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ABSTRACT
This paper proposes to use a non-linear observer to build the

state and the external force of flexible manipulator robots during
their machining (composite materials) processes or Friction Stir
Welding (FSW) processes. These two different processes have a
problem in common: the flexibility of the robot can not be ne-
glected, that is to say, the errors due to the deformation of the
links should be taken into account. However, in most industrial
robots, the real positions and velocities of each link are not mea-
sured, so in this study, an observer is proposed to reconstruct the
real angular positions and velocities of links by using the mea-
sured angular positions and the velocities of actuators. A simula-
tion by Matlab/Simulink has been carried out with a 2 axis Robot
during its machining processes: the proposed observer showed
great performances in estimating the state of the robot (position
and velocity). Then, in order to improve the tracking accuracy in
the tool frame, the state of the external force along the forward
direction (x) and its normal direction (y) are required, while they
are also not measured by our robot. A disturbance observer has
been added to reconstruct the processing force. A good precision
during the proposed processes have been obtained using the lat-
ter. This study contributes to solve the problem from the point of
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view of accuracies during the machining processes.

INTRODUCTION
Manufacturing processes such as machining and welding

are widely applied in production industry. This study focus on
two special processes: machining of composite materials and
the Friction Stir Welding (FSW) process. These two applica-
tions have an innovative character: the first one concerns an ap-
plication of composite materials, and the second one is a new
development of welding. Composite materials are used exten-
sively for their high specific properties of strength and stiffness,
however, these materials are difficult to machine due to non-
homogeneous, anisotropic and reinforced by very abrasive com-
ponents. The FSW is a solid state welding technology that can
be used for many joining applications. The process uses a non-
consumable rotation tool consisting of a pin extending below a
shoulder, plunges into the work piece such that both the pin and
the shoulder are in contact with the piece [1, 2]. The technical
and economic performances of some manufacturing processes
can be greatly improved by using a manipulator or a robotic sys-
tem as holder of the production tooling. However, using robot
to do these two processes is a challenge: the natural rigidities
of industrial robots are not sufficient to perform the tasks in the
requirements of the processes. Actually, those processes are car-
ried out by some special developed machines which need a great



investment. In the sector of aeronautic industry, these two pro-
cesses need to be strongly applied. New technologies are demand
to reduce the investment and to improve the quality of the prod-
ucts. Due to a strong external force during the operations, the
deformations of the robot cannot be neglected, therefore, the real
angular positions and velocities of links are different from those
determined by the geometric model of the robot. Moreover, to
make an accurate machining or welding, the forces exerted on
the material should be measured. Unfortunately, most of the in-
dustrial robots have only motor side measurements, thus a new
approach to estimate link side states as well as the external force
is required. Nevertheless, in case of welding, a force sensor is
added to get at least the axial effort to the work plan, but the path
effort Fx and normal effort Fy are still unknown.

There are many control methods available for the flexible
robots [3] such as iterative learning control, adaptive control,
backstepping, sliding mode control, neural networks, singular
perturbations, composite control, pole placement, input shap-
ing, passivity-based control, robustification by Lyapunov’s sec-
ond method, model-based feedforward control [4]. A good de-
scription of these control methods can be found in [5–8].

Disturbance observer technique is widely used in mechani-
cal servo systems and observers are often used for the state es-
timations [9, 10]. An adaptive robust control of FSW and an
observer-based adaptive robust control (ARC) approach is dis-
cussed in [11] where it is proved that the axial force can be
also estimated by an observer. An application of disturbance ob-
servers to nonlinear systems is reported in [12]. An acceleration-
based state observer is presented in [13]. Subrahmanya and
Shin [14] propose a method of state estimation. There are a lot
of observer methods proposed by other researchers such as high-
gain observers, sliding mode observers [15], extended state ob-
servers, Kalman Filter and the Luenberger observer. In order to
realize these operations, we propose an improved observer which
can estimate not only the unmeasured states but also the external
force.

This paper is organized as follows: a simplified model of
flexible manipulators and the model of processing force for the
two processes that mentioned above will be presented in the first
part. The second part proposes a new observer which uses motor
side measurements to reconstruct the state of robot as well as
the external force. In the third part, a simulation is carried out
by Matlab/Simulink to verify the tracking performance with the
proposed observer. And finally, a conclusion and some further
applications of this study will be presented.

MODELING OF ROBOT AND PROCESSES
Robotic manipulators are highly nonlinear and coupled dy-

namic systems, there also subjected to different external distur-
bances. This study is a part of the project COROUSSO (see ac-
knowledgment). The objective of this project is to realize ma-

TABLE 1. Model parameters of the robot IBM7545.

Name Description (unit) Value

l1, l2 length of link (m) 0.40 ; 0.25

m1,m2 mass of link (kg) 12.70 ; 4.35

ml mass of the spindle (kg) 1.34

N1,N2 gear transmission factor 157 ; 80

K1,K2 elasticity constante (N m−1) 3.67 104 ;
8.90 103

r1,r2 distance between axis 0.153 ;
and center of gravity (m) 0.084

Ke1,Ke2 motor torque constant 0.1099 ;
(Nm V−1) 8.90 103

Jm1,Jm2 motor inertia (kg m2) 1.50 10−4 ;
0.0496

fm1, fm2 coefficients of viscous friction 7.18 10−5 ;
on the motor side (Nm s rad−1) 2.58 10−5

fq1, fq2 viscous friction of the joints 10 ; 10
(Nm s rad−1)

chining process and FSW process with industrial robots. In a first
step, in order to simplify the approach, the tool is considered to
stay in a horizontal plan during the machining process, the con-
sidered robot is a Scara robot which has two joint axis in parallel.
The necessary parameters are taken from a robot IBM7545 that
presents in [16]. It is a robot not well adapted to this task, but we
will study firstly the problems addressed.

Hereafter, the flexibility of joints, the efforts applied by the
robot, the gravity and the frictions are taken into account.

A. Model of two axis flexible joint robot
The model parameters of two-link flexible manipulator used

in the simulations are given in Table 1. It is supposed that the
tool is fixed at the end of the second axis and its rotation axis
is assumed perpendicular to the work plan (x,y), and the tool
moves only in the plan (see Figure 1). Assuming that the links
are rigid and only the joints have torsional stiffness due to the
gearbox that are taken into account.

The position of the tool (x2,y2) is calculated with the artic-
ular positions of each link q = [q1 q2]

T by using the geometric
model: {

x2 = l1 cos(q1)+ l2 cos(q1 +q2)
y2 = l1 sin(q1)+ l2 sin(q1 +q2)

(1)



FIGURE 1. Geometric model of robot

θ

FIGURE 2. Flexible gearbox model

According to [6], a flexible joint robot can be modeled as

follows:

D(q)q̈ = K(qm −q)−H(q, q̇)− fqq̇− JT (q)F (2)

Jmθ̈ = Γm −NvΓ− fmθ̇ (3)

where JT (q) is the Jacobian matrix of the tool axis position, F
represents the effort applied by robot on external process, Γm is

the vector of motor torques, θ represents rotor positions and qm
is defined as the positions after the gear reduction, i.e. qm = Nvθ ,

Nv = diag[1/N1,1/N2], D(q) is the symmetric, uniformly posi-

tive definite and bounded inertia matrix. H(q, q̇) represents the

contribution due to centrifugal, Coriolis and gravitational forces,

fq, fm and Jm are diagonal matrices with fq = diag[ fq1, fq2],
fm = diag[ fm1, fm2] and Jm = diag[Jm1,Jm2].

It is supposed that the links are rigid and the flexibilities are

only localized at the reduction gears and are represented by a

stiffness K = diag[K1,K2]. Therefore, the torque due to the flex-

ibility can be expressed:

Γ = K(Nvθ −q) (4)

B. Modeling of machining process
The machining process concerned in this part is called a con-

tour milling of composite materials, Dumas discussed this oper-

ation in her thesis [17]. The piece is machined within one pass

which means that the end of the tool is out of material and the

helicoidal angle of the tooth is small, so the axial force Fz can

be considered as null. The model of cutting force developed by

Tlusty and Macneil [18] can be applied in this case:

There are three assumptions:

1. The tangential cutting force Ft due to the passage of one tooth

is proportional to the cut section:

Ft = Kthap (5)

where h is the thickness of the chip in mm, depth of cut ap in mm

and the specific cutting force Kt expressed in N mm−2. The cut

surface is equal to hap.

2. The radial cutting force Fr due to the passage of one tooth

is proportional to the tangential cutting force.

Fr = Kr ‖ Ft ‖ (6)

where Kr is a dimensionless coefficient of proportionality essen-

tially depends of the friction effect on the tool.

3. The chip thickness (see Figure 3) can be expressed as

follow:

h(ϕ) = fzsin(ϕ) (7)

with ϕ , the angle between the tooth and the normal of the ad-

vance direction (between Fr and Fy), then :

δFt = Ktap fzsin(ϕ)dϕ (8)

Because the rotation speed of the tool is high, the harmon-

ics of the force spectrum acted on the robot has little influence.

Therefore, the effort Ft and Fr is calculated as the average ef-

fort of each period of rotation. The projection of the radial and

tangential forces in the (x,y) frame gives the following equa-

tions [17]:{
Fx =

2
π
∫ ϕe

ϕs
[‖ δFt ‖ cos(ϕ)+ ‖ δFr ‖ sin(ϕ)]dϕ

Fy =
2
π
∫ ϕe

ϕs
[− ‖ δFt ‖ sin(ϕ)+ ‖ δFr ‖ cos(ϕ)]dϕ (9)

Figure 3 shows the geometric model of clipping and defines

the angles ϕe and ϕs. xm and ym are denoted as the position of the

piece edge, and (x2,y2) is the axis position of the rotation axis of

the tool.

The machining process can be divided into 3 phases:

Phase 1: Relative tool position to the piece with 0 <(xm − x2)
≤ Rt and (xm − x2)

2 +(ym − y2)
2 > R2

t :

ϕe =
π
2
− cos−1

[
xm − x2

Rt

]
(10)

ϕs =
π
2
+ cos−1

[
xm − x2

Rt

]
(11)

Phase 2: Relative tool position to the piece with (xm − x2)
2 +

(ym − y2)
2 ≤ R2

t and (xm − x2) > 0:
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FIGURE 3. Geometric position of the tool during machining process.

ϕe =
π
2
− sin−1

[
ym − y2

Rt

]
(12)

ϕs = π − sin−1

[
xm − x2

Rt

]
(13)

The efforts during phase 1 and phase 2 can be written as

follows:

Fx =
Ktap fz

2π
[−cos(2ϕs)+2Krϕs −Krsin(2ϕs) (14)

+cos(2ϕe)−2Krϕe +Krsin(2ϕe)]

Fy =
Ktap fz

2π
[sin(2ϕs)−2ϕs −Krcos(2ϕs)− sin(2ϕe) (15)

+2ϕe +Krcos(2ϕe)]

Phase 3: Relative tool position to the piece with (xm − x2)

< 0, supposing that displacement on direction y is small enough

that the angle ϕs can be considered as constant during the pro-

cess:

ϕe = π/2− sin−1

[
ym − y

Rt

]
(16)

ϕs = π (17)

Fx =
Ktap fz

2π
[2Kr(π −ϕe)+ cos(2ϕe)−1+Krsin(2ϕe)] (18)

Fy =
Ktap fz

2π
[2(ϕe −π)− sin(2ϕe)+Krcos(2ϕe)−Kr] (19)

This cutting force model can simulate the change of the ef-

fort during the operation. Note that the parameters Kr and Kt
need to be identified from the measurements of the average force

obtained during a machining operation.

FIGURE 4. Efforts on the tool during the FSW operation

C. Modeling of FSW process
The advantage of FSW is to avoid the problems met in clas-

sical welding by melting the metals. For this reason, FSW pro-

cess has been implemented, primarily in the transportation in-

dustries that use aluminum to reduce the weight of mechanical

structures [2].

This process can be divided into three phases: diving, weld-

ing and removing the tool. This paper focus on the welding phase

which is similar to our machining process. To simplify the pro-

cess, it is supposed that the tool is always perpendicular to the

plan during the operation. In order to improve the tracking per-

formance, the axial effort Fz, path effort Fx and normal effort Fy
(see Figure 4) are needed. Control of the external weld force is

desirable to improve the weld quality. However, not all the exter-

nal forces are measured in industrial applications due to the high

price of these force sensors and some of them are not measurable.

The axial force in FSW process is the pressure produced by

the pin and shoulder of the tool. The path force is the force im-

posed on the tool along the welding direction. The normal force

is the force imposed on the tool in the plane of the part and per-

pendicular to the path direction, this force is typically directed

from the weld retreating side to the weld advancing side and is

caused by the unbalance of the material flow on the two sides.

Based on static model of [19], the expression of efforts can

be written as follows:

Fz = KzdαzvβzΩλz (20)

Fx = Kxvβx Ωλx (21)

Fy = KydαyvβyΩλy (22)

where Ω is the spindle rotation speed, ν is the travel speed along

the path, d is the plunge depth, and the unknown parameters

Ki,αi,βi,λi; i ∈ [x,y,z] can be estimated using the Least Squares

method.



Γ

θ

θ

FIGURE 5. Diagram of the observer

OBSERVER DESIGN
Disturbance observer technique is widely used in control for

improving disturbance rejection and robust performance [20].

The unknown input observer (UIO) method is one of the most

well known approach to estimate states [21]. Hereafter, assum-

ing that the articular position and velocity of motor axis and the

effort Fz are measured by sensors. A reduced order high-gain ob-

server is then proposed to reconstruct the articular position and

velocity of links and the process efforts Fx and Fy. The new ob-

server proposed in this paper, is based on a nonlinear observer

introduced in [9], which reconstructs the articular position and

velocity of links thanks to the measures of the position and ve-

locity of motor axis. Observer described in [9] is then modified

in order to get also an estimation of efforts by adding more state

variables function of this force.

If the state variables xi are defined as: x1 = q = [q1 q2]
T ,

x2 = q̇ = [q̇1 q̇2]
T , x3 = qm = [qm1 qm2]

T , x4 = q̇m = [q̇m1 q̇m2]
T ,

qm =Nvθ and the gear factor N = diag[N1,N2] the following state

space model can be obtained:⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = q̈ = D(q)−1[K(qm −q)−H(q, q̇)− fqq̇− JT (q)F ]
ẋ3 = x4

ẋ4 = q̈m = (JmN2)−1[NΓm −Γ− ( fmN2)q̇m]

(23)

The measured variables are now denoted y and the following

change of coordinates is considered:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z1 = [(JmN2)−1K]−1x4 = K−1(JmN2)x4

z2 = x1 = q
z3 = x2 = q̇
z4 = JT (z2)F
y1 = x3 = qm
y2 = x4 = q̇m

(24)

Moreover, if u = NΓm and fmN2 = Fm, then:⎧⎪⎪⎨
⎪⎪⎩

ż1 = z2 +K−1(JmN2)ẋ4 = K−1u− y1 −K−1Fmy2

ż2 = z3

ż3 = q̈ = z4 +ψ(z2,z3,y1,F)

ż4 =
d
dt [J

T (z2)F ]

(25)

where ψ is equal to:

ψ =D(z2)
−1[K(y1−z2)−H(z2,z3)− fqz3−JT (z2)F ]−z4 (26)

If A and C are defined as following (I is the 2 order identity

matrix and 0 is the 2×2 zero matrix ):

A =

⎛
⎜⎜⎝

0 I 0 0

0 0 I 0

0 0 0 I
0 0 0 0

⎞
⎟⎟⎠and C = (I 0 0 0) (27)

then:

ż = Az+g(z,y,u)+d(z,F, Ḟ) (28)

with

g =

⎧⎪⎪⎨
⎪⎪⎩

K−1u− y1 −K−1Fmy2

0

ψ(z2,z3,y1,F)
0

(29)

and d(z,F, Ḟ) = [0 0 0 d
dt (J

T (z2)F)]T .

Define now the following matrix of high gains, with G a

constant ≥ 1:

ΓG =

⎛
⎜⎜⎝

GI 0 0 0

0 G2I 0 0

0 0 G3I 0

0 0 0 G4I

⎞
⎟⎟⎠ (30)

and matrix L such as (A−LC) has all its eigenvalues in the left

half of the complex plan, then the following new observer is pro-

posed:
˙̂z = (A−ΓGLC)ẑ+g(z̄,y,u)+ΓGK̄y2 (31)

where K̄ = LK−1(JmN2) and⎧⎪⎪⎨
⎪⎪⎩

z̄2 = y1 − y1−ẑ2
‖y1−ẑ2‖Nssat( ‖y1−ẑ2‖

Ns
)

z̄3 =
ẑ3

‖ẑ3‖Mssat( ‖ẑ3‖
Ms

)

z̄4 =
ẑ4

‖ẑ4‖Fssat( ‖ẑ4‖
Fs

)

(32)

with sat(.) is the saturation function:

sat(x) =
{

x i f | x | ≤ 1

1 i f | x | > 1
(33)

and Ms, Ns, FM , Fd , JM and Fs are known positive physical con-

stant bounds: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖ x2 ‖< Ms
‖ x1 − x3 ‖< Ns
‖ F ‖< FM
‖ Ḟ ‖< Fd
‖ JT (z2) ‖< JM
Fs = JMFM

(34)



Figure 5 shows the diagram of the proposed observer where Ac =
A−ΓGLC. For only one axis, L = [L1 L2 L3 L4]

T and:

det[λ I − (A−LC)] = λ 4 +L1λ 3 +L2λ 2 +L3λ +L4 (35)

where λ is an eigenvalue of matrix A−LC. A possible choice for

L is then: L1 = 4a, L2 = 6a2, L3 = 4a3 and L4 = a4. In this case,

matrix A−LC has four stable eigenvalues in λ =−a, where a is

a positive real fixing the dynamics of the proposed observer.

The estimation error e = z− ẑ satisfies the following differ-

ential equation:

ė = Ace+g(z,y,u)−g(z̄,y,u)+d(z,F, Ḟ) (36)

Because of the form of disturbance d(z,F, Ḟ) the following sta-

bility theorem can be proven for the proposed observer:

Theorem 1 : There exists a constant G0 such that error e(t)
is bounded for any gain G > G0.

The proof is given in Appendix A.

This observer is compatible with the FSW and machining

processes mentioned before.

OBSERVER PERFORMANCE AND ROBUSTNESS
ANALYSIS

A simulation is carried out with Matlab/Simulink to analyze

the performance and robustness of the observer. The essential

parameters are taken from a robot IBM7545 as shown in Table

1. The results estimated by observer are compared with the re-

sults of the system. The Figure 6 shows the block diagram of

industrial control system dividing in two parts: the first part is

an internal loop with a PI controller for the velocity of the ro-

tor and the second part is an external loop with a PID controller

for the position of the motor [22]. The flexibility and external

force are also added in this control system as showed in Figure

6. The controllers of IBM robot are designed as independent

axis. The controllers are solved axis by axis, e.g. for axis 1:

PI and PID are tuned in order to fix the bandwidth of velocity

loop to ω01 = 1800 rad/s and the bandwidth of position loop

to ω1 = 600 rad/s, the corresponding tuning rules can be found

in [22], and are remained hereafter. The gains of PI controller:{
Ki1 = ω2

01 Jm1/Ke1

Kp1 = (2ξ ω01Jm1 − fm1)/Ke1
(37)

and the gains of PID controller:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kip1 =
N1ω4

1

ω2
01

Kd p1 =
6ω2

1

ω2
01

−1

Kpp1 =
4ω3

1

ω2
01

(38)

the numerical values are presented as follows:

Dynamic
Model 

θ ε θ

θ

θ

Γ

θ

θ

Process 

FIGURE 6. Principal block diagram of an industrial robot control

Ki = diag [4.42 103, 3.00 103]

Kp = diag [3.93, 2.67]

Kip = diag [6.28 106, 3.2 106]

Kpp = diag [2.67 102, 2.67 102]

Kd p = diag [-0.33, -0.33]

For observer gains, a = 2000 and G = 1 are sufficient to

guarantee the stability of proposed observer (31), (32). More-

over, a noise of quantization is added to the measures of the pro-

posed observer. The quantum size h = 2π/4096 is implemented

since sampled data are stored as 12 integers. The workpiece was

milled along about 500 mm linear path with the machining con-

ditions of the simulation presented in Table 2.

TABLE 2. Machining conditions of the simulation.

Name Value Unit

material Aluminium alloy

tool diameter 20 mm

cut depth (ap) 2 mm

cut width (ae) 5 mm

specific cutting coefficient (Kt) 1.9 GPa

forward speed (ẏ) 0.06 m/s

rotation speed (Nr) 18000 rpm

number of teeth 4

The machining force in direction y is about 60 N. Simula-

tion results are presented in the Figures 7 to 17, where it could

be seen that the observer can overcome process disturbances and

model errors. Figures 7 and 8 present the tracking performance

of the system, e.g. for a given desired trajectory in Figure 7, the

tracking error is about 10−4rad in the machining direction and

10−6rad in its normal direction. Then, Figures 9 to 14 present

the evaluations of q, q̇ and F during the process and the estimate

error of our observer. Finally, Figures 15 to 17 demonstrate the



obtained errors with adding quantization on the measured posi-
tion θ .

The results show that observer is fast enough to follow the
system and has a good accuracy and sensibility. It can realize not
only the state reconstruction but also the effort estimation. Even
with a big disturbance at the beginning, when the tool is enter-
ing the material, an precision of 10−7rad for the joint position,
10−4rad/s for the joint velocity and 1N for the effort is obtained.
Even with a noise of quantization, the results still show good per-
formances with errors of about 10−5rad, 10−2rad/s and 5 N.
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FIGURE 7. Desired trajectory Xd and real trajectory Xl [m]

CONCLUSION
In this paper, two models of machining and FSW are pre-

sented and a non-linear disturbance observer is proposed for the
control of flexible joints industrial robots. A simulation has also
been carried out with Matlab/Simulink for a machining process
which demonstrates that the proposed observer is fast enough to
follow the system and shows a good accuracy and sensibility.
Even with a noise of quantification, our observer still provides
satisfactory results in both state and force estimations.

This method can also be applied to FSW process. In any
case, the robot parameters are needed to implement the pro-
posed observer. For instance, in our laboratory, numerous ex-
periments have been carrying out to identify all the parameters
of a KUKA KR500-2MT in order to weld pieces by using FSW
process, meanwhile, the same characterization on another robot
KUKA KR270 used for machining of composites materials has
been carrying out by some partners of COROUSSO project [17].
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Moreover, using the measured state of motors and the esti-
mated state of robot links in the control of flexible robots can lead
to more stable and robust feedback control as shown in [6, 22].
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Appendix A: Proof of theorem 1
Proof of theorem: Consider the linear change of coordinates

η = Γ−1
G e, then differential equation (36) becomes :

η̇ = G(A−LC)η +Γ−1
G (g(z,y,u)−g(z̄,y,u))+Γ−1

G d(z,F, Ḟ)
(39)

For this new system, define Lyapunov function V (η) = ηT Pη
where P is the positive definite solution of Lyapunov matrix
equation:

(A−LC)T P+P(A−LC) =−I (40)
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FIGURE 12. Observer error of angular velocity [rad/s]
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Taking the derivative of V (η), one can obtain:

V̇ ≤−G∥η∥2 +2∥η∥∥P∥(G−3∥ψ(z)−ψ(z̄∥+G−4∥d(z,F, Ḟ∥)
(41)

From relation (32) and (34) by using [9], the saturation condition
can be written:

∥z2 − z̄2∥ ≤ ∥z2 − ẑ2∥ (42)
∥z3 − z̄3∥ ≤ ∥z3 − ẑ3∥ (43)

Moreover, as D−1, H, JT , z3, z̄3, F , z4 and z̄4 are bounded then:
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FIGURE 15. Observer error of angular position with quantization
noise [rad]

∥ψ(z)−ψ(z̄)∥ ≤ α2∥z2 − ẑ2∥+α3∥z3 − ẑ3∥+∥z4 − z̄4∥ (44)

where α2 and α3 are positive constants. As:

∥z4 − z̄4∥ ≤ ∥z4∥+∥z̄4∥ ≤ 2Fs (45)

and η = Γ−1
G e then the following inequalities hold:

∥ψ(z)−ψ(z̄)∥ ≤ α2G2∥η2∥+α3G3∥η3∥+2Fs
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≤ 2G3sup(α2G−1,α3)∥η∥+2Fs

≤ 2G3αm∥η∥+2Fs (46)

with αm = sup(α2,α3) as G ≥ 1. Now:

∥d(z,F, Ḟ)∥ = ∥ d
dt
(JT (z2)F)∥



= ∥ ∂
∂ z2

(JT (z2))ż2 + JT (z2)Ḟ∥

as JT (z2) and ∂
∂ z2

(JT (z2)) depend on z2 only through sine and co-
sine functions and Ḟ and ż2 are bounded, one can find a positive
bound dm for ∥d(z,F, Ḟ)∥ :

∥d(z,F, Ḟ)∥ ≤ dm (47)

Now reporting (46) and (47) in (41) provides:

V̇ ≤ (−G+G0)∥η∥2 +2∥η∥∥P∥(2G−3Fs +G−4dm) (48)

where G0 = 4∥P∥αm.
If G > G0, V̇ < 0 for ∥η∥> r(G) where:

r(G) =
2∥P∥(2G−3Fs +G−4dm)

G−G0
(49)

what means after a finite time τ , ∥η∥ ≤ r(G) and:

∥e∥ ≤ G4∥η∥ ≤ 2∥P∥(2Fs +G−1dm)

1−G−1G0
(50)

which proves that e(t) is bounded if G > G0.
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[10] Besançon, G., 2007. Nonlinear Observers and Applica-
tions, 1 ed. Springer, Berlin Heidelberg.

[11] Davis, T. A., Shin, Y. C., and Yao, B., 2011. “Observer-
based adaptive robust control of friction stir welding axial
force”. IEEE/ASME Transactions on Mechatronics, 16(6),
pp. 1032–1039.

[12] Kravaris, C., Sotiropoulos, V., Georgiou, C., Kazantzis, N.,
Xiao, M. Q., and Krener, A. J., 2007. “Nonlinear observer
design for state and disturbance estimation”. Systems Con-
trol Letters, 56(11-12), pp. 730–735.
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