-tailed t tests and the two-tailed
Mann-Whitney U tests.

Two-tailed t tests were assigned to compare the differences of the participants’ body centre of pres-
sure (CP) displacements, in terms of the influence of the motion platform, just after the each driving
session.

Two-tailed Mann-Whitney U tests, which are non-parametric hypothesis tests, were benefited
to assess the effect of motion platform on head level longitudinal and lateral vibration dose
values (VDV) by using XLSTAT statistics software. In this article, head longitudinal and lateral
VDVs refer to the head vibration exposures in longitudinal and lateral directions respectively
(Egs.(4) and (5)).

4. Results and discussion

In this section, the associations of longitudinal and lateral accelerations on the vehicle and the head
levels (Figs. 6 and 7) and their level of significance were discussed as of having and not having the mo-
tion platform during the driving simulator operations.

Figs. 6 and 7 explained briefly the impact of the inertial stimulus (motion platform) as illustrating
the mean value for all the subjects. The red curves illustrated the head level sensed longitudinal and
lateral accelerations from the dynamic platform experiments, whereas the blue ones were depicting
the head level longitudinal and lateral accelerations for the static platform conditions which could also
be computed from (Eqgs. (1) and (2)respectively). The black curves were illustrating the longitudinal
and lateral accelerations of the vehicle centre of pressure and it was same for the both cases.
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Fig. 7. The mean of vehicle-head level lateral accelerations at static and dynamic conditions.

Depending on these graphs, the visual and head longitudinal accelerations indicated a negative
non-significant correlation (r = —.203, p =.154 > .05), whereas the optic-head inertial lateral accelera-
tions revealed a negative significant correlation (r = —.376, p =.007 <.05) for the static platform.

For the dynamic platform case, the visual and head longitudinal accelerations depicted a very small
neglectable negative non-significant correlation (r=—.066, p =.643 >.05), whereas the optic-head
inertial lateral accelerations revealed a positive significant correlation (r =.418, p =.002 <.05).

The optic-head inertial lateral accelerations’ gap reduction during the first curvature turn (45-50 s)
was sourcing from the onset cueing in favor of the classical motion drive algorithm (dynamic plat-
form) in general. The better fit of the optic-head inertial lateral acceleration signals on the steering
maneuver just after the second curvature turn (105-110s) was by the agency of onset cueing wash-
out. The close optic-head inertial lateral acceleration fit in the end sections (110-120 s) (Fig. 7) arose
by the tilt coordination and the time delays which were integrated in real-time (as seen in Fig. 2,
Tables 1 and 2) for the dynamic platform condition whereas there was a mismatch of optic-head
inertial cues for the static platform case.

Fig. 8 showed that post-exposure effect of hexapod motion platform on the longitudinal postural
instability of the drivers. Regarding this figure, the maximum longitudinal displacement of the bodies
CP yielded 6.489 mm higher in the static situation compared to the dynamic condition.
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The mean and the standard deviation (SD) values were given in Table 3. According to this table, the
longitudinal displacement (Xcp) of the subject’s body for the dynamic case revealed as 0.508 + 1.594
mm, whereas it was 0.403 = 1.673 mm at the static platform condition. In the table below, “dyn” refers
to dynamic and “sta” refers to the static platform.

A two-tailed t test proved that there was a significant effect of having a motion platform on
longitudinal postural displacements of the drivers. The Xcp for the dynamic case indicated a signif-
icant higher value rather than the static situation (t(47), p <.0001; Fig. 9). As the computed p-value
(p <.0001) is lower than the significance level alpha =.05, one should reject the null hypothesis HO,
and accept the alternative hypothesis Ha after applying the two-tailed t test to check the difference
significancy between the static and dynamic situations of the Xcp values of the drivers where the
tested hypotheses were given below:

HO. The difference of location between the samples from the static and the dynamic cases is equal to
0.

Ha. The difference of location between the samples from the static and the dynamic cases is different
from 0.

The graphic below (Fig. 10) showed that post-exposure effect of hexapod motion platform on the
lateral postural instability of the drivers. Regarding this figure, the maximum lateral displacement of
the bodies CP yielded 5.583 mm higher in the static situation compared to the dynamic condition.

The mean and the standard deviation (SD) values were given in Table 4. According to this table, the
lateral displacement (Ycp) of the subject’s body for the dynamic case resulted as 0.638 + 2.078 mm,
whereas it was 0.731 £ 2.365 mm at the static platform condition. In the table below, dyn refers to dy-
namic and sta refers to the static platform.

A two-tailed t test yielded that there was a significant effect of having a motion platform on lateral
postural displacements of the drivers. The Y¢p for the static case indicated a significant higher value
rather than the dynamic situation (t(47), p =.001 <.05; Fig. 11).

40
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Mean of longitudinal displacement for
the CP of the subjects' bodies (mm)

e FFTX static platform === FFTX dynamic platform

Fig. 8. The mean of FFT for the longitudinal displacement (Xcp) of the participants’ bodies at static and dynamic platforms.

Table 3

Comparison of longitudinal displacements of participant bodies’ CP for static and dynamic platforms.
Variable Minimum Maximum Mean = SD
Xcp of subject’s body-dyn (mm) 0.000 23.034 0.508 + 1.594
Xcp of subject’s body-sta (mm) 0.000 29.523 0.403 £ 1.673
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Fig. 9. Comparison of the longitudinal displacement (Xcp) of the participants’ bodies at static and dynamic platforms: Error bars
represent the confidence interval of 95%.
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Fig. 10. The mean of FFT for the lateral displacement (Ycp) of the participants’ bodies at static and dynamic platforms.

Table 4

Comparison of lateral displacements of participant bodies’ CP for static and dynamic platforms.
Variable Minimum Maximum Mean + SD
Ycp of subject’s body-dyn (mm) 0.000 29.259 0.638 +2.078
Ycp of subject’s body-sta (mm) 0.000 34.842 0.731 +£2.365

Fig. 12 showed that the effect of hexapod motion platform on the head level longitudinal vibration
exposures of the drivers. Regarding this figure, the maximum head level longitudinal VDV yielded
1.647 m s~ 7> lower in the static platform compared to the dynamic condition.

The mean and the standard deviation (SD) values were given in Table 5. According to this table, the
head level longitudinal vibration exposure (VDV,) for the dynamic case resulted as
2.010+0.571 m s~ !>, whereas it was 0.421 = 0.173 m s~ '-”° at the static platform condition. In the ta-
ble below, “dyn” refers to dynamic and “sta” refers to the static platform.

A two-tailed Mann-Whitney U test indicated that there was a significant effect of having a motion
platform on head level longitudinal vibration exposure (VDV,). The VDV, for the dynamic case indi-
cated a significant higher value rather than the static situation (U(47), p <.0001; Fig. 13). Since the
computed p-value (p <.0001) is lower than the significance level alpha = 0.05, one should reject the
null hypothesis HO, and accept the alternative hypothesis Ha after applying the two-tailed
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Fig. 11. The mean of head level longitudinal VDV at static and dynamic conditions.
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Fig. 12. Comparison of the lateral displacement (Ycp) of the participants’ bodies at static and dynamic platforms: Error bars
represent the confidence interval of 95%.

Mann-Whitney U test to check the difference significancy between the static and dynamic situations
of the head level sensed lateral VDVs where the tested hypotheses were given below:

HO. The difference of location between the samples from the static and the dynamic cases is equal to
0.

Ha. The difference of location between the samples from the static and the dynamic cases is different
from 0.

Fig. 14 showed that the effect of hexapod motion platform on the head level lateral vibration expo-
sures of the drivers. Regarding this figure, the maximum head level longitudinal VDV yielded
0.861 m s~'7> higher in the static platform compared to the dynamic condition.

Table 5

Comparison of head level longitudinal VDV for static and dynamic platforms.
Variable Minimum Maximum Mean + SD
VDV,-dyn (m s~75) 0.000 2314 2.010+0.571
VDV,-sta (m s~ '7%) 0.000 0.667 0.421+0.173

Please cite this article in press as: Aykent, B., et al. The role of motion platform on postural instability and head
vibration exposure at driving simulators. Human Movement Science (2013), http://dx.doi.org/10.1016/
j-humov.2013.10.007



http://dx.doi.org/10.1016/j.humov.2013.10.007
http://dx.doi.org/10.1016/j.humov.2013.10.007

B. Aykent et al./Human Movement Science xxx (2013) XxxX—xxx 13

2,500

2,000

1,500

1,000

0,500

Longitudinal VDV (ms*-1.75)

***gignificance level: p<0.0001

VDVx_dynamic  MVDVx_static
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25

0.5/

Vestibular Lateral Vibration Dose Value (m.s "1.75)

— Static platform
—— Dynamic platform

0 20 40 60 80 100 120
Time (s)

Fig. 14. The mean of head level lateral VDV at static and dynamic conditions.

Table 6

Comparison of head level lateral VDV for static and dynamic platforms.
Variable Minimum Maximum Mean = SD
VDV,-dyn (ms~"7%) 0.000 0.565 0.414 +0.132
VDV,-sta (ms~'7%) 0.000 1.426 1.139+0.279

The mean and the standard deviation (SD) values were given in Table 6. According to this table, the
head level lateral vibration exposure (VDV,) for the dynamic case resulted as 0414 +0.132 ms~"">,
whereas it was 1.139 + 0.279 m s~ 7 at the static platform condition. In the table below, dyn refers
to dynamic and sta refers to the static platform.

A two-tailed Mann-Whitney U test revealed that there was a significant effect of having a motion
platform on vestibular level lateral vibration exposure (VDV,). The VDV, for the static case indicated a
significant higher value rather than the dynamic situation (U(47), p <.0001; Fig. 15).
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Fig. 15. Comparison of the head level lateral VDV at static and dynamic platforms: Error bars represent the confidence interval
of 95%.

5. Conclusion

The influence of having motion platform on postural instability and head level vibration exposures
on driving simulators was discussed in this paper. After having completed these experimental phases,
it was yielded that the dynamic platform provided a closer lateral dynamics representation between
real-time vehicle model (optic cues) and real-time head dynamics cue levels. It could be concluded
that having dynamic platform represented a reconciling to real-world applications associated to lat-
eral dynamics in terms of data acquisition and measurements.

It can be summed up concisely that the Xcp (longitudinal body centre of pressure displacements)
for the dynamic case indicated a significant higher value rather than the static situation. The VDV,
(head level longitudinal vibration dose value) for the dynamic case indicated a significant higher value
rather than the static situation.

It can also be deduced apparently from this study that the VDV, (head level lateral vibration dose
value) for the static case indicated a significant higher value rather than the dynamic situation. Fur-
thermore, the Ycp (lateral body centre of pressure displacements) for the static case indicated a signif-
icant higher value rather than the dynamic situation.
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