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Abstract

Structural damages can result in nonlinear dynamical signatures that can

significantly enhance their detection. An original nonlinear damage detec-

tion approach is proposed that is based on a cascade of Hammerstein models

modelisation of the structure. This model is estimated by means of the Ex-

ponential Sine Sweep Method from only one measurement. On the basis of

this estimated model, the linear and nonlinear parts of the output are esti-

mated, and two damage indexes (DIs) are proposed. The first DI is built as

the ratio of the energy contained in the nonlinear part of an output versus

the energy contained in its linear part. The second DI is the angle between

the subspaces described by the nonlinear parts of two set of outputs after a

principal component analysis. The sensitivity of the proposed DIs to the pres-
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ence of damages as well as their robustness to noise are assessed numerically

on spring-mass-damper structures and experimentally on actual composite

plates with surface-mounted PZT-elements. Results demonstrate the effec-

tiveness of the proposed method to detect nonlinear damage in nonlinear

structures and in the presence of noise.

Keywords:

Structural health monitoring, non-linear system identification, damage

detection.

1. Introduction1

The process of implementing a damage detection strategy for aerospace,2

civil, and mechanical engineering is referred to as structural health monitor-3

ing (SHM). In many cases, damages that appear on complex structures (such4

as cracks, impacts, or delaminations) can result in nonlinear dynamical re-5

sponses that may be used for damage detection [1–4]. Furthermore, complex6

structures often exhibit a nonlinear behavior even in their healthy states. A7

robust and reliable SHM system must then be able to deal with nonlinear8

damages, and to distinguish between their effects and inherent nonlinearities9

in healthy structures. Several limitations of existing methods that are fac-10

ing these issues have been recently identified in a report by Farrar et al. [1].11

The first problem to be addressed is that “nonlinear behavior does not gen-12

eralize”. This implies that the nonlinear models already in use are never13

general enough to encompass all the structure encountered in real life. The14

second problem is that “nonlinear approaches are computationally cumber-15

some, expensive, and requires too many parameters to be defined”. Currently16
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developed nonlinear models are thus not adequate for practical use of SHM17

systems. The work presented here attempts to face these two problems on18

the basis of a simple, but rather general, nonlinear model identified by means19

of a simple signal processing procedure.20

In order to build a damage index (DI) that is sensitive to nonlinearities21

different approaches have already been proposed [1, 2]. Some DIs are based22

on a physical modeling of the damaged structure whereas some are computed23

without any physical assumption (black box models). Among these black-box24

approaches, some assume a parametric underlying signal processing model,25

whereas some are fully non-parametric. To feed these models, random inputs26

as well as deterministic broadband or narrowband inputs are used. In this pa-27

per, the focus is put on nonlinear damage detection approaches based on DIs28

built using a non-parametric black box model estimated using a deterministic29

broadband signal. There have been relatively few works in that direction. In30

a linear framework, some authors [5, 6] have shown that a nonlinear damage31

will impact the transmissibility functions (i.e. the frequency domain ratio32

between two different outputs of the system) and they used such information33

to detect and locate the damage. Extending the notion of transmissibility34

functions to nonlinear systems that can be described by Volterra series, Lang35

et. al [7, 8] were able to quantify the decrease of linearity generated by a36

nonlinear damage and thus to effectively detect and locate it. However, as37

such approaches are focusing on the loss of linearity, they do not seem to be38

able to deal with systems that are nonlinear in their healthy states, a fact39

that is quite common in real life. To overcome this drawback, several authors40

attempted to fit a nonlinear model to the nonlinear structure under study41
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and to compare the actual and predicted outputs, or directly the model co-42

efficients, under different damage conditions [9–12]. By doing so, they were43

able to detect numerically and experimentally a nonlinear damage even in44

an initially nonlinear structure. However, the models they used where para-45

metric (mainly frequency domain ARX models) and thus were not easy to46

manipulate and neither able to model, without any a priori on it, a general47

nonlinear structure.48

We propose here an original approach devoted to nonlinear damage de-49

tection in possibly nonlinear structures based on a simple, but rather general,50

nonlinear model estimated by means of standard signal processing tools. This51

approach is based on the assumption that the structure under study can be52

modeled as a cascade of Hammerstein models [13], made of N branches in53

parallel composed of an elevation to the nth power followed by a linear fil-54

ter called the nth order kernel, see Fig. 1(a). The Exponential Sine Sweep55

Method [14, 15], previously developed and validated by the authors for dif-56

ferent purposes, is then used to estimate the different kernels of the model.57

Exponential sine sweeps are a class of sine sweeps that allow estimating a sys-58

tem’s N first kernels in a wide frequency band from only one measurement.59

Two damage indexes are then build on the basis of this estimated model.60

The first one reflects the ratio of the energy contained in the nonlinear part61

of the output versus the energy contained in its linear part and is specially62

suited for single-input single-output (SISO) systems. The second one is the63

angle between the subspaces described by the nonlinear parts of two set of64

outputs after a principal component analysis. This one is specially suited for65

single-input multi-output (SIMO) systems. As a first step toward the use66
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of this method for SHM, the sensitivity of the proposed DIs to the presence67

of damages as well as their robustness to noise are assessed numerically on68

SISO and SIMO systems and experimentally on two actual composite plates69

with surface-mounted PZT-elements (one healthy and one damaged).70

The cascade of Hammerstein models as well as the mathematics behind71

it are first described in Sec. 2. The two proposed DIs are then defined in72

Sec. 3. Their sensitivity to the presence of damages as well as their robustness73

to noise are assessed numerically in Sec 4 and experimentally in Sec. 5. A74

general conclusion is finally drawn in Sec. 6.75

2. Cascade of Hammerstein models estimation using the exponen-76

tial sine sweep method77

2.1. Cascade of Hammerstein models78

A possible approach to non-linear system identification is to assume that79

systems have a given block-structure. Following the “sandwich” approach [13],80

a non-linear system can be represented as N parallel branches composed of81

three elements in series: a static non-linear part sandwiched between two82

linear parts. Such systems are a subclass of Volterra systems and it can be83

shown that any continuous non-linear system can be approximated by such84

a model [16].85

Cascade of Hammerstein models are a simplification of this “sandwich”86

approach. In a cascade of Hammerstein system [13], each branch is composed87

of one nonlinear static polynomial element followed by a linear one hn(t) as88

shown in Fig. 1(a). The relation between the input e(t) and the output s(t)89

of such a system is given by Eq. (1) where “(∗)” denotes the convolution90

5



(a)

0

Time

A
m

pl
itu

de

γ1(t)

∆t
1
=0

γ2(t)

∆t
2

γ3(t)

∆t
3

γ4(t)

∆t
4

(b)

Figure 1: (a) Cascade of Hammerstein model and (b) temporal separation after deconvo-

lution.

operator.91

s(t) =
N∑

n=1

(hn ∗ en) (t) (1)

It can easily be shown from Eq. (1) that cascades of Hammerstein mod-92

els correspond to Volterra models having diagonal Kernels in the temporal93

domain [15]. Thus, cascades of Hammerstein models represent a subclass94

of all the nonlinear “analytical” systems described by Volterra models, and95

are thus rather general nonlinear models. Furthermore, any cascade of Ham-96

merstein models is fully represented by its kernels {hn(t)}n∈{1...N}, which are97

only a set of linear filters. This model is thus also quite simple to use and98

intuitive to understand.99

2.2. Exponential sine sweeps100

Estimating each kernel hn(t) of a cascade of Hammerstein models is not a101

straightforward task. An simple estimation method that has been proposed102
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previously by the authors [15] for this purpose and that is the basis of the103

damage detection procedure is briefly recalled here.104

To experimentally cover the frequency range over which the system un-105

der study has to be identified, cosines with time-varying frequencies are106

commonly used. Indeed, if e(t) = cos[φ(t)] is the input of the cascade of107

Hammerstein models, the output of the nonlinear block en(t), see Fig. 1(a),108

can be rewritten using Chebyshev polynomials as in Eq. (2). Details of the109

computation of the Chebyshev matrix C = {cn,k} are provided in [15].110

∀n ∈ [1..N ] en(t) = cosn [φ(t)] =
n∑

k=0

cn,kcos [kφ(t)] (2)

When the instantaneous frequency of e(t) is increasing exponentially from111

f1 to f2 in a time interval T , this signal is called an “Exponential Sine Sweep”.112

It can be shown in [14, 15], that by choosing Tm =
(
2m− 1

2

) ln(f2/f1)
2f1

with113

m ∈ N∗, one obtains:114

∀k ∈ N∗ cos [kφ(t)] = cos [φ(t+ ∆tk)] with ∆tk =
Tmln(k)

ln(f2/f1)
(3)

Eq. (3) is another expression of the kth term in the linearization presented115

in Eq. (2). In summary, for any exponential sine sweep of duration Tm,116

multiplying the phase by a factor k yields to the same signal, advanced in117

time by ∆tk.118

2.3. Kernel recovery in the temporal domain119

If an exponential sine sweep is presented at the input of a cascade of Ham-120

merstein models, we obtain by combining Eq. (3) and Eq. (1) the following121

relation:122
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s(t) =
N∑

n=1

(γn ∗ e)(t+ ∆tn) with γn(t) =
n∑

k=1

C(k, n)hk(t) (4)

where γn(t) corresponds to the contribution of the different kernels to the123

nth harmonic.124

In order to separately identify each kernel hn(t) of the cascade of Ham-125

merstein models, a signal y(t) operating as the inverse of the input signal126

e(t) in the convolution sense, is needed. The Fourier transform Y (f) of the127

inverse filter y(t) can be built by means of Eq. (5):128

Y (f) =
1

E(f)
' E(f)

|E(f)|2 + ε(f)
(5)

where E(f) and E(f) are respectively the Fourier transform of e(t) and its129

complex conjugate, and ε(f) is a frequency-dependent real parameter chosen130

to be 0 in the bandwidth of interest and to have a large value outside, with131

a continuous transition between the two domains, see [15].132

After convolving the output of the cascade of Hammerstein models s(t)133

given in Eq. (4) with y(t), one obtains Eq. (6), also illustrated in Fig. 1(b):134

(y ∗ s)(t) =
N∑

n=1

γn(t+ ∆tn) (6)

Because ∆tn ∝ ln(n) and f2 > f1, the higher the order of non-linearity135

n, the more advanced is the corresponding γn(t), see Fig. 1(b). Thus, if Tm136

is chosen long enough, the different γn(t) do not overlap in time and can be137

separated by simply windowing them in the time domain. Using Eq. (7), the138

family {hn(t)}n∈[1,N ] of the kernels of the cascade of Hammerstein models139

under study can then be fully extracted.140
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h1(t)

...

hN(t)

 = C̃T


γ1(t)

...

γN(t)

 (7)

In Eq. (7), CT stands for the transpose of the Chebyshev matrix C, and141

C̃ represents C, from which the first column and the first row have been142

removed.143

It can be noticed here that the proposed method is not fully nonpara-144

metric. Indeed, one parameter, N the order of nonlinearity up to which the145

nonlinear model has to be estimated, is still to be chosen. Its choice mainly146

depends on the noise conditions and on the length of the input exponential147

sine sweep [15].148

3. Novelty damage indexes149

In the case of a structure with distributed actuators and sensors, we can150

consider several configurations to perform damage monitoring. As here an151

active SHM approach has been retained, measurements of one sensor can be152

used by defining a path over the structure that leads to a single-input single-153

output (SISO) system. However, the measurements of all sensors can also be154

used simultaneously, thus defining in that case a single-input multi-output155

(SIMO) system. The two novelty damage indexes proposed in the following156

correspond to these two configurations.157

3.1. Decomposition of the output signal into linear and nonlinear parts158

By rephrasing Eq. (1) which expresses the output of the cascade of Ham-159

merstein models s(t) as a function of the input signal e(t) and of the Ham-160
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merstein kernels {hn(t)}n∈[1,N ], it is possible to decompose the output of the161

cascade of Hammerstein models as follows:162

s(t) = (h1 ∗ e)(t) +
N∑

n=2

(hn ∗ en) (t) = sL(t) + sNL(t) (8)

where sL(t) = (h1∗e)(t) stand for the linear and sNL(t) =
N∑

n=2

(hn ∗ en) (t)163

the nonlinear parts of the output signal s(t).164

As the input signal e(t) is known and as the Hammerstein kernels {hn(t)}n∈[1,N ]165

have been estimated previously, those linear and nonlinear parts of the output166

signal are then easily evaluated and can be used to build damage indexes.167

3.2. DI1 : Ratio of the nonlinear energy to the linear energy168

In the single-input, single-output case (SISO), there is only one input169

e(t) and one output s(t). Taking advantage of Eq. (8), we propose a damage170

index (DI) that is defined as the ratio of the energy contained in the nonlinear171

part of the output of the cascade of Hammerstein models versus the energy172

contained in the linear part of the output of the cascade of Hammerstein173

models. By denoting SL(f) and SNL(f) the Fourier transform of sL(t) and174

sNL(t), we propose a damage index defined as follow:175

DI1 =

∫ f2

f1
|SNL(f)|2df∫ f2

f1
|SL(f)|2df

(9)

where f1 and f2 have been defined earlier in Sec. 2.2.176

In a given composite structure, as the nonlinear damage (impact, delami-177

nation, or crack) becomes more severe, it is expected to contribute more and178

more to the nonlinear part of the output sNL(t). As a consequence, DI1 is179
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expected to be sensitive to the presence of the damage, but also to its ex-180

tent. This will be demonstrated numerically in Sec. 4.3 and experimentally181

in Sec. 5.182

3.3. DI2 : Angle between nonlinear subspaces183

In the single-input, multiple-output framework (SIMO), there is still one184

input e(t) but now J outputs {sj(t)}j∈[1..J ]. Taking advantage of Eq. (8),185

it is still possible to decompose each output sj(t) into its linear sLj (t) and186

nonlinear sNL
j (t) parts. Following previous work by the authors [17], the idea187

is then to monitor the subspaces spanned by the nonlinear parts of each188

outputs set.189

In a discrete-time matrix form, let sNL ∈ RU×J be the nonlinear parts of190

the J output signals having each a length of U samples. Let ANL ∈ RU×J
191

be the separating matrix of sNL. This matrix is obtained from a principal192

component analysis technique [18] and is defined as follows:193

ANL = Λ
− 1

2

sNL × (P NL)T (10)

where P NL =
[
pNL
1
, . . . ,pNL

J

]
is the matrix of eigenvectors of sNL and194

ΛsNL is the diagonal matrix of eigenvalues of sNL. If the reduction using195

singular value decomposition (SVD) is possible [19], the separating matrix196

can then be rewritten as follows:197
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ANL = IJ×J × ΓNL × (V NL)T (11)

=
[
IJ×Jp IJ×(J−Jp)

] ΓNL
1 0

0 ΓNL
2

 [V NL
1 V NL

2

]T
= ANL

1 + ANL
2

where ΓNL
1 = diag

(
σ1, . . . , σJp

)
, V NL

1 =
[
vNL
11
, . . . ,vNL

1Jp

]
∈ RU×Jp and198

ANL
1 ∈ RU×Jp are respectively the matrix of singular values, the matrix of199

right singular vectors, and the separating matrix associated to the princi-200

pal subspace of sNL. ΓL
2 = diag

(
σJp+1, . . . , σJ

)
, V NL

2 =
[
vNL
1Jp+1

, . . . ,vNL
1J

]
∈201

RU×(J−Jp) and ANL
2 ∈ RU×(J−Jp) are respectively the matrix of singular val-202

ues, the matrix of right singular vectors, and the separating matrix associated203

to the residual subspace of sNL.204

Let ANL
1 and Ã

NL

1 be two matrices built as described previously from205

measurements in a healthy state and in an unknown state. Let’s R{(ANL
1 )T}206

and R{(ÃNL

1 )T} be the range subspaces of matrices (ANL
1 )T and (Ã

NL

1 )T,207

and PR{(ANL
1 )T} and P

R{(ÃL
1 )

T} the orthogonal projections on these range208

subspaces obtained though SVD (see [17] for details). We then denote209

φ
[
R{(ANL

1 )T}, R{(ÃNL

1 )T}
]

the principal angle vectors between the range210

subspaces R{(ANL
1 )T} and R{(ÃL

1 )T}. Using the SVD tool, the Euclidean211

norm of the sinus of this angle is defined as follow [20]:212

‖ sin
(
φ
[
R{(ANL

1 )T}, R{(ÃL

1 )T}
])
‖
2

= ‖PR{(ANL
1 )T}⊥ × P

R{(ÃNL
1 )T}‖2 (12)

= ‖(IJp×Jp − PR{(ANL
1 )T})× P

R{(ÃNL
1 )T}‖2
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We then propose to define a damage index as:213

DI2 =
‖ sin

(
φ
[
R{(ANL

1 )T}, R{(ÃNL

1 )T}
])
‖
2

Jp
(13)

where Jp is the number of principal components retained in the principal214

subspaces. This damage index can be interpreted as the angle between the215

subspaces described by the nonlinear parts of the outputs in the healthy state216

and in the unknown state.217

In a given composite structure, as the nonlinear damage becomes more218

severe, it is expected to contribute more and more to the nonlinear parts of219

the different outputs {sj(t)}j∈[1..J ] and then to increase the angle between220

the associated principal subspaces. As a consequence, DI2 is expected to be221

sensitive to the presence of the damage, but also to its extent. This will be222

demonstrated numerically in Sec. 4.4 and experimentally in Sec. 5.223

4. Simulation results224

4.1. Simulated systems225

In order to validate the proposed approach and the associated novelty226

damage indexes, numerical simulations have been carried out for single-input,227

single-output (SISO) and single-input, multi-output (SIMO) systems. The228

systems that have been chosen are simple one degree of freedom and five229

degrees of freedom spring-mass-damper (SMD) systems and are shown in230

Fig. 2.231

The damage in those systems has been introduced by means of a bilinear232

stiffness k [x(t)] as a very easy way to simulate a breathing crack. Such cracks233
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(a)

(b)

Figure 2: (a) Simulated single degree of freedom SISO system and (b) simulated five

degrees of freedom SIMO system.

have a lower stiffness when the crack is open than when the crack is closed.234

Thus, the bilinear stiffness is defined as follows:235

k [x(t)] =

 kI if x(t) < 0

(1− α)kI if x(t) > 0
(14)

In this definition, kI denotes the linear stiffness of the original undamaged236

system and the damage-parameter is the coefficient α. If α = 0, the stiffness237

is fully linear and the system is healthy. If α = 1, the stiffness when the238

crack is open is null and thus, the system if fully damaged.239

The chosen SISO system is a SMD system where the input is the force240

f(t) applied to the mass M and the output is the displacement x(t) of the241

mass M , as shown in Fig. 2(a). For this system M = 1 kg, b = 2 Ns/m and242
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kI = 20000 N/m.243

The chosen SIMO system is a serie of five SMD systems where the input is244

the force f(t) applied to the mass M1 and the outputs are the displacements245

{x1(t), . . . , x5(t)} of the masses {M1, . . . ,M5} as shown in Fig. 2(b). The246

damage is introduced by means of the bilinear stiffness k4 [x(t)] as defined by247

Eq. (14). For this system M1 = M2 = M3 = M4 = M5 = 1 kg, b1 = b2 = b3 =248

b4 = b5 = 2 Ns/m, k1 = k2 = k3 = k5 = 20000 N/m, and kI4 = 20000 N/m.249

4.2. Input signal250

In order to estimate the linear and nonlinear parts in the ouptut of this251

system, an input signal has been designed as described in Sec. 2.2. The start252

and stop frequencies have been chosen as f1 = 2.25 Hz and f2 = 225 Hz,253

knowing that fr = 25 Hz is the resonance frequency of both undamaged254

systems. The sweep duration has been chosen as T = 8.86 seconds for the255

SISO system and T = 88.6 seconds for the SIMO system both with an input256

amplitude of E = 0.1 N. The response of this system to this input signal has257

been simulated using Simulink
TM

with a fixed-step Runge-Kutta algorithm258

running at fs = 563 Hz. A zero-mean Gaussian white noise has been added259

to the input of the simulation in order to simulate environmental noise. It is260

assumed that environmental noise is larger than measurement noise, and thus261

no noise has been added to the output of the simulation. To illustrate the262

robustness of the proposed DIs to noise, the noise variance has been chosen263

as a function of the root-mean-square power of the input signal in order to264

have a signal to noise ratio (SNR) of 60 or 30 dB (i.e. a noise with a standard265

deviation of 6 × 10−5 N or 2 × 10−3 N). Simulation have been carried out266

for values of α ranging from 0 (healthy state) to 0.45 (half-damaged state)267
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by steps of 0.025. For each α value, the simulations have been repeated 30268

times in order to compute the mean and standard deviation of both DIs when269

subjected to noise.270

4.3. Damage detection using DI1 for the SISO system271
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Figure 3: (a) Input sweep without noise and (b) added noise for a SNR of 30 dB. Estimated

(c) linear and (d) nonlinear parts of the output signal x(t).

The noise-free input signal, the added noise, and the estimated linear272

xL(t) and nonlinear xNL(t) parts of the output signal x(t) of the system of273

Fig. 2(a) are shown on Fig. 3. From this figure, it can seen that a SNR of274

30 dB implies the addition of a relatively large amount of noise to the input275

signal. Furthermore, by analyzing the estimated linear part of the ouptut276
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signal xL(t), it can be seen that, as expected, the chosen nonlinear system277

basically acts as a resonant filter. Finally, it can be seen that the system278

under study is effectively nonlinear as a non-null nonlinear part xNL(t) in279

the output signal is being estimated by the previously described procedure.280
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Figure 4: Average and standard deviation of the DI1 values for different values of the

damage parameter α with (a) SNR= 60 dB and (b) SNR= 30 dB.

In Fig. 4 the averages and standard deviations over the 30 trials of the281

DI1 values for the different values of the damage parameter α and with282

SNR= 60 dB and SNR= 30 dB are shown. First of all, it can be seen283

that the damage index DI1 increases in both cases almost monotically with284

the damage parameter α. Moreover, even when the noise power is relatively285

large (see the curve for SNR= 30 dB) the standard deviations remain small286

around the average values. Finally, for a value of the damage parameter287

α = 0 (i.e. in the linear case), the DI1 value should be zero and is found dif-288

ferent from zero. This thus means that a part of the noise is here interpreted289

by the estimation process as a nonlinear part of the output. We can thus290
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conclude from that simulation that the damage index DI1 is able to detect291

and to quantify the amount of damage in the nonlinear system with a high292

robustness to noise.293

4.4. Damage detection using DI2 for the SIMO system294
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Figure 5: (a) Input signal f(t) (top) and output signal x4(t) for α = 0.45 (bottom).

(b) Average and standard deviation of the DI2 values for different values of the damage

parameter α and for a SNR of 30 dB.

In Fig. 5(a) the noisy input signal f(t) as well as one of the five output295

signals, x4(t), of the system of Fig. 2(b) are shown. It can be seen that296

as previously the nonlinear system of Fig. 2(b) filters the input signal and297

possesses a clear resonant frequency in the bandwidth under study. Further-298

more, the fact that this system is nonlinear can be easily seen as the output299

signal is not symmetrical with respect to the horizontal axis. In Fig. 5(b)300

the averages and standard deviations over the 30 trials of the DI2 values301

computed by retaining Jp = 5 principal components for the different values302
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of the damage parameter α and for a SNR of 30 dB are shown. First of all,303

it can be seen that again the damage index DI2 increases almost monotically304

with the damage parameter α. Moreover, even if the noise power is relatively305

large (SNR= 30 dB) the standard deviations still remain very small around306

the average values. The curves for a SNR of 60 dB are not shown here as307

they are very similar to the one for a SNR of 30 dB but with lower standard308

deviations. We can thus conclude from that simulation that the damage in-309

dex DI2 is here also able to detect and to quantify the amount of damage in310

the nonlinear system with a high robustness to noise.311

5. Experimental results312

5.1. Plate specimens313

The two composite plates employed in this study consist of a piece of314

aircraft composite fuselage. The dimensions of these structures are (400 ×315

300× 2 mm3). They are both made up of 16 layers Carbone epoxy material.316

The layer sequences are: (0◦, 45◦, −45◦, 90◦, 90◦, −45◦, 45◦, 0◦). An optimal317

placement of ten PZ29 piezoceramic patches with dimensions (30 × 20 ×318

0.2 mm3 ) has been achieved on these two structures using the controllability319

and observability gramians [21]. The composite plate shown in Fig. 6(a)320

was used as the baseline for damage detection. Fig. 6(b) shows the second321

composite plate, manufactured from the same material and layer sequences,322

having the same dimensions and PZT number and placement as the first one.323

However, in this plate, an calibrated impact damage with a 5 mm diameter324

was produced by projecting on the center of the plate a steel ball at a high325

and controlled velocity. This composite plate will be used as a damaged plate326
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example.327

5.2. Data acquisition and Hammerstein Kernels estimation328

The input excitation and the data acquisition were performed using a329

voltage amplifier (TREK MODEL 601C) and charge amplifiers (type 5011B).330

This excitation was applied sequentially to nine PZT elements and consists of331

an exponential sine sweep signal with f1 = 100 Hz, f2 = 30 kHz, T = 3.2588 s332

and an amplitude of 10 V (see Sec. 2). Using a real time prototype system333

dSPACE, temporal signals were acquired with a sampling frequency fs =334

100 kHz from nine channels: one corresponding to the excitation applied to a335

given PZT actuator, and the eight others corresponding to the measurements336

collected by the PZT sensors. Under those conditions, the SNR is found to337

be approximately of 60 dB.338

A first database has been built, by collecting 10 times in the healthy and339

damaged states the signals for all the paths starting from the PZT element340

number 7, located near the center of the plate, close to the damage. The341

aim of this database is to quantify the environmental variability existing342

for a given path by computing the damage index DI1 mean and standard343

deviation over the 10 trials and to infer a detection threshold for DI2 defined344

by Eq. (13). Another database has been built by collecting in each state345

(healthy or damaged) the signals for the 9 × 8 = 72 paths existing between346

all pairs of PZT elements. The objective of this database is to illustrate the347

ability of both DIs to detect damages among the different paths and actuators348

that are considered. For both databases, the Hammerstein Kernels have been349

estimated using the method described in Sec. 2 up to an order of nonlinearity350

N = 8. This choice has been done with respects to noise conditions and to351
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the length of the input exponential sine sweep [15].352

5.3. Sensibility to environmental noise and to damage for one actuator353

To assess the sensibility of the DI1 defined in Eq.(9) to the presence of354

environmental noise, DI1 values have been computed for all the repetitions355

for the healthy and damaged plates, as described in Sec. 5.2. In Fig. 7(a),356

the mean and standard deviation of the DI1 values computed over the 10357

repetitions for each path are shown for both states. From this figure, we can358

see that even in the healthy state, the DI1 values are around 0.77. This means359

that there is a non-negligible part of the energy in the nonlinear part of the360

output and thus that the system under study is nonlinear in its healthy state.361

This illustrates the fact that the proposed method can handle systems that362

are nonlinear in their healthy state. From that figure, it can also be seen that363

the variations caused by environmental noise on DI1 values remains relatively364

low and that the DI1 values for the damaged case are well above the DI1 values365

for the healthy state. As such, we can conclude that experimentally the366

proposed DI1 is not much sensitive to environmental noise and is effectively367

sensitive to the presence of the damage.368

The damage index DI2 defined by Eq. (13) is comparing the nonlinear369

subspaces spanned by a reference state and by an unknown state. As so,370

this DI is relative by nature and a decision threshold needs to be defined in371

order to decide whether or not there is presence of a damage. To do so, we372

decided here to proceed experimentally by using the 10 repetitions for PZT373

7 in the healthy state. The first repetition has been chosen as the reference374

state, and the nine others as unknown (but healthy) states. The DI2 values375

obtained by comparing these unknown (but healthy) states to the reference376
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one are plotted on Fig. 7(b). It can be seen that the environmental noise377

does not cause large changes to these DI2 values. On the basis of these378

values, a decision threshold has then been defined as ten times the maximum379

value obtained previously. The factor ten is arbitrarily chosen but is thought380

here to be sufficiently large for reasonable decision making. This decision381

threshold is also plotted on Fig. 7(b). Now, the impact of environmental382

noise in the damaged case can be assessed by comparing, for each trial the383

DI2 value obtained by comparing the healthy and damaged states. As shown384

in Fig. 7(b), for each trial, the obtained DI2 values are not so influenced by385

noise and are always above the decision threshold value. Thus, we can say386

that the DI2 defined by Eq. (13) is not very sensitive to noise and appears387

to be sensitive to the presence of the damage for this actuator.388

5.4. Sensibility to the presence of the damage for all the actuators389

To assess the sensibility of the DI1 defined in Eq. (9) to the presence390

of the damage for different actuators and paths over the plate, DI1 values391

have been computed for each of the 72 paths measured on the healthy and392

damaged plates (as described in Sec. 5.2). For sake of brevity, DI1 values393

are presented here in a synthetic manner actuator by actuator. Fig. 8(a)394

depicts the mean and standard deviation of the DI1 values computed for all395

the paths starting from each of the nine PZT elements used as actuators for396

both the healthy and damaged states. From Fig. 8(a), it is clear that the397

damage introduced in the plate generates nonlinearities and that the DI1 as398

defined in Eq. (9) is sensitive to the presence of this damage. Indeed, for all399

the actuators, the mean DI1 values computed for all the paths starting from400

a given actuator are higher for the damaged state than for the healthy one.401
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To assess the sensibility of the DI2 defined in Eq. (13) to the presence402

of the damage for different actuators and paths over the plate, DI2 values403

have been computed for each of the 9 actuators using measurements from404

the healthy and damaged plates (as described in Sec. 5.2). These damage405

index values are compared in Fig. 8(b) to the detection threshold defined in406

the previous section. From Fig. 8(b), it is clear that the damage introduced407

in the plate generates nonlinearities and that the DI2 as defined in Eq. (13)408

is sensitive to the presence of this damage. Indeed, for all the actuators,409

the obtained DI2 values are higher for the damaged state than the chosen410

decision threshold.411

6. Conclusion412

In many cases, damages that appear on complex structures (such as413

cracks, impacts, or delaminations) can result in nonlinear dynamical re-414

sponses that may be used for damage detection. Furthermore, complex415

structures often exhibit a nonlinear behavior even in their healthy states.416

A robust and reliable SHM system must then be able to deal with nonlinear417

damages, and to distinguish between their effects and inherent nonlinearities418

in healthy structures. The first problem to be addressed is that the nonlinear419

models already in use are never general enough to encompass all the structure420

encountered in real life. The second problem is that the currently developed421

nonlinear models are not adequate for practical use of SHM systems. The422

work presented here attempts to face these two problems on the basis of a423

simple, but rather general, nonlinear model estimated by means of standard424

signal processing tools. This approach is based on the assumption that the425
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structure under study can be modeled as a cascade of Hammerstein models.426

The Exponential Sine Sweep Method, previously developed and validated427

by the authors for different purposes, is then used to estimate the different428

kernels of the model. Exponential sine sweeps are a class of sine sweeps that429

allow estimating a model in a wide frequency band from only one measure-430

ment. Two damage indexes are then build on the basis of this estimated431

model. The first one reflects the ratio of the energy contained in the non-432

linear part of the output versus the energy contained in its linear part and433

is specially suited for single-input single-output (SISO) systems. The second434

one is the angle between the subspaces described by the nonlinear parts of435

two set of outputs after a principal component analysis. This one is spe-436

cially suited for single-input multi-output (SIMO) systems. As a first step437

toward the use of this method for SHM, the sensitivity of the proposed DIs438

to the presence of damages as well as their robustness to noise are assessed439

numerically on SISO and SIMO systems and experimentally on two actual440

composite plates with surface-mounted PZT-elements (one healthy and one441

damaged).442

The work presented here is however only a first step toward a larger use of443

this method in SHM. Indeed, it has be shown here that the proposed DIs are444

effectively sensitive to the presence of a non-linear damage and that they can445

potentially be helpful to quantify its extent. However, this approach can also446

be cast in the context of a statistical pattern recognition problem. Then, the447

DIs defined here, or other defined on the basis of the estimated model, can448

be used to train expert systems that are able to distinguish between different449

kind of damages [22].450
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[15] M. Rébillat, R. Hennequin, E. Corteel, B. F. G. Katz, Identification497

of cascade of hammerstein models for the description of nonlinearities498

in vibrating devices, Journal of Sound and Vibration 330 (5) (2011)499

1018–1038.500

[16] G. Palm, Representation and approximation of non-linear systems .2.501

discrete-time, Biological Cybernetics 34 (1) (1979) 49–52.502

[17] R. Hajrya, N. Mechbal, Principal component analysis and perturbation503

theory based robust damage detection of multifunctional aircraft struc-504

ture, Structural Health Monitoring - An International Journal 12 (3)505

(2013) 263–277.506

[18] T. Jolliffe, I., Principal Component Analysis (second edition), Springer,507

1986.508

[19] H. Golub, G., F. Van Loan, C., Matrix Computation (first edition),509

1983.510

[20] C. Davis, W. Kahan, The rotation of eigenvectors by a perturbation. iii,511

SIAM Journal on Numerical Analysis 7 (1) (1970) 1–46.512

[21] R. Hajrya, N. Mechbal, M. Verg, Active damage detection and local-513

ization applied to a composite structure using piezoceramic patches, in:514

IEEE Conference on Control and Fault Tolerant Systems, 2010.515

27
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Figure 6: (a) Healthy and (b) damaged composite plates with a zoom on the impact

damage. (c) Schematic representation of the plates under study (circle denotes damage

position and rectangles stand for PZTs).
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Figure 7: (a) Averages and standard deviations of DI1 values for the different paths

starting from actuator 7. (b) DI2 values for the different repetitions for actuator 7 and

definition of the detection threshold.
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Figure 8: (a) Averages and standard deviations of DI1 values for the different actuators.

(b) DI2 values for the different actuators in comparison to the detection threshold.
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