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Induction Machine Bearing Failures Detection

Using Stator Current Frequency Spectral Subtraction

El Houssin El Bouchikhi, Vincent Choqueuse, Mohamed Benbouzid and Jean Frédéric Charpentier

Abstract—Induction machines are widely used in industrial
applications. Safety, reliability, efficiency and performance are
major concerns that direct the research activity in the field
of electrical machines. Though the induction machine is very
reliable, many failures can occur such as bearing faults, air-gap
eccentricity and broken rotor bars. Therefore, the challenge is to
detect them at an early stage in order to prevent breakdowns.
The purpose of this paper is to propose a new approach for
fault detection based on the spectral subtraction. The technique
effectiveness is demonstrated using simulation data issued from
a coupled electromagnetic circuits approach and experiments in
the case of bearing failures.

Index Terms—Induction machine, fault detection, signal pro-
cessing, spectral subtraction.

NOMENCLATURE

[.]−1 Matrix inverse;

[.]� Matrix transpose;

[��] Rotor current vector;

[��] Stator current vector;

[���] Rotor windings self and mutual inductances;

[���] Mutual inductances between rotor windings and stator

ones;

[���] Mutual inductances between stator windings and rotor

ones;

[���] Stator windings self and mutual inductances;

[��] Cage resistances matrix;

[��] Diagonal matrix of stator phases resistances;

[��] Stator voltage vector;
�

���
[.] The derivative with respect to the angular position;

�
��
[.] The derivative with respect to time;

Γ� Load torque;

Ω Rotor mechanical speed;

�� rotor angular position;

� Viscous friction coefficient;

� Rotating masses inertia.

I. INTRODUCTION

Nowadays, induction machines are widely used in indus-

trial applications. Despite its robustness, this machine can be
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subjected to various failures that can broadly be classified as

follows [1]:

∙ Stator faults; opening or shorting of one or more of a

stator phase winding;

∙ Broken rotor bar or cracked rotor end-rings;

∙ Static and/or dynamic air-gap irregularities;

∙ Bent shaft;

∙ Bearing and gearbox failures.

A permanent condition monitoring of this electrical drive is

of high interest since it contributes to minimize the downtime

and evolves its reliability and availability. Traditionally, the

machine condition can be supervised using different strategies

such as vibration monitoring, temperature measurements, flux

monitoring, model and artificial intelligence based techniques

[2], [3]. Motor current signature analysis for incipient fault

detection has received much attention in recent years [1], [4].

It is based on the use of quantities that are already measured

in the drive system, �.�., the machine’s stator current.

Previous works have focused on the use of signal processing

tools for stator current post-processing in order to detect a

characteristic fault frequencies in both stationary and non-

stationary operating conditions. In stationary environment,

most studies perform spectral analysis using Fourier or MU-

SIC techniques [1], [5]. In non-stationary conditions, time-

frequency [6]–[8] / time scale [9] techniques was proposed.

Although these techniques exhibit good representations, they

require a feature extraction and a classification steps to distin-

guish faulty and healthy cases. Furthermore, they do not allow

to measure fault severity.

This paper proposes then a fault detection technique that

takes into account some of the above discussed aspects.

The proposed technique is based on stator current frequency

spectral subtraction.

II. SPECTRAL SUBTRACTION

Spectral subtraction is broadly used in audio data processing

in order to remove acoustic noise and for speech enhancement

[10]–[12]. Up to now, for fault detection, the spectral subtrac-

tion was only used as denoising method in order to improve

robustness against noise of the failure indicators in electri-

cal drives [13], [14]. Afterward, advanced signal processing

techniques are used to detect electrical machine abnormal

operating conditions (Fig. 1). In this paper, we propose to use

spectral subtraction as the main tool for induction machines

fault diagnosis. In particular, it will be used for bearing

faults detection. Figures 1 and 2 show flowcharts illustrating

the main differences between the technique in [14] and the
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Fig. 1: Spectral subtraction for denoising aims.

proposed approach. The proposed technique is well-suited for

steady-state and constant speed induction machine operating

conditions. It is only applied on stationary signals which

means time independent frequency content. In this context, the

proposed strategy allows the fault impact extraction from the

stator current by subtracting the PSD of the healthy machine

from the faulty machine one at all times.

The technique algorithm can be described as follows:

∙ Spectral estimation of the healthy signal �ℎ[�] (base-

line data) based on the Short Time Fourier Transform

(�� ℱ� ) (1). The �� ℱ� of �ℎ[�] is defined as:

�ℎ(�,�) =

�−1
∑

�=0

�ℎ[�]�[�−�]�−��� (1)

where �[�] is the window function and � is the number

of samples. � ∈ Ω corresponds to the time index.

Finally, the spectrum of the healthy signal is computed

by averaging the �� ℱ� with respect to time i.e.(2).

�(�) =
1

∣Ω∣

∑

�∈Ω

∣�ℎ(�,�)∣ (2)

where∣Ω∣denotes the cardinal of the set Ω.

∙ Spectral estimation of the supervised machine current

signal �� [�] using �� ℱ� (3).The �� ℱ� of ��[�] is

defined as:

��(�,�) =

�−1
∑

�=0

��[�]�[�−�]�−��� (3)
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Fig. 2: The proposed approach.

Where �[�] has been defined previously and � is the

number of samples. � ∈ Ω corresponds to the time index.

∙ Subtraction of the current spectrum of the healthy case

from the monitored machine current spectrum at each

time � (4);

�(�,�) = ∣∣��(�,�)∣ − �(�)∣ ��(�,�) ∀� (4)

where �(�,�) = ∕ (�ℎ(�,�)) and ∕ is the angle of the

complex number �ℎ.

∙ Performing the Inverse Short Time Fourier Transform

(ℐ�� ℱ� ) to reconstruct the temporal signal �[�] from

�(�,�) with the Overlap and Add algorithm [15].

∙ Computation of the fault indicator.

For an automatic fault detection, we propose criteria based

on the results of the stator current spectral subtraction. Two

criteria are studied which are the fault signature energy and

the fault signature energy to healthy case energy ratio (5).

The criteria chosen allow to decide whether the machine is

operating under healthy or faulty state. Furthermore, it can be

used to estimate the fault severity degree.

� =
1

�

�−1
∑

�=0

∣�[�]∣2

� =

∑�−1
�=0 ∣�[�]∣2

∑�−1
�=0 ∣�ℎ[�]∣2

(5)



III. SIMULATION RESULTS

This section reports on the performance of the proposed

approach on simulated data. Simulation were performed using

coupled electromagnetic circuits induction machine model.

In particular, eccentricity fault introduced by bearing failures

have been simulated and stator current signal has been sampled

and processed using the method proposed in this paper.

A. Coupled Electromagnetic Circuits Induction Machine Mod-

eling

The magnetic equivalent circuit method is one of the proven

methods to model magnetic devices [16]. Many works in the

literature have been devoted to the application of magnetic

equivalent circuits method to model induction machines under

healthy and faulty states [17], [18]. This approach is based

on the induction machine analytical models. Inductances are

calculated from the actual geometry and winding layout of the

machine. This method is based on the following assumptions:

�) negligible saturation; ��) negligible eddy current, friction

and windage losses; ���) insulated rotor bars ��) no conduc-

tive magnetic circuit. The induction machine electrical and

mechanical equation system is given by (6).
⎧





⎨





⎩

�
��
[�] = −[�]−1

(

[�] + Ω �
���

[�]
)

[�] + [�]−1[� ]

�
��
Ω = 1

2� [�]
�
(

�
���

[�]
)

[�]− �
�
Ω− 1

�
Γ�

�
��
�� = Ω

(6)

Where :

[� ] =

[

[��]

[0]

]

[�] =

[

[��]

[��]

]

[�] =

[

[��] [0]

[0] [��]]

]

[�] =

[

[���] [���]

[���] [���]

]

All the relevant inductances matrices [�] are calculated using

the winding function method [19].

B. Bearing Faults Detection

1) Bearing Failures Impact on Induction Machine Stator

Current: In [20], it has been presented a model studying the

influence of bearing damage on the induction machine stator

current. The authors consider the generation of rotating eccen-

tricities at bearing fault characteristic frequencies ��. These

eccentricities lead to periodical changes in the mechanical

inductances which produce additional frequencies ��� in the

stator current. These frequencies are given by the following

equation (7).

��� = ∣�� ± ���∣ (7)

where �� is the stator current frequency, and � = 1, 2, 3....
This model has been applied in several works dealing with

bearing faults detection. The above model components are

analyzed using spectral analysis in [21]. In [4], [22] time-

frequency and time-scale methods are used to identify bearing

faults by analyzing stator current based on the same model.

Therefore, the [20] approach has been adopted to model

bearing failure effects on induction machine stator current. In
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(a) Induction machine stator current with mixed eccen-
tricity.

0

0.5

1

1.5

050100150200250

−50

−40

−30

−20

−10

0

10

20

30

40

50

Frequency (Hz)

Time (sec)
A

m
p
lit

u
d
e
 (

d
B

)

(b) Faulty induction machine stator current spectrogram.

Fig. 3: Faulty induction machine simulation signals.

particular, mixed eccentricities were used to emulate bearing

fault in induction machine.

The stator current signals have been simulated during 2

second at 10��� sampling frequency with 10% mixed ec-

centricity.

In this context, the simulation results are given by Fig.

3. It is obvious that the mixed eccentricity (modeling the

bearing failure) introduces sidebands on the stator current.

The following subsection describes the simulation results

interpretation.

2) Mixed Eccentricity Detection Using Spectral Subtrac-

tion: Spectral subtraction result is illustrated by Fig. 4. The

fault signature is very noticeable in the case of bearing

failure. The approach studied in this work performs well since

it allows to extract the fault impact on the stator current:

the signal components introduced by the induction machine

bearing failure are observable (see Fig. 4b). The analysis of

the figure 4 permits to conclude that the spectral subtraction

gives good results: it allows to highlight the occurrence

of abnormal operating conditions of the induction machine

using stator current analysis. The simulation results has been

confirmed using experimental data. The next section deals

with the experimental results for bearing fault detection in

induction machine. Particularly, the ball bearing fault has been

investigated.
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(a) Healthy and mixed eccentricity failure stator cur-
rents.
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(b) Failure signature.

Fig. 4: Spectral subtraction on simulation stator currents.

IV. EXPERIMENTAL TESTS

Experiments were conducted on induction machine with

bearing failures in order to prove the effectiveness of the

techniques described in the present work. The next subsections

deal with the experimental results on ball bearing faults.

A. Test Rig

The proposed approach performances are evaluated using

experimental signals from a 0.75−kW induction machine drive

test bench (Fig. 5).

The induction machine bearings were artificially deterio-

rated as shown by (Fig. 6). The experimental data has been

established in a previous work by our research team [23].

B. Experimental Results Analysis

Bearing failures can be categorized into distributed and

located defects. This paper is focused on single-point defects

which are localized ones and can be classified according to

the following affected elements: outer raceway, inner raceway,

ball, and bearing cage [1]. The proposed spectral subtraction

failure detector has been tested on the bearing failures depicted

by Fig. 6. The measured stator currents for off-line analysis

are acquired at 10 kHz by data acquisition card. Further

signal post-processing is done on a standard desktop PC using

(a) (b)

(c) (d)

Fig. 6: Artificially deteriorated bearing: (a) outer race deterio-

ration, (b) inner race deterioration, (c) cage deterioration, (d)

ball deterioration.

Matlab. The following experimental validation is focused on

the ball bearing defect (Fig. 6d).

Figures 7 and 8 illustrate the spectral subtraction experi-

mental application in case of a ball bearing defect. Indeed, it

shows, the healthy stator current, the faulty stator current, and

the resulting fault signature in time domain for an unloaded

and loaded induction machine, respectively. This residue is

used to compute the criteria proposed above.
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(a) Healthy and bearing failure stator currents.
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(b) Failure signature.

Fig. 7: Spectral subtraction on experimental stator currents for

unloaded machine.



Fig. 5: Scheme of the experimental set up.
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(a) Healthy and bearing failure stator currents.
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Fig. 8: Spectral subtraction on experimental stator currents for

400� loaded machine.

Table I presents the chosen criteria to determine the in-

duction machine healthy or faulty state under different load

conditions. These criteria are the spectral subtraction residue

energy and the healthy signal energy to residue energy signal

TABLE I: Fault indicators.

Criterion

Residue energy to

healthy signal

energy ratio (10−4 )

Residue energy (10−4)

Bearing Healthy Faulty Healthy Faulty

N� ���� 2.04 154 1.28 99

100� 7.18 142 4.23 83.9

200� 3.53 143 1.71 69.4

300� 1.27 102 0.423 34.6

400� 0.88 64.7 0.192 14.14

ratio. This table allows to conclude on the proposed approach

appropriateness to determine the induction machine operating

state. Additional tests have shown that these criteria are also

well-adapted to the other bearing failures.

In the present work, the induction machine is supposed

to operate under steady state conditions. Whereas, in the

case where the operating conditions change (load variation

for instance), a new baseline data should be retrieved and

processed off-line. Then, the spectral subtraction can be ap-

plied to diagnosis abnormal operating conditions (in our case

bearing failure in squirrel-cage induction machine) for the new

operating conditions.

V. SUMMARY

The spectral subtraction is based on the Fourier transform

which means that the technique is limited by the Fourier

transform resolution [24]. Despite this limitation, the proposed

technique gives good results on simulated and experimental

signals.

The general conclusions that can be drawn from these simu-

lation and off-line experimental results are the effectiveness of



the proposed fault detection approach based on the stator time-

frequency representation and spectral subtraction technique in

steady-state. In the case where the stator current frequency

content does not abruptly change, the proposed approach is

assumed to be a well adapted tool to detect abnormal operating

conditions in a non-stationary environment. Unfortunately, the

spectral subtraction does not allow to distinguish the nature

of the induction machine failure and the faulty component.

Further investigations will be conducted to provide a spectral

subtraction based technique allowing to distinguish faulty

components. Moreover, a suited decision algorithm should be

proposed to allow the automatic detection of a faulty machine

using the fault indicators studied in the present work.
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