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a b s t r a c t

The time needed for the contact of two spheres or a sphere with a rigid plane is mainly controlled by the

hydrodynamic drainage of the film located in the gap as long as its thickness is out of range of the Van der

Waals interactions. In fact, this time controls the dynamics of aggregation of concentrated dispersions.

This fundamental problem has an exact solution in Newtonian fluid which has been used to confirm

the validity of the numerical dynamic mesh method employed in this geometrically unsteady problem.

Following this validation, we applied it to calculate the correction factor of the drag undergone by a

sphere approaching a plane, at constant Reynolds number, in a cylindrical tube filled with a non-Newto-

nian fluid having negligible viscoelastic component and roughly behaving as a power-law fluid. After a

justification for using this useful model, we studied the influence of the lateral confinement on the frontal

correction factor of the drag. In the lubrication limit, we recall the asymptotic solution of Rodin to this

problem in lateral unbounded power law fluid. The comparison of both asymptotical and numerical

results confirms their validity. The results obtained in this study may find an application to Dynamic Sur-

face Force Apparatus for nanorheology.

Ó 2011 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of non dilute suspensions of particles depends

greatly on the hydrodynamic interactions between particles or par-

ticles and walls. Among these interactions, those which take place

in a frontal way control the time of their contact or separation. This

time plays a main role in the aggregation and the formation of the

plug flow during the transportation of these suspensions as

stressed in particular by de Gennes [1]. This problem is of funda-

mental interest in many industrial situations (e.g. in filtration,

fluidization, sedimentation, etc.). Then, this study deals with the

calculation of the Stokes type law correction factor, for the hydro-

dynamic resistance of a sphere of radius a moving at steady

velocity U, towards or away from a plane in Newtonian or non-

Newtonian fluids. Note that recent applications of Dynamic Surface

Force Apparatus (DSFA) in nanorheology [2,3] need the knowledge

of this kind of hydrodynamic interaction.

We will focus on the case where the moving velocity U is main-

tained constant at fixed low Reynolds number in a non-Newtonian

fluid of a given apparent viscosity which is dependent only on the

second invariant of the strain rate tensor. As the problem is geo-

metrically unsteady, due to the linear variation of the approach

distance d = ea of the sphere to the plane in time, we assume that

a quasi-steady solution applies and the history force and the added

mass force are irrelevant in this case.

eRe� 1 constitutes the condition of quasi-steady flow, as ex-

pressed by Cox and Brenner [4], where Re = 2aU/m and m is the kine-
matic viscosity. This condition can be found by assuming that the

vorticity in the gap induced by the relative motion of the sphere

with respect to the plane, must be established in a characteristic

time (ea)2/m lower than the unsteady convective one ea/U. The re-

sults given in this paper may be applicable to the sedimentation of

a particle in the case where the added mass and the history forces,

as the inertia, are negligible. Using bipolar coordinates which were

first used by Stimson and Jeffrey [5], in the lateral unbounded

Newtonian fluid, Brenner [6] and Maude [7] calculated analytically

the correction factor d(e) defined by:

dðeÞ ¼
FðeÞ

6plaU
ð1Þ

For the small gap ea between the plane and the sphere, the

asymptotic expansion of their formula is given by Cox and Brenner

[4]: dðeÞ ¼ eÿ1 1ÿ 1
5
e ln 1

e

ÿ �

þ 0:9712e
ÿ �

which is valid for e 6 0.6.

The first term of this asymptotic expansion is the well-known Tay-

lor law d(e) = eÿ1 which is valid only for e 6 0.4. Experimentally, the

Brenner formula has been successfully verified by Ambari et al. [8].

As the sedimentation often occurs in a confined situation due to

the presence of lateral walls or other particles, we will quantify the

influence of the lateral hydrodynamic interaction relative to the

frontal correction factor. Still in the Newtonian case, the effect of

the lateral confinement induced by the wall of an infinitely long

circular cylinder has been calculated numerically and experimen-

tally by Ambari et al. [9] and Ben Richou et al. [10]. Apart from
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the asymptotic calculation given by Rodin [11] in lateral un-

bounded power-law fluid, for the squeezing motion of two

nearly-touching rigid spheres, there are other similar asymptotic

solutions for non-Newtonian fluids [12] to the same problem.

Otherwise, as far as we know, there are no numerical results given

in non-Newtonian fluid concerning the calculation of the drag

undergone by a sphere translating at constant velocity towards a

plane. To study the first non-Newtonian effect, we focused on the

shear thinning or shear thickening behavior of these fluids. Then

we give a numerical solution to this problem in power-law fluids

whose constitutive equation can be described as follows:

rij ¼ ÿpdij þ 2mj2dkldklj
ðnÿ1Þ=2dij ð2Þ

where rij are the Cauchy stress tensor components, dij ¼
1
2
ðUi;j þ Uj;iÞ

the rate of deformation tensor components, p the pressure, m and n

are respectively the consistency coefficient (Pasn) and the power-

law index of the fluid. Concerning the drag undergone by a particle

moving towards a plane, this is mainly due to the fluid drainage in

the gap in the lubrication regime. Then, the non-Newtonian behav-

ior of the fluid which takes place in this drainage flow may be, in

first approximation, modeled by a power-law fluid because of the

weakness of the elongational gradient, which is able to arouse the

viscoelasticity of the fluid, due to the very low velocity of the parti-

cle as made by Sherwood [13]. Moreover, experimental results on

particle-wall collision in polymeric liquids given by Ardekani

et al. [14] also justify the choice of the power-law model for this

problem. Note that the pressure induced by the drainage flow is

the main contributory factor to the drag, and the shear velocity gra-

dient is limited by its maximum value achieved near the symmetry

axis. When the fluid has a shear thinning behavior, a possible first

Newtonian plateau corresponding to low shear velocity gradient,

situated in the extreme vicinity and far from the axis of the sphere,

has very little contribution in the calculation of the force. So the

Ostwald model can constitute a good approximation. For the shear

thickening fluids, a similar analysis is applicable. The use of the Ost-

wald handy model involving only one control parameter, which is

the fluidity index n, contrary to that of a more realistic model such

as Carreau-Yasuda introducing four control parameters [15], en-

ables us to clearly and physically show the influence of the shear

thinning and the shear thickening behavior on the drag undergone

by this particle.

2. Formulation and numerical methodology

To calculate the frontal correction factor d(n,k,e) in lateral con-

fined medium defined by k, we consider the flow induced by a

spherical particle, of radius a, translating axially towards the bot-

tom at constant velocity uz = ÿUez inside a cylindrical tube of ra-

dius b, as shown schematically in Fig. 1. This container is filled

with a Newtonian or non-Newtonian fluid. To make easier the

numerical calculations, we consider an equivalent configuration

where the sphere is set and the container is moving at the velocity

+Uez. The flow is governed by the momentum and mass conserva-

tion equations under isothermal conditions, i.e.

qð@tU þ ðU � $ÞUÞ ¼ ÿ$pþ $ � s ð3Þ

$ � U ¼ 0 ð4Þ

where q is the fluid density, p the pressure and s = (rij + pdij) the ex-

tra-stress tensor for the power-law fluid (see Eq. (2)). The velocity

boundary and initial conditions are defined by: (i) on all the walls

of the cylinder: U = +Uez; (ii) on the sphere: U = 0; (iii) for t 6 0

the fluid is at rest: U = 0.

At low and fixed generalized Reynolds numbers Ren =

qU2ÿn(2a)n/m, the frontal and lateral correction factor d(n,k,e),
due to the presence of the lateral and frontal walls, of the drag

undergone by a sphere translating towards the plane bottom in

the axis of the cylinder is calculated through the following expres-

sion obtained by dimensional analysis:

dðn; k; eÞ ¼
Fðn; k; eÞ

6pm U
2a

ÿ �nÿ1
aU

ð5Þ

where k = a/b is the lateral confinement factor and e = d/a is the

frontal. In unbounded fluids, d(n,k = 0,e =1) has been calculated

by us numerically [16]. In this case, the correct values of this coef-

ficient are given with an average relative error of less than 1% for

0 6 n 6 1.8 by the polynomial interpolation formula:

dðn; k ¼ 0; e ¼ 1Þ ¼1:191þ 1:978nÿ 4:916n2 þ 7:333n3

ÿ 8:717n4 þ 5:743n5 ÿ 1:838n6 þ 0:228n7 ð6Þ

The numerical solution of this geometrically unsteady problem

is obtained using the dynamic mesh method in the finite volume

CFD FLUENT code where the SIMPLE algorithm was employed with

a second order scheme. In the integral form, the continuity and

momentum equations are solved through the dynamic mesh tech-

nique in FLUENT [17, p. 36], on a control volume V, involving a

moving boundary @V:

d

dt

Z

V

qUdV þ

Z

@V

qUðU ÿ UgÞ � dS ¼ ÿ

Z

@V

pI � dS þ

Z

@V

s � dS ð7Þ

Z

@V

qU � dS ¼ 0 ð8Þ

where q is the fluid density, U the fluid velocity, Ug the moving

mesh velocity, p the pressure, I the identity matrix, and s the ex-

tra-stress tensor. The time-derivative term is computed using a

first-order backward formula:

d

dt

Z

V

qUdV ¼
ðqUVÞlþ1 ÿ ðqUVÞl

Dt
ð9Þ

where l and l + 1 denote, respectively the quantity at the current

and following step. The volume Vl+1 is obtained through the

relation:

V lþ1 ¼ V l þ
dV

dt
Dt ð10Þ

where

dV

dt
¼

Z

@V

Ug � dS ¼
X

Nf

j

Ug;j � Sj ð11Þ

Fig. 1. Geometrical and dynamical parameters definition of the sphere moving

towards the bottom in the axis of a cylindrical tube.



where Nf is the number of faces of the control volume V, Sj is the j

face area vector, and Ug;j � Sj ¼
dV j

Dt
with dVj the volume covered by

the face j over the time step Dt. These calculations are carried out

on a structured mesh and a non structured one only in the vicinity

of the stagnation point of the sphere to ensure a homogeneous fixed

mesh size during the deformation of the mesh. For each time step,

this dynamic mesh technique involves the rigid motion of the top

and bottom of the container, respectively, away from and towards

the boundary of the sphere. The mesh is then adjusted according

to the new position of the moving boundaries. In the rectangular

mesh domain near the bottom, the dynamic layering removes lay-

ers of cells adjacent to the moving boundary (bottom), based on

the height of the layer adjacent to the moving surface. For this rea-

son, the cells are split (top) or merged (bottom) with the layer of

cells next to them when their layer attains a critical height. The

minimum thickness of the non structured mesh zone at the stagna-

tion point of the sphere (e = 10ÿ3) corresponds to the minimum gap

which can be reached through this procedure. Let us recall that a

hundred iterations for each time step is used. The distance from

the sphere to the top of the tube L is given equal to 60a to avoid

the influence of the top of the tube on the drag. For this computa-

tion, we used a sixteen core cluster. The computation at each step

l is supposed to be converged when the following criterion is veri-

fied: j1 ÿ dl(n,k,e)/dl+1(n,k,e)j < 10ÿ6. Furthermore, it is important

to note that as far as we are concerned, in this particular flow, by

a bounded shear stress srz corresponding to a bounded shear rate

0 6 _crz 6 _crzmax, there is no singularity in the shear stress, even if

the apparent viscosity described by this model mathematically di-

verges at a zero shear rate. Finally, note that the domains in which

the velocity gradient (then the shear stress) is negligible do not

introduce a significant contribution to the calculation of the drag.

In this condition, we proceeded to a verification of the effect of a

truncated Ostwald model at low and high velocity gradients as it

would be obtained by the Carreau-Yasuda model [15]. Indeed,

according to most of the rheological experimental results [15]

showing Newtonian plateaus, we imposed a variation of the appar-

ent viscosity over three decades truncated at low and high shear

velocity gradients. This variation, centered around the value corre-

sponding to the mean velocity gradient achieved at h = p/2, has
been imposed. As we will see in Fig. 5a in Section 4.2, all the results

corresponding to this truncated Ostwald model remain the same as

those obtained using the complete Ostwald model.

In the lubrication regime, we proceeded to an asymptotic ap-

proach to check the validity of the results obtained by the dynamic

mesh numerical method employed in this study.

3. Asymptotic results

In the limit of the lubrication regime e� 1 and for very low

Reynolds numbers, when the sphere moves towards the plane in

unbounded lateral medium (see Fig. 2), the drag force is controlled

principally by the drainage process of the liquid film located in the

minimum gap remaining between the sphere and the plane. Other-

wise, in this limit, Rodin [11] has given an asymptotic solution for

the squeezing motion of two nearly-touching rigid spheres (S1 of

radius a and S2 of radius ba) in a power-law fluid. To solve this

problem, he used the axisymmetric Stokes stream function so the

asymptotic problem is analyzed in non dimensional stretched

coordinates. He calculated the asymptotic solution for the pressure

for different values of the a = (1 + b)/2b parameter, and deduced

the asymptotic solution for the drag undergone by each sphere,

by integrating the pressure transmitted by a horizontal circle of

radius a centered at the origin. Concerning our configuration of

the sphere settling towards a plane, we took b?1 then a = 1/2.

When we replace this a value in his solution for the pressure we

obtain this radial distribution of the pressure:

pðrþÞ ÿ p1

m U
2a

ÿ �n ¼
2nþ 1

n

� �n 22þ3n

1þ 3n

 !

ðrþÞ
ÿð1þ3nÞ

� 2F1 1þ 2n;
1

2
ð1þ 3nÞ;

3

2
ð1þ nÞ;ÿ2

e
r2þ

� �

ð12Þ

where p1 is the pressure far from the gap, r+ = r/a is the normalized

radial distance from the stagnation point and 2F1 is the Gaussian

hypergeometric function. For n = 1 corresponding to the Newtonian

fluid, this expression reduces to:

pðrþÞ ÿ p1

l U
2a

ÿ � ¼
6

eþ 1
2
r2þ

� �2
ð13Þ

which is the same as the classical lubrication solution [18–20]. In

this approach, the correction factor d(n,k = 0,e) can also be obtained

for a = 1/2 in the expression of the force given by Rodin [11]:

dðn; k ¼ 0; eÞ ¼
Fðn; k ¼ 0; eÞ

Fðn; k ¼ 0; e ! 1Þ

¼
2

3nÿ1
2

3

2nþ 1

n

� �n

b
3þ n

2
;
3nÿ 1

2

� �

1

e
3nÿ1
2

ð14Þ

(a)

(b)

(c)

Fig. 2. Numerical velocity field in the gap between the sphere and the plane when

the sphere is in the vicinity of the bottom (e = 10ÿ2,k = 10ÿ2,Ren = 10ÿ3):(a) n = 1,

(b) n = 0.8, and (c) n = 1.4.



This formula which is valid mathematically only for n > 1/3 in

the Newtonian case, reduces to the classical Taylor solution:

dðn ¼ 1; k ¼ 0; eÞ ¼
1

e
ð15Þ

Otherwise we propose in Appendix A a simple asymptotic solu-

tion corresponding to the sphere moving towards a plane in the

limit of the lubrication regime and avoiding the use of the stream

function. This calculation gives a similar asymptotic solution to

that obtained from Rodin’s formula corresponding to b =1.

4. Results and discussion

First, we give a comparison of the numerical and asymptotical

results obtained for Newtonian fluid with the aim of giving a mu-

tual validation of the numerical method and asymptotical ap-

proach, followed by the results concerning the relative effect

between both lateral and frontal confinements. In the second step,

we give the non-Newtonian correction factor numerically and

asymptotically in the case of the power-law fluid for different in-

dexes of fluidity and different confinements.

4.1. Newtonian fluid

As in most experiments, the sphere has to move towards a plane

in confined situation according to the sketch Fig. 1, the drag force

must be corrected from the effect of the lateral confinement, de-

Fig. 3. The effect of lateral confinement on the frontal correction factor of the drag

force undergone by a sphere moving axially towards the bottom of a tube filled with

a Newtonian fluid. The dashed plateau lines represent k(k).

Table 1

Critical thicknesses of the minimum gap ec at which the drag deviates (of 1%) from its

plateau corresponding to its value achieved far from the bottom of the tube.

k 0.01 0.1 0.29 0.44 0.9

ec 62 6.7 2.2 1.28 0.114

Fig. 4. Influence of the inertia on the drag undergone by a sphere moving towards a

plane (k = 0.29), and comparison with Cox and Brenner’s asymptotic relation

(Eq. (17)) for Re = 1, 10 and 100.

(a)

(b)

(c)

Fig. 5. Influence of the fluidity index on the drag undergone by a sphere

approaching axially the plane bottom of a tube filled with a power-law fluid, for

different confinements and comparison between the numeric (scatter) and

asymptotic (solid line) results: (a) k = 0.01, (b) k = 0.29, and (c) k = 0.44.



fined by the ratio k = a/b, and the frontal one defined by the gap

e = d/a. The numerical results obtained for different lateral confine-

ments at Re = 10ÿ3, for 0.01 6 k 6 0.9 given in Fig. 3, show clearly

that when the sphere moves towards the bottom of the container,

the effect of the frontal correction factor takes place further from

the plane, all the more so that k is low. For k = 10ÿ2, the numerical

results we obtained are in good agreement with the exact

analytical solution from Maude [7] and Brenner [6]. For this lateral

confinement (k = 10ÿ2), at least at a distance of ten sphere radii to

the bottom, the lateral correction factor is negligible

(k(k = 10ÿ2,e?1) = F(k = 10ÿ2)/(6plaU) = 1.017 [10] and d(e =
10) = 1.109). This successful result confirms the validity of the dy-

namic mesh numerical method used for this unsteady problem.

Moreover, the limit of d(k,e) (its value in the plateau) when e is

greater than a critical value ec (at which the drag deviates from

the plateau depending on the lateral confinement see Table 1) is

also in good agreement with the obtained value of the lateral cor-

rection factor k(k,e?1) = F(k)/6plaU [10].

dðk; e > ecÞ ! kðkÞ ð16Þ

However, for all confinements, when the sphere is approaching

the plane in the lubrication limit, the asymptotic behavior of d(k,e)
is the same as in the lateral unbounded medium. This effect is due

to the fact that the lateral correction factor becomes negligible in

comparison with the frontal one, in the lubrication regime when

e? 0. Moreover, in Fig. 7, the radial distribution of the pressure

calculated numerically, at low Reynolds number (Re = 10ÿ3) and

(a)

(b)

Fig. 6. Absence of the influence of the lateral confinement on the drag undergone

by a sphere in a power-law fluid in the lubrication limit, for two fluidity indexes: (a)

n = 0.7, and (b) n = 1.4.

Fig. 7. Comparison of the numerical and the asymptotical pressure distribution in

the gap between the sphere and the plane for different fluidity indexes n = 0.8, n = 1

and n = 1.4, for Re = 10ÿ3, e = 10ÿ2 and k = 10ÿ2.

Fig. 8. Bulk normalized pressure distribution (p(r+) ÿ p1)/m(U/2a)n in the gap

between the sphere and the bottom showing the appearance of a saddle point in the

axis for Re = 10ÿ3, e = 10ÿ2 and k = 10ÿ2: (a) n = 1, (b) n = 0.8, and (c) n = 1.4.

Table 2

Comparison of the exponents b(n) of the power-law behavior obtained numerically and those obtained asymptotically.

n 0 0.1 1/3 0.4 0.5 0.7 0.8 0.9 1 1.4 1.8 2

g(n) (Numeric) ÿ0.03 ÿ0.05 ÿ0.13 ÿ0.20 ÿ0.29 ÿ0.55 ÿ0.68 ÿ0.82 ÿ0.98 ÿ1.57 ÿ2.16 –

g(n) (Asymptotic) – – – ÿ0.10 ÿ0.25 ÿ0.55 ÿ0.70 ÿ0.85 ÿ1 ÿ1.60 ÿ2.20 ÿ2.5



low lateral confinement (k = 10ÿ2), is in good agreement with that

calculated asymptotically (Eq. (13)). This agreement corroborates

the validity of the numerical method. Taking advantage of the

accuracy of this method, we give in Fig. 4 the influence of the iner-

tia on the correction factor d(e,k) and its asymptotic behavior for a

given lateral confinement k = 0.29 and Re = 1, 10, and 100. As the

correction of the lateral confinement is negligible in the lubrication

regime (see above), the comparison of the numerical results and

those given by Cox and Brenner [4] shows a good agreement and

confirms, for the first time, to our knowledge, the validity of their

asymptotic expression:

dðe;ReÞ ¼
1

e
þ
1

5
1þ

Re

4

� �

ln
1

e

� �

þ 0:9712 ð17Þ

When e? 0, the influence of the Reynolds number becomes negli-

gible, confirming that the inertia in the lubrication regime is mainly

controlled by eRe, as pointed out above. Otherwise, this situation,

where the Reynolds number is fixed, differs fundamentally from

the sedimentation of a buoyant sphere, where its settling velocity

decreases continuously, and thus the Reynolds number far from

the plane plays an important role, through the Stokes number

St = (1/9)(qs/qf)Re (where qs and qf are respectively the densities

of the sphere and the fluid), in the transition from the non bouncing

to the bouncing regime [21–24].

4.2. Non-Newtonian fluid

To justify the use of the power-law fluid model, let us recall

that, in this work, as we consider non-Newtonian fluid with a

relaxation time lower than the inverse of the maximum of the nor-

mal and radial elongational velocity gradient (located in the vicin-

ity of the stagnation point), the effect of a possible viscoelasticity is

negligible [25–27]. In this condition, the behavior of the fluid in

this almost Poiseuille-type flow (viscometric one) can be modeled

in first approximation by a power-law fluid. Then, in Fig. 5a–c, we

show the influence of the index of fluidity n on the correction fac-

tor d(n,k,e) for k = 0.01, k = 0.29 and k = 0.44. For each of these lat-

eral confinements, the frontal correction factor corresponding to

the drag undergone by a sphere at a distance ea from the plane,

normalized by the same force in unbounded power-law medium,

is given by the Eqs. (5) and (6). In Fig. 5a–c, we observe for all con-

finements, a good agreement between the numerical results and

those obtained by the asymptotic approach given by the Eqs.

(14) and (A.7) corresponding to the lateral unbounded medium

for n > 0.5. In fact, the influence of the lateral confinement in com-

parison to the frontal one is very weak in the lubrication regime

and depends only on the fluidity index of the fluid through the

Eqs. (14) and (A.7), as shown in Fig. 6a for the pseudoplastic fluid

(n = 0.7) and in Fig. 6b for the shear thickening fluid (n = 1.4).

Otherwise, concerning Fig. 5a–c, we show that, when the sphere

moves towards the plane, the more the fluid is shear thinning, the

lower the increase in the frontal correction factor is. Thus, the

aggregation of particles in suspensions is facilitated in shear thin-

ning fluids, relative to the Newtonian case. Finally, as discussed in

Section 2, to confirm the absence of the effect of a truncation at low

and high velocity gradients introduced by the appearance of both

Newtonian plateaus as in the Carreau-Yasuda model [15], we

numerically calculated the same correction factor with an Ostwald

truncated model whose apparent viscosity varies over three dec-

ades (as encountered in experiments). The good agreement of the

results, given in Fig. 5a, obtained with this truncated Ostwald mod-

el with those obtained by employing a complete one, justifies its

use in this study.

Concerning the radial distribution of the pressure in the gap, we

observe a power-law decrease in the pressure with the radial

distance, as in the Newtonian case where ðpðrþÞ ÿ p1Þ / rÿ4
þ . As

with the Newtonian fluid, we compare successfully in Fig. 7 the

Fig. 9. Instantaneous streamlines of the flow in the frame related to the sphere for

different indexes of fluidity (Re = 10ÿ3,e = 10ÿ2andk = 10ÿ2): (a) n = 0.8, (b) n = 1,

and (c) n = 1.4.



non-Newtonian numerical (k = 10ÿ2) and asymptotical results (Eqs.

(12) and (A.6)) for two indexes of fluidity, corresponding respec-

tively to dilatant (n = 1.4) and pseudoplastic (n = 0.8) fluids for

e = 0.01. In all cases, the numerical results for Newtonian and

power-law fluids confirm the validity of the asymptotic relations

(12) and (A.6). The same agreement is shown for different e. Con-
cerning the bulk distribution of the pressure in the gap, Fig. 8

shows that the high pressure domain is located in the lowest

gap, for different indexes of fluidity. Then, it is observed that an

absolute maximum pressure is attained at the stagnation point of

the sphere and at the bottom. The minimum pressure is attained

at the saddle point located in the middle of the lowest gap in the

symmetry axis. Finally, let us remark that, for the same Reynolds

number Ren = 10ÿ3, the pressure is reduced in the pseudoplastic

fluid and increased in the dilatant one, in comparison to the New-

tonian case. Otherwise, concerning the power-law evolution of the

drag force in the lubrication regime, we give in Table 2 the expo-

nent of this power-law deduced from the numerical curve given

in Fig. 5a and that calculated asymptotically: g(n) = ÿ(3n ÿ 1)/2.

The comparison of both results confirms that the asymptotic

expressions (14) and (A.7) give accurate results only for n > 0.5 as

discussed above. For n < 0.5, the agreement no longer remains be-

cause the asymptotic calculation needs to be performed at higher

asymptotic order. Indeed, for the shear thinning fluid, the part of

the sphere which contributes to the drag force is all the more in-

creased as the fluidity index decreases.

To show how the flow field is affected by the fluidity, we give

some examples of the instantaneous streamlines of the flow in

the frame related to the sphere for different indexes of fluidity

n = 0.8, n = 1 and n = 1.4 in Fig. 9. They show the appearance of

the singular instantaneous streamline of the flow and a change of

the flow aspect in the dilatant fluid case.

5. Conclusion

The power-law which describes the divergence of the drag force

undergone by a sphere moving towards a plane, has been numer-

ically and asymptotically studied in Newtonian and non-Newto-

nian fluids in lateral confined media. The successful

confrontation with the exact solution given for a lateral unbounded

medium by Maude and Brenner, confirms the validity of the dy-

namic mesh method employed in this geometrically unsteady

problem. Thereby we investigate in the Newtonian case, the effect

of inertia and the influence of the lateral confinement. These suc-

cessful results, obtained by this dynamic mesh numerical method,

led us to give a solution to this problem for non-Newtonian power-

law fluids, at constant very low Reynolds number and under the

negligible viscoelastic components of the fluid assumption. To cor-

roborate the numerical results, we gave the divergence law of the

drag and the distribution of the pressure in the gap asymptotically

in the lubrication limit. The successful confrontation of both meth-

ods confirms their validity. This new result may find an application

in the physics of aggregation of particles in dispersions as well as in

the measurement made with the Dynamic Surface Force Apparatus

for nanorheology.

Appendix A. Asymptotic results

In the limit of the lubrication regime e� 1 and at very low Rey-

nolds numbers, when the sphere approaches the wall at constant

velocity in unbounded lateral medium (see Fig. 2), the drag force

is controlled principally by the drainage process of the liquid film

located in the minimum gap remaining between the sphere and

the plane. In this situation, the drag force undergone by a sphere

can be calculated from the pressure force induced by the radially

ejected flow. Note that this drainage taking place in this gap, for

the power-law fluid, is reduced to a ‘‘radial power-law Poiseuille

flow’’ as shown in Fig. 2 where ae1(h) = ae + a(1 ÿ cosh) and ae is

the minimum gap between the sphere and the plane. Indeed, start-

ing from the following reduced momentum and continuity equa-

tions in the lubrication limit:
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By successive integrations and using the boundary conditions,

one can obtain:
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Then by integrating the continuity Eq. (A.2) over the gap and

taking into account that the velocity of the particle

uz(r,z)jsphere = ÿU

1
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2
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where ur(r,z) is given by Eq. (A.3) and uz(r,z = + ae1/2) = ÿU on the

sphere and uz(r,z = ÿae1/2) = 0 on the plane, it is possible to obtain

the radial pressure distribution along the gap which is given by:

pðrþÞ ÿ p1 ¼ ÿmUn 2nþ 1

n
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where Y ¼ 1
2

1
e

r
a

ÿ �2
. Using the MATHEMATICA code, the normalized

radial distribution of the pressure is given by:

pðrþÞ ÿ p1

m U
2a

ÿ �n ¼
2nþ 1

n

� �n 22þ3n

1þ 3n

 !

ðrþÞ
ÿð1þ3nÞ

� 2F1 1þ 2n;
1

2
ð1þ 3nÞ;

3

2
ð1þ nÞ;ÿ2

e
r2þ

� �

ðA:6Þ

where p1 is the pressure far from the gap, r+ = r/a is the normalized

radial distance from the stagnation point and 2F1 is the Gaussian

hypergeometric function. Note that this result is similar to that ob-

tained from Rodin’s formula (12) in Section 3. In this approach, the

correction factor d(n,k = 0,e) of the drag undergone by a sphere in

lateral unbounded medium can be calculated by integrating the

pressure given by formula (A.6) over the frontal surface of the

sphere in the lubrication limit:

dðn; k ¼ 0; eÞ ¼
Fðn; k ¼ 0; eÞ

Fðn; k ¼ 0; e ! 1Þ
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This formula, which is valid mathematically only for n > 1/3, re-

duces to the formula (14) deduced from Rodin’s result in the limit

of b =1 (Section 3). In fact, to verify the equivalency between both

formulae, let us recall that [28]:
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