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Abstract 

The thermal ageing of a neat epoxy matrix has been studied at 200°C in air by three 

complementary analytical techniques: optical microscopy, mechanical spectrometry and nano-

indentation. Thermal oxidation is restricted in a superficial layer of about 195 µm of maximal 

thickness. It consists in a predominant chain scission process involving, in particular, 

chemical groups whose β motions have the highest degree of cooperativity and thus, are 

responsible for the high temperature side of β dissipation band. As a result, chain scissions 

decrease catastrophically the glass transition temperature, but also increase significantly the 

storage modulus at glassy plateau between Tβ and Tα. This phenomenon is called “internal 

antiplasticization”. 

Starting from these observations, the Di Marzio and Gilbert’s theories have been used in order 

to establish relationships between the glass transition temperature and number of chain 

scissions, and between the storage modulus and β transition activity respectively. The 

challenge is now to establish a relationship between the transition activity and the 

concentration of the corresponding chemical groups.  

 

Keywords: neat epoxy matrix, thermal ageing, chain scissions, glass transition temperature, 

Young’s modulus, internal antiplasticization. 
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1. Introduction 

There is a lack of organic matrix composite materials for civil aeronautical applications 

above 200°C in Europe. Highly aromatic epoxy matrices are candidate for such applications 

because of their high thermomechanical performances. These thermostable matrices have the 

ability to maintain their elastic and fracture properties up to temperatures close to their glass 

transition temperature (typically Tg - 30°C). However, they will be used by airline 

companies only if their long-term durability in current use conditions is clearly demonstrated. 

There is large amount of literature works devoted to the thermal degradation mechanisms 

and kinetics of epoxy matrices showing that oxidation is clearly the predominant ageing 

process [1-4]. A key feature of such process is that degradation is non-uniform in the sample 

thickness because oxidation kinetics is diffusion controlled. A non-empirical kinetic model 

has been derived from a realistic oxidation mechanistic scheme for epoxy matrices in order to 

access the spatial distribution (in the sample thickness) of structural changes at the molecular 

scale as a function of exposure time [1-4]. This mechanistic scheme can be summarized as 

follows: 

(1) Initiation: δPOOH →   αP° + βPO°2 + H2O   (k1) 

(2) Propagation: P° + O2 →   PO°2     (k2) 

(3) Propagation PO°2 + PH →   POOH + P°    (k3) 

(4) Termination: P° + P° →   inactive products    (k4) 

(5) Termination: P° + PO°2 →   inactive products    (k5) 

(6) Termination: PO°2 + PO°2 →   inactive products + O2   (k6) 

where POOH, P°, PO°2, PH and O2 represent hydroperoxides, alkyl and peroxy radicals, 

polymer substrate and oxygen respectively. 

 is the molecularity of initiation reaction such as: 

- if  = 1, then  = 2 and  = 0 

- else if  = 2, then  =  = 1 

and ki are elementary rate constants. 

It is a radical chain oxidation producing its own initiator: hydroperoxide POOH. This closed-

loop character is responsible for the sharp auto-acceleration of thermal oxidation at the end of 

the induction period 5. 

There is also an important amount of literature works devoted to the consequences of 

oxidation on viscoelastic and/or mechanical properties of epoxy matrices 6-8. Most of the 

authors try to relate directly the oxidation conversion ratio to these macroscopic properties, 

whereas it is now well established that these latter are essentially altered by structural changes 

taking place not at the molecular, but rather at the macromolecular scale as chain scission or 

crosslinking process 9. 

The objective of the present article is to complete the previous non-empirical kinetic 

model in order to predict, in a near future, the consequences of oxidation on viscoelastic 

properties of epoxy matrices. This operation will involve two consecutive stages: 



 

3 
 

- Firstly, main reactions responsible for the structural changes taking place at the 

macromolecular scale, i.e. chain scissions and crosslinking, will be briefly recalled and 

introduced in the mechanistic scheme. As a result, two new kinetic equations, giving access to 

the numbers of chain scissions (S) and crosslinking events (X) versus exposure time, will be 

derived from the mechanistic scheme. 

- Secondly, the Di Marzio 10 and Gilbert’s theories 11 will be used to establish non-

empirical relationships between S and X and particularly important viscoelastic properties for 

aeronautical applications: glass transition temperature (Tg) and Young’s modulus (E) 

respectively. Since the coefficients of these equations have a real physical meaning, their 

values will be assessed from the theoretical structure of the virgin epoxy network under study. 

 

2. Experimental 

2.1. Material 

The ideal epoxy network under study results from the reaction of a mixture of two epoxide 

monomers: tris(4-hydroxyphenyl)methane triglycidyl ether (Tactix 742) and diglycidyl ether 

of bisphenol A (Tactix 123), with an aromatic diamine hardener: 4,4-diaminodiphenyl sulfone 

(DDS). The chemical structures of these products and their mass fraction are given in Fig. 1 

and Tab. 1 respectively. 

 

   

a)           b) 

 

c) 

Figure 1: Chemical structures of monomers: a) Tactix 742 (M = 460.5 g.mol
-1

); b) Tactix 123 (M = 

340.4 g.mol
-1

); c) DDS (M = 248.3 g.mol
-1

). 
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Table 1: Mass fraction of monomers for synthetizing the ideal epoxy network. 

 Mass fraction (%) 

Tactix 742 54.3 

Tactix 123 18.1 

DDS 27.6 
 

Neat epoxy plates (of 2 mm thick) were processed by autoclave moulding in accordance 

with the recommended cure cycle: 1 hour at 140°C and 3h at 180°C (ramp: 2°C.min
-1

). Then, 

the samples were post-cured at 230°C for 10 hours under primary vacuum in order to reach 

the maximum crosslinking density while preventing any pre-oxidation before thermal ageing. 

 

2.2. Test conditions and characterization 

2.2.1. Ageing conditions 

All the plates were stored in the dry atmosphere of a desiccator prior thermal ageing 

experiments. They were subjected to isothermal exposure at 200°C in an air-circulating oven 

and were removed intermittently to be characterized by optical microscopy, mechanical 

spectrometry and nano-indentation. 

 

2.2.2. Optical microscopy examinations 

Optical microscopy examinations were performed using an interferential contrast in order 

to better visualize the superficial oxidized layer and, then, try to determine its average 

thickness. Sample cross-sections were polished with a series of abrasive papers classified 

according to a decreasing order of the particle size of silicon carbide (from 600 to 4000). 

Then, a mirror finish was obtained with a diamond paste (of particle diameter ranged between 

1 and 3 μm). Finally, all surfaces to be examined were ultrasonically cleaned in ethanol for 5 

min. 

 

2.2.3. Mechanical spectrometry analysis 

Mechanical spectrometry is a convenient and sensitive technique for a rapid determination 

of the viscoelastic properties of polymers and polymer-based materials as a function of 

frequency and temperature. It consists in the observation of the time-dependent behaviour of a 

material under a dynamic periodic sinusoidal strain or stress. 

In this study, the analysis was performed on parallelepipedic barrels (25 x 2 x 1 mm
3
) 

machined from plate in a tension/compression mode with a Dynamic Mechanical Analyzer 

(DMA Q800, TA Instruments). The tests were carried out at a controlled strain in the linear 

domain of material viscoelasticity and the corresponding stress was measured. From stress 

and strain values, the complex modulus was calculated: 

"'* jEEE            (Eq. 1) 
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where E’ is the storage (elastic component) modulus, E” is the loss (viscous component) 

modulus and tan δ = E”/E’ is the loss factor or damping, from which the phase shift δ, 

between stress and strain, is extrapolated. 

The frequency was set at 1 Hz. The temperature was ranged from -110°C to 330°C at a 

heating rate of 2°C.min
-1

. The glass transition temperature, associated to the principal 

relaxation (Tα), was taken at the maximum of the  dissipation band. 

 

2.2.4. Nano-indentation measurements 

Indentation measurements were performed with the nano-indenter of an atomic force 

microscope (AFM, Veeco) [12]. The force-displacement curve (F = f()) collected during the 

indentation experiment provides indications on both material mechanical and physical 

properties. The ‘‘indentation elastic modulus’’ (E
i
) was calculated from the slope of the curve 

at F = Fmax by Eq. 2: 

P

i

A

dh

dF

E




2





         

(Eq. 2)

 

where  is a parameter depending on the indenter type ( = 1.013 for a Vickers indenter) and 

Ap is the contact area between the indenter and the sample, projected on the plane 

perpendicular to the indenter axis: Ap = ½ (h × b), h and b being the height and the base of the 

projected equilateral triangle. 

 

3. Results 

3.1. Determination of the thickness of oxidized layer 

A superficial oxidized layer was clearly evidenced by optical microscopy according to the 

procedure described in the experimental section. This latter appears rougher and brighter than 

the specimen core. Example of micrograph for sample aged 3402 hours at 200°C in air is 

given in Fig. 2. By choosing the whole depth of visible changes as arbitrary criterion for 

defining the skin/core boundary, a thickness of oxidized layer (TOL) was determined. In Fig. 

2, it can be seen that TOL increases with exposure time to finally tend towards an asymptotic 

value of about 195 µm after 1000 hours of exposure. 
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Figure 2: Average thickness of oxidized layer (TOL) versus exposure time at 200°C in air. 

Micrograph of sample aged during 3402h is included. 

 

 

3.2. Effect of oxidation on the viscoelastic properties of epoxy network 

The storage modulus and the loss factor Tan  (Tan  = E’’ / E’) of a virgin sample and a 

sample aged 3402h at 200°C in air are represented as a function of temperature in Figure 3. 

From -110 to 300°C, three distinct physical transitions are clearly highlighted: 

i)  and  subglass transitions are located around -70°C and +75°C respectively.  transition 

is initiated by molecular motions of small amplitude of a limited number of atoms. In epoxy 

networks, they are rotations (of crankshaft type) of CC bonds localized in the 

hydroxypropylether unit [13-14]. In contrast, the origin of  transition is still a subject of 

discussion in the literature [15-18]. It is often associated with the presence of water [15] or 

unreacted epoxy groups [16-17]. It is also sometimes assigned to rotations of p-phenylene 

rings [18]. 

ii)  principal transition is initially located around 263°C. It is associated to glass transition 

temperature (Tg). It is initiated by molecular motions of large amplitude of long chain 

segments (involving typically between 50 and 100 carbon atoms). 

 

 

 

 

 

 

 

 

 

 

0 500 1000 1500 2000 2500 3000 3500

0

50

100

150

200

250
T

O
L

 (
µ

m
)

Time (h)

3402h

TOL ~ 195 µm

100 µm



 

7 
 

 
Figure 3: Thermomechanical spectra before and after 3402 hours at 200°C in air. 

Left: Storage modulus; Right: Loss factor. 

 

 

According to Figure 3, oxidation affects significantly  transition. Indeed, T decreases 

significantly after 3402h at 200°C in air (from 263°C to 203°C), indicating a predominant 

chain scission process [9]. In addition, the height of  dissipation band increases, while its 

width at half-height decreases. Such changes result certainly from an increase in molecular 

mobility. It can be thus concluded that oxidation induces a predominant chain scission 

process. 

Oxidation affects also  transition, but at a lower extent. It leads to a disappearance of the 

high temperature side of β dissipation band, thus causing an increase in the storage modulus 

(E’) at glassy plateau between Tβ and T. It can be thus assumed that oxidation takes place on 

CH bonds located in  position of oxygen atoms in the hydroxypropylether unit. Different 

oxidation pathways leading to chain scissions can be envisaged, but the most probable 

scenario is schematized in Fig. 4. 

 

 

Figure 4: Most probable scenario for chain scission in epoxy network. 

 

If one considers, in a first approximation, that the diffusion control of oxidation kinetics 

transforms a (virgin) homogeneous epoxy plate into a skin/core structure, the global storage 

modulus can be expressed from a simple mixture law at 298K (25°C): 

  {    }      
 {       }    (     ) 

 {         }   (Eq. 3) 

where E’{ox, 298K} and E’{core, 298K} are the average values at 25°C of the storage 

modulus in oxidized layer and intact core respectively, and vox is the volumic fraction of 

detectable oxidized regions in the epoxy plates. Assuming that the sample geometry can be 

considered as a semi-infinite geometry where only two surfaces have been oxidized, vox can 

be written as: 
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          (Eq. 4) 

with L the sample thickness (L = 2 mm). 

The values at 25°C of E’ (determined by DMA) and E’{ox, 298K} (deduced from Eq. 3) have 

been plotted versus exposure time in Fig. 5. It can be concluded that oxidation leads to a 

dramatic increase in the elastic modulus (about 50% of its initial value) in the superficial 

layers of epoxy plates. 

 
Figure 5: Global storage modulus E’{298K} versus exposure time at 200°C in air. Comparison with 

average values of storage modulus E’{ox, 298K} and average indentation elastic modulus E
i
 {ox, 298K} of 

oxidized layer. 

 

These trends were checked by analyzing the superficial layers of epoxy plates with the 

nano-indenter of an AFM. Examples of E
i
 profiles (in the sample thickness) after 0h, 68h and 

1010 hours at 200°C in air are reported in Fig. 6. These results can be summarized as follows: 

- TOL is about 180 µm after 1010 hours, i.e. very close to the value previously 

determined by optical microscopy. 

- E
i
 increases significantly (of about 63% after 1010 hours) at the sample surface. 

Average E
i
 modulus values for oxidized layer are calculated from the following 

relationship:    {       }  
 

   
∫   {       }( )   

       

   
 

Average values of E
i
 {ox, 298K} are in good agreement with values previously 

determined for E’{ox, 298K}  with Eq. 3 (Fig. 5). As an example, E
i
 {ox, 298K}  2.9 

± 0.2 GPa after 1010 hours, while E’{ox, 298K}  2.8 ± 0.2 GPa. 
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- In contrast, E
i
 remains constant versus exposure time in the sample core. Its value has 

the same order of magnitude as the initial value of the storage modulus (determined by 

DMA): E
i
 {core, 298K} = E’{core, 298K}   2.3 ± 0.2 GPa. 

-  

 
Figure 6: Indentation elastic modulus (E

i
) versus distance from sample edge (z) after 0h, 68h and 1010h at 

200°C in air. Average values have been determined from 20 nano-indentation measurements. 

 

4. Discussion 

4.1.Glass transition temperature 

Except in scarce cases where the composite matrix contains double bond (for instance in 

epoxies crosslinked by methyltetrahydrophthalic anhydride (MHTA) [19]), oxidation induces 

essentially chain scissions and these latter induce a decrease in the glass transition 

temperature Tg. 

Chain scissions result from radical rearrangement (in particular β scission of PO° radicals) 

and thus, can occur only in initiation or termination. However, since the kinetic regime is 

always close to steady-state, initiation and termination rates are almost equal and it is thus 

licit to consider that chain scissions occur only in initiation: 

  

  
 

 

  
                   (Eq. 5) 

where S is the number of moles of chain scission per mass unit and ρ0 is the initial polymer 

density. 

In contrast, crosslinking results from bimolecular termination of radicals: 

  

  
 

 

  
{                                   

 }    (Eq. 6) 

where X is the number of moles of crosslinking events per mass unit. 
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Chain scission and crosslinking modify the structure of the macromolecular network. In 

ideal networks with trifunctional crosslinks (such as diamine crosslinked epoxies), each chain 

scission eliminates three elastically active chains (EACs) and two nodes. In contrast, each 

crosslinking event creates two EACs and one node (Fig. 7). In a first approach, the changes of 

nodes functionality are not taken into account. Moreover Indeed knowing that in our process 

chain scission process is predominant, functionality changes induced by the crosslinking 

process can could be neglected. 

 

 
 

 

Figure 7: Schematization of a random chain scission (above) and a crosslinking event (below) in a network 

with initial trifunctional nodes. 

 

Thus, the general relationships between the concentration of EACs (ν) and nodes (n) and the 

number of chain scissions (S) and crosslinking events (X) can be written: 

            and              (Eq. 7) 

where 0, n0,  and n are the concentrations of EACs and nodes before and after ageing 

respectively. 

Tg is an increasing function of n. There are many relationships between Tg and n in the 

literature, but the better one is, to our opinion [20], the Di Marzio’s equation [10]: 

   
   

       
         (Eq. 8) 

where KDM is an universal constant (KDM ≈ 3), F the flex parameter (characterizing the 

flexibility of EAC) and Tgl the glass transition temperature of an hypothetical linear polymer 

containing all the structural units of the epoxyde network under study except crosslinks. 
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In ideal networks, the concentration of nodes is linked to the concentration of EACs by: 

  
 

 
           (Eq. 9) 

where f is the node functionality, i.e. the number of EACs connected to a node. 

In this case, Eq. 8 can be rewritten: 

   
   

  
 

 
     

         (Eq. 10) 

i.e. for diamine crosslinked epoxies (with f = 3): 

   
   

  
 

 
     

         (Eq. 11) 

Both parameters (Tgl and F) can be determined by considering the structure of the virgin 

network. In the Tactix network under study, two constitutive repetitive units (CRU 1 and 

CRU 2) coexist in equimolar proportions (Fig. 8). 
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Figure 8: Constitutive repetitive units of the ideal Tactix network under study. 

 

Each CRU contains three types of EACs (noted A, D and T) and four types of trifunctional 

nodes (noted ADT, ATT, ADD and TTT). Their main characteristics are given in Tab. 2. 

 

Table 2: Number of EACs (N) and nodes (n) in CRU 1 and CRU 2, and the resulting average unit 

(CRUmoy). 

 

  CRU 1 CRU 2 CRUmoy 

N 

A 2 2 2 

D 1 1 1 

T 6 6 6 

All 9 9 9 
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The main characteristics of the resulting average unit (CRUmoy) composed of equimolar 

proportions of CRU 1 and CRU 2 are also reported in Table 2. Its molecular weight is: 

MUCR = 1674.2 g.mol
-1

 

Thus, its concentrations of EACs and nodes are: 

   
∑  

    
 

 

    
     mol.kg

-1
 

   
 

 
   

∑  

    
 

 

    
     mol.kg

-1
 

Tgl was obtained from a simple “copolymer” law: 

       
    ∑     

           (Eq. 12) 

where Mi is the molecular weight of atom group i (in CRUmoy) and Tgi is its elementary 

contribution to glass transition temperature. 

Values of Mi and Tgi used for the determination of Tgl are reported in Tab. 3 [21]. It was found 

that: 

Tgl = 353.7 K for ideal Tactix network under study. 

 

Table 3: Molecular weight (Mi) and elementary contribution to glass transition temperature (Tgi) of atom 

groups composing the EACs of CRUmoy [21]. 

 

 
Mi 

(g.mol
-1

) 
Tgi (K) 

MiTgi
-1

 

(g.mol
-1

.K
-1

) 
 

 
 

64.1 624.0 10.27 10
-2 
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387.6** 
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-2

* 

19.63 10-2** 

 

 
 

 

16.0 250.0 6.40 10
-2
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-2
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-2
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In contrast, F was calculated from a series of empirical equations: 

   
∑      

∑    
          (Eq. 13) 

where ni is the number of nodes of type i (in CRUmoy), and Fi is their elementary contribution 

to flex parameter: 

    
∑      

∑  
         (Eq. 14) 

where Nk is the number of EACs of type k connected to nodes of type i and mk is the average 

molecular weight of the elementary segment containing only one chemical bond able to 

rotation: 

   
  

  
          (Eq. 15) 

where Mk is the molecular weight of EACs of type k and γk is their number of chemical bonds 

able to rotation, i.e. all chemical bonds except double bonds. 

Values of Mk, γk and mk used for the determination of Fi, then F, are reported in Tab. 4. It was 

found that: 

F = 31.8 g.mol
-1

 for ideal Tactix network under study. 

 

Table 4: Molecular weight (Mk), number of chemical bonds able to rotation (γk) and average molecular 

weight of elementary segment (mk) of the EACs composing CRUmoy. 

 

 Mk (g.mol
-1

) γk mk (g.mol
-1

) 

A 216.1 4 54 

D 342 12 28.5 

T 150 6 25 

 

The numerical application of Eq. 11 leads to a value of: 

Tg = 538.7 K for ideal TACTIX network,    i.e. 265.7 °C. 

This value is in satisfying agreement with experimental one determined by DMA: 

T ≈ 536 K,    i.e. 263°C. 

Since Eq. 11 gives good predictive values of Tg, it was used to predict the changes in Tg 

during thermal ageing. One can remark that derivation of Eq. 11 against υ gives: 

   

  
 

 

 
    

   

(  
 

 
     ) 

       (Eq. 16) 

i.e. 
   

  
 

 

 
    

  
 

   
        (Eq. 17) 
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i.e. 
   

  
   

      

     
          (Eq. 18) 

The integration of Eq. 18 leads finally to: 

 

  
 

 

   
  

     

    
(    )       (Eq. 19) 

i.e. 
 

  
 

 

   
 

     

    
(     )       (Eq. 20) 

where Tg0 and Tg are the values of glass transition temperature before and after ageing 

respectively. 

Thus, as expected, chain scissions decrease Tg, whereas crosslinking increases Tg. Moreover, 

the magnitude of these changes is an increasing function of the initial Tg value. 

Example of Tg changes in air at 200°C for Tactix network have been reported in Fig. 9 

(left). It can be concluded that, in such ageing conditions, chain scissions are largely 

predominant over crosslinking. 

Eq. 20 has been used to calculate the number of chain scissions versus ageing time, by 

neglecting crosslinking. This result is presented in Fig. 9 (right). 

 

 

 

 
Figure 9: Glass transition temperature (Tg, left) and number of chain scissions (S, right) versus ageing 

time at 200°C in air.  

 

4.2. Storage modulus 

Elastic modulus in glassy state depends essentially on two factors: cohesive energy 

density and local mobility (responsible for subglass transitions at temperatures lower than the 

temperature at which the elastic properties are measured). As an example, in the case of 

storage modulus it can be written [11]: 

     {         } (   
 

  
)  ∑          (Eq. 21) 
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where E’{0K} is the Young’s modulus at 0K, α is a coefficient of the order of 0.5 and ΣΔEn is 

the sum of modulus jumps corresponding to transitions of temperatures lower than T. 

Here, considering that there is no other significant subglass transition than β and , Eq. 21 

simplifies: 

     {         } (   
 

  
)            with 0K < T < Tg       (Eq. 22) 

In Fig. 10, the upper and lower dashed straight-lines delimiting each subglass transition 

correspond to the unrelaxed and relaxed Young’s moduli respectively. The gaps between both 

straight-lines at β and  transitions correspond to the modulus jumps ΔEβ and ΔE 

respectively. It can be checked that Eq. 22 works well at 25°C taking: 

E’{0K} = 6400 MPa, α = 0.59, ΔEβ = 1800 MPa and ΔE = 200 MPa for the virgin Tactix 

network under study. 

 

Figure 10: Storage modulus (E’ at 1 Hz, 2°C.min
-1

) versus temperature for the virgin Tactix network. 

 

E’{0K}  depends only on cohesive energy density eC [22]. It can be written: 

E’{0K}  = b.eC        (Eq. 23) 

where b ≈ 11-12 for a wide series of diamine crosslinked epoxies [20]. 

eC can be determined by using the empirical method proposed by Small [23]: 

   (
 

 
)
 

          (Eq. 24) 

where C and V are the molar attraction constant and molar volume of the virgin network 

respectively. 

According to Small, C and V obey an additive law: 
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C = ΣCi and     V = ΣVi       (Eq. 25) 

where Ci and Vi are the contributions of atom group i (in CRUmoy) to C and V respectively.  

Values of Ci and Vi used for the determination of C and V, then eC, are given in Tab. 5. 

 

Table 5: Elementary contribution to molar attraction constant (C) and molar volume (V) of the atom 

groups composing CRUmoy. According to Van Krevelen [24] and Fedors [25]. 
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19.6 

 
 

 
 

 

1660 89.4 

 

 
 

 

200 3.8 

 

 
 

 

275 16.1 

 

 
 

725 9.0 

 

 
 

755 47.8 

 

 
 

115 -1.0 

 

 
 

125 -9.0 

 

The numerical application of Eqs 23 and 24 leads to a value of: 

eC = 554.6 MPa 

i.e. to a stability parameter of: 

δ = eC
1/2

 = 23.5 MPa
1/2

 

These are the values expected for an epoxide network with a moderate concentration of polar 

groups [26]. As an indication, for the ideal Tactix network under study, hydroxyl 

concentration is: 
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Finally, the numerical application of Eq 23 leads to a value of: 

E’{0K}   6380  280 MPa for the ideal Tactix network under study. 

This value is in satisfying agreement with E’{0K}  value extrapolated in Figure 10. 

At low conversion ratio of oxidation process, eC remains almost constant (it increases very 

slightly since it depends on polarity). As a result, E’{0K} remains almost constant. 

In contrast, as shown in Fig. 3, chain scissions affect significantly all other viscoelastic 

properties. Indeed, they decrease the glass transition temperature, and they increase the 

storage modulus at glassy plateau between Tβ and Tα. This phenomenon is called “internal 

antiplasticization”. It results from the disappearance of the β motions having the highest 

degree of cooperativity, i.e. responsible for the high temperature side of the β dissipation 

band. Storage modulus at 25°C and area of β dissipation band have been determined for 

unoxidized and oxidized Tactix networks. Reduction in β activity has been calculated as: 

   
      

   
         (Eq. 26) 

where Aβ0 and Aβ are areas of β dissipation band before and after ageing respectively. 

Then, storage modulus at 25°C has been plotted versus reduction in β activity in Fig. 12. It 

can be observed that there is clearly a linear relationship between both quantities: 

  {       }    {         }           (Eq. 27) 

with µ = 1870 MPa. 
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Figure 12: Average storage modulus of oxidized layer E’ {ox, 298K} versus reduction in β activity (Δβ) at 

200°C in air.  

 

Knowing that  transition motions are due to -O-CH2- groups, it will be tried to find a 

relationship between [O-CH2] and  transition activity. 

 

 

5. Conclusion 

Thermal oxidation of ideal Tactix network at 200°C in air consists in an “internal 

antiplasticization”. Indeed, the predominant chain scission process leads to a catastrophic 

decrease in the glass transition temperature, but also, at the same time, to a significant 

increase in the storage modulus at the glassy plateau between T and T. 

Di Marzio and Gilbert’s theories have been used to establish relationships between the 

glass transition temperature and number of chain scissions, and between the storage 

modulus and β activity respectively. The challenge is now to establish a last relationship 

between the β activity and the concentration of chemical groups responsible for the β 

dissipation band. This work is in progress. 

In a near future, both relationships will be interfaced with the chemical unit of the non-

empirical kinetic model, previously developed in our laboratory, with the intention of 

predicting the consequences of the thermal oxidation of neat epoxy matrices on their 

viscoelastic properties. 
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