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Abstract

The design of humanoid robots has been a tricky challenge for several years.
Due to the kinematic complexity of human joints, their movements are noto-
riously difficult to be reproduced by a mechanism. The human knees allow
movements including rolling and sliding, and therefore the design of new
bio-inspired knees is of utmost importance for the reproduction of anthro-
pomorphic walking in the sagittal plane. In this article, the kinematic char-
acteristics of knees were analyzed and a mechanical solution for reproducing
them is proposed. The geometrical, kinematic and dynamic models are built
together with an impact model for a biped robot with the new knee kine-
matic. The walking gait is studied as a problem of parametric optimization
under constraints. The trajectories of walking are approximated by mathe-
matical functions for a gait composed of single support phases with impacts.
Energy criteria allow comparing the robot provided with the new rolling knee
mechanism and a robot equipped with revolute knee joints. The results of
the optimizations show that the rolling knee brings a decrease of the sthenic
criterion. The comparisons of torques are also observed to show the difference
of energy distribution between the actuators. For the same actuator selec-
tion, these results prove that the robot with rolling knees can walk longer
than the robot with revolute joint knees.
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rolling contact knees

1. Introduction

Over the last several years, the design and the control of biped and hu-
manoid robots has been a research track attracting many researchers. A
humanoid robot is an autonomous mobile system that needs to be capable
of transporting energy and of course its structure and actuators. Walking
is a principle of displacement in itself. From the beginning the design must
therefore integrate that during the walking the robot must be capable of
supporting the weight of the structure and actuators as well as the source of
energy. The primary objective of this paper is to verify that the actuators
required to perform different walking gaits have a lower mass than expected
in the initial design. In addition, this study provides reference trajectories for
the control and data on the robot walking. The second objective of this work
is to study the kinematics of the knee and its influence on the performance
of the robot.

Generally, the knee joints of numerous humanoids robots are simple revo-
lute joints. The corresponding configuration is denoted CK robot hereinafter.
The methods improving these joints have been investigated by researchers in
[1] [2] and [3]. Van Oort et al. [1] introduced a device with 4-bar knees ca-
pable of minimizing the energy consumption of the knee’s actuators through
locking the knee when the support leg is stretched. Hamon and Aoustin [2]
studied a cross four-bar mechanical linkage. They focused on the comparison
using the same criteria between two kinematic structures of walking robots:
one with classic revolute joint and the other with cross four-bar joint at the
knees. The results indicated that the four-bar structure can reduce energy
consumption and the forces due to the foot impact on the ground decrease.
Finally in the project LARP, Gini et al. [3] designed a pin joint with a mov-
ing center of rotation along two cylindrical surfaces. However, the detailed
reduction in energy consumption using the pin joint was not stated in their
published work [3]. The joint consisting of two cylindrical surfaces rolling
one on the other is called thereafter rolling knee and denoted RK. In [4],
the authors suggest several solutions to design a rolling knee. A solution
including tendons is indicated, as well as different motorization options. As
example of possible realization of the joint with tendon, two pictures of the
prototype realized in the laboratory are given in Fig. 1
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Figure 1: Picture of the prototypes

In general, a walking gait consists of various phases of support (single and
double supports) and impact phases. Thus, the robot dynamics is described
by a set of hybrid non-linear equations. The selections of a robot’s kinematic
structure, its dimensions, its actuators and its control laws are determined
by the optimization methodology. It is really important to find an effective
optimization criterion. At present, there are several published criteria avail-
able [2] [5] [6] and [7]. The criterion most frequently adopted is a quadratic
criterion derived from the optimal control techniques. The criterion, named
sthenic criterion, is based on the sum of the squares of the actuator torques
[5] [8]. Because Joule losses are directly related to the square of the couples,
the overall performance can be obtained simply by weighting the previous
criterion. Srinivasan [6] proposed, as criteria, the cost indicated by the mean
square of muscles forces, relating to the sthenic criterion, or the metabolic
cost of muscle contraction power, relating to an energy criterion. The tra-
jectory can also be defined by the displacement of the robot’s center of mass
using walking patterns [6] or based on the stable gait primitive [9].

The optimization of the dynamics of a non-linear hybrid system is quite
complicated. To solve the problem, one can use the approach with direct
methods that consist in solving the discretized problem by using paramet-
ric optimization techniques. Direct methods can be classified in three ap-
proaches: (i) Collocation methods, (ii) Multiple-shooting methods, and (iii)
Methods based on parametrization of the state variables by using functions
like B-spline or cubic spline functions [10] [11]. A parametrization method
was used by [12], [13], [8] who have attained good results.

We chose the third method, the parametrization of the state vector. The
problem consequentially becomes a parameter optimization satisfying the
non-linear hybrid dynamic equations and the walking constraints of the robot
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[14]. These constraints, which must be satisfied, encompass a non-contact
requirement for the mobile foot above the ground, the unilateral contact of
the fixed foot, the hypothesis in accordance with the impact of mobile foot
and the stability of the robot defined by the ZMP position.

The minimization problem can be resolved in many ways. If we provide
explicit expressions of the gradient and the Hessian of the criterion, we can
use a very simple algorithm such as the gradient method or Newton method
[8] [15] [10]. Constraints are nonlinear in the parameters and the impact
equation leads to a reduced area of solutions. Moreover, to obtain low com-
putation time, these methods often require the explicit calculation of the
gradient of the cost function [15]. Genetic algorithms [16] or evolutionary al-
gorithms will be more effective but their convergence time is long. Moreover,
we do not have here a large number of parameters.

The Nelder-Mead simplex algorithm is another direct search method. [17]
has proved the convergence properties in low dimensions. [18] has given a
counterexample for a very particular function. We do not have this prob-
lem in our case. On the other hand, the simplex algorithm requires adding
constraints in criterion with Lagrange multipliers.

In this paper, we intend to study the advantages of an anthropomorphic
knee kinematic structure by searching for the inner correlation between dif-
ferent gaits and the energy they consume. Optimization methodologies based
on the model of inverse pendulum and rigid knees proposed by Srinvasan [6]
and Park et al [19] are no longer supported by our model. We confine our
robots to a configuration of 7 links, namely, a trunk, two thighs, two shins
and two feet. In order to highlight the effectiveness of the new kinematic
structure brought by our knees, we do not consider the utilization of springs
and compliant devices on robot joints.

In this paper, we compare the evolution of the energy criteria of two kine-
matic structures of knees on a robot using different trajectories. The first
structure uses classic revolute knees and the second one uses knees with cylin-
drical rolling contact. The corresponding geometric, kinematic and dynamic
models have been developed for these two structures in Section 2. The opti-
mization problem is discussed in Section 3 and two types of trajectories for
the gait have been developed in Section 4. According to the results generated
in Section 5, we can decide if our new kinematic solution for the knees truly
consumes less energy during the cyclic walking. The optimized trajectories
with less energy consumption will be used to improve the control strategies
of the walking robots. The selection of the criterion is given by the sthenic
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function since it is better adapted for the future of the project and for the
stabilizing control.

2. The biped modelling
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Figure 2: Biped robot with rolling joint knees

2.1. The Biped and the new knee kinematic

The studied robot consists of seven bodies, namely two feet, two shins,
two thighs and a trunk. We consider hereafter two configurations that differ
at the knee kinematics. The first configuration possesses a revolute joint on
the knee as most of the biped robots and humanoids realized until now [20].
The second configuration possesses a knee with a rolling contact as repre-
sented on Fig. 2. We suppose hereafter that the contact of the link between
the shin and the thigh is made without sliding. The robot is supplied with six
actuators placed at the rotation axis of every joint. We define the inertial ref-
erence frame R0 = (O0, x⃗0, y⃗0, z⃗0) related to the foot 1 with the origin O0 the
projection of the point A1 on the ground, supposed horizontal, x⃗0 is the unit
vector in the gait direction and z⃗0 the unit vector perpendicular to the ground
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Figure 3: Rolling knee of the support leg

plane. The two configurations are defined in the sagittal plane by the absolute
angular coordinates named Xe = [q⊤ xH zH ]

⊤ with (xH , zH) the hip Carte-
sian coordinates in R0 and q⊤ = [q0, q1, q2, q3, q4, q5, q6] the vector of absolute
joint angles. The joint torque vector is defined by Γ = [Γ1,Γ2,Γ3,Γ4,Γ5,Γ6]

⊤

as represented on Fig. 2. The joint torques are applied around the axis y⃗.
Defining θ = [q1−q0, q2−q1, q6−q2, q6−q3, q3−q4, q4−q5]

⊤ the joint angular
position vector.

For the robot structure with revolute joints, the coordinates of the hip
are given by the equations:

xH = −l2 sin q2 − l1 sin q1 (1)

zH = l2 cos q2 + l1 cos q1 + hp (2)

with dist(A1, K1) = dist(A2, K2) = l1 the length of the shins, dist(K1, H) =
dist(K2, H) = l2 the length of the thigh and dist(O0, A1) = hp the height of
the ankle axis.

However, in the second configuration, in addition to the revolute joints
on hips and ankles, the knees contain a rolling contact cylinder on cylinder
without sliding between the thigh and the shin. This new structure brings a
coupling between the angles of the thigh q2 and of the shin q1. Fig. 3 shows
the knee of leg 1. It is assumed that the knee is in contact, connected by
a bar with revolute joints on the points C1 and C2. The rotation without
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sliding of the shin on the thigh also leads to the rotation of the bar of an
angle γ1 with reference to the vertical and given by (3). Also, the equation
(4) gives the corresponding angle γ2 for the mobile leg.

γ1 =
r1q1 + r2q2
r1 + r2

(3)

γ2 =
r1q4 + r2q3
r1 + r2

(4)

From the kinematic relations and coordinates noted on figures, we can
establish the direct and inverse geometric models of both robots. The coor-
dinates of the hip of the structure in Fig. 2 are given by the equations:

x′
H = −l′2 sin q2 − l sin γ1 − l′1 sin q1 (5)

z′H = l′2 cos q2 + l cos γ1 + l′1 cos q1 + hp (6)

with l = r1 + r2. The length l′2 = l2 − r2 and l′1 = l1 − r1 are chosen so as to
have robots of the same height for the two configurations. For the dynamic
model, we assume that the centers of mass of the bodies are situated on the
same position in vertical stance for both robots.

2.2. The dynamic model

The dynamic model of the robot establishes the relation between the
positions, speeds and accelerations of the bodies of the robot, the torques
supplied by actuators and interaction forces with its environment. The dy-
namic model is usually used for the synthesis of the control laws and the
stabilization of the robot, but also to determine the energy consumption of
actuators, the mechanical constraints at the joints and actuators, the maxi-
mal stresses to which the bodies are subjected. For each gait mode (walking,
running, jump, etc.), the dynamic model allows to determine the operating
point of actuators and deduce therefore their thermal stresses, the energy
losses and the variation of the energy level in the batteries.

When considering only the relations between the dynamics of the bodies,
the actuator torques and the external forces, the model is determined by the
application of Newton’s second law. A direct explicit relation is obtained
by the Euler-Lagrange equations. The rigid bodies of the robot are usually
represented by their mass, the position of their center of mass and their
inertia matrix. The robot studied here is a planar biped. Furthermore,
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we assume that its interaction with the environment is limited to contact
between the ground and the foot soles.

For the sake of simplicity, we consider a simple point-mass model for all
the bodies. This hypothesis reduces the parameters defining the model for
each body which are thus the mass mi and the positions si = dist(OiCgi) of
center of mass Cgi (see Fig. 2).

Finally, the application of the Euler-Lagrange equations gives the well-
known differential equation of behavior of the robot ([21] and [22]) which can
be expressed as:

D(Xe)Ẍe +H(Ẋe, Xe) +Q(Xe) = BΓ + AcL(Xe)
⊤FL + AcR(Xe)

⊤FR (7)

with D(Xe) the 9×9 inertia matrix, H(Ẋe, Xe) the 9×1 vector of centrifugal
and Coriolis forces, Q(Xe) the 9 × 1 vector due to the gravity, B the 9 × 6
control matrix, Γ the 6×1 vector of torques, AcL and AcR the 3×9 Jacobian
matrix of external forces and FL and FR the vectors of external wrench
respectively on the left and right feet.

Now, we analyze only the robot behavior during trajectories composed by
a succession of simple support phase (SSP) followed by an impact of one foot
on the ground. Assuming the left foot is on support on the ground during
the SSP. The force on the right foot is zero, so FR = 0. The unknowns of
equation (7) are the coordinates of vector Xe and the vector of the external
forces FL, so we have 12 unknowns. The contact of the left foot in support
is unilateral and subjected to the friction phenomenon. These conditions are
not holonomic. We suppose also that the support foot remains in contact
(FL.z⃗0 > 0, ZMP stays inside the foot sole). These hypotheses are verified a
posteriori after the resolution of the dynamic equations.

The contact conditions are explained by xA1 = 0, zA1−hp = 0 and q0 = 0.
Differentiating twice the previous equation with respect to the coordinate
vector Xe, we obtain:

AcL(Xe)Ẍe +HcL(Xe) = 0 (8)

where AcL(Xe) and HcL(Xe) are explicitly given in [20].
The equations (7) and (8) give:[

D(Xe) −A⊤
cL

AcL 0

] [
Ẍe

FL

]
=

[
BΓ−H(Ẋe, Xe)−Q(Xe)

−HcL(Xe)

]
(9)
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The equation (9) gives the behavior of the robot as the assumptions (a
single foot on the ground and without sliding, no other interactions with the
environment) are verified. Two methods can be used to solve this system.
In the first method, torques are known and we determinate Xe(t) and FL(t),
solutions of equation (9): it is the direct method. Whereas the second method
uses the solution Xe(t) of equation (8) and the resolution of equation (7) is
made by searching Γ(t) and FL(t): it is the indirect method.

In this paper, we use the indirect method. Assuming that the vector q(t)
is known and calculating xH(t) and zH(t) and their derivatives from (8), one
can solve the equations (1)(2) or (5)(6) respectively for robots with revolute
joint knees and with rolling joint knees.

The vectors Ẋe and Ẍe are also known, which determine the left terms
of the equation (7). The last unknowns are Γ and FL, solved by equation:[

B AcL(Xe)
⊤] [Γ FL]

⊤ = D(Xe)Ẍe +H(Ẋe, Xe) +Q(Xe) (10)

where Γ = [Γ1,Γ2,Γ3,Γ4,Γ5,Γ6]
⊤ and FL = [FLx, FLz, CLy]

⊤.
These results are used to determine the optimization criterion later on.

The detail of the matrix used in the dynamic model is given in [20].

2.3. The impact model

Let us consider now the impact model. The impact model determines the
state of the robot when the mobile foot touches the ground with a non-null
velocity. This impact problem between two rigid bodies is treated in [23],[24]
and [25]. The case of multibody dynamic systems, in particular biped robots,
is explained in the literature [26] [27], where the authors make the hypothesis
of an instantaneous impact without rebound of the mobile foot with the
ground. This hypothesis is verified only if the shock matches perfectly with
a plastic impact law. The coefficient of restitution is then equal to zero. This
results in a dissipation phenomenon of mechanical energy during the shock.
From [26], the impact model is:

D(Xe)
(
Ẋe

+ − Ẋe
−
)
= A⊤

cLIR (11)

with Ẋe
−
and Ẋe

+
representing respectively the speed vector before and after

the impact and IR is the wrench of forces and moment between the mobile
foot and the ground. As the robot under study is planar, three components
act on the foot, so two forces and one moment. We can therefore write:
IR = [Ix, Iz, Cy]

⊤.
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The nonholonomic constraint of contact of the support foot on the ground
gives:

AcL(Xe) Ẋe
+
= 0 (12)

Also, (11) and (12) give:[
D(Xe) −A⊤

cL

AcL 0

] [
Ẋe

+

IR

]
=

[
D(Xe)Ẋe

−

0

]
(13)

The resolution of equation (13) gives the speed coordinate vector after
impact and the impulse of forces during the impact:

IR =
(
AcLD(Xe)A

⊤
cL

)−1
AcLẊe

−
(14)

Ẋe
+

= Ẋe
−
+D(Xe)

−1Aᵀ
cLIR (15)

We define the vector δ = Ẋe
+ − Ẋe

−
= D(Xe)

−1A⊤
cLIR. The first seven

components δi, i ∈ [1 · · · 7] will be used to compute the speed vector Ẋe
+

and so initialize the parameters corresponding to the initial speed of the
trajectory defined by equation (20) or (21).

3. Optimization of the cyclic walking

The criterion most used for the optimization of the biped robot gait is
the sthenic criterion as defined by the equation (16). This criterion allows
minimizing the actuator torques, but also the Joule losses of actuators.

CΓ =
2

d

∫ T

0

Γ⊤Γdt (16)

The minimization of the criterion requires the knowledge of the evolution
of the torques with respect to time. According to (7), it means knowing the
evolution of the joint variables satisfying the conditions of impact (15) and
the conditions of contact. This resolution is complex because we are looking
for an explicit function of time Xe(t) while the criterion also depends on the
derivatives Ẋe and Ẍe and on inequality constraint conditions.

One of the possible methods to solve (16) is to transform the minimization
problem of a functional in a parametric problem [26]. This method provides
only a sub-optimal solution which depends on the number of coordinates
of the chosen vector p and of the type (Cartesian position, angle, speed,
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etc.) of these coordinates. It thus becomes essential to correctly select the
coordinates of this vector. We propose in the following section two solutions
of vector coordinates. The challenge is to find which solution gives the best
results of the criterion minimization.

The criterion (16) can be rewritten under the form:

Cp =
2

d

∫ T

0

Γ⊤(p)Γ(p)dτ (17)

The criterion minimization is now in the form of a parametric optimiza-
tion problem under constraints. There are numerous resolution methods in
the literature. The vector of parameters p being of important size, the res-
olution requires a powerful method. The genetic algorithm methods or the
simulated annealing methods are preferred if the size of vector is greater
than 30 [16]. In our case (see section 4), the size of the vector of parameter
is between 10 and 20. We can thus choose a resolution method based on the
algorithm of Nelder-Mead (Simplex) [17]. The flexibility of this algorithm al-
lows finding more easily a global minimum without remaining locked in local
minima. But this algorithm does not manage the constraints associated with
our problem. We therefore chose to manage the constraints with Lagrange
penalty functions. We then obtain the following expression of the criterion:

Cp =
2

d

∫ T

0

(
Γ⊤(p)Γ(p) + k

7∑
i=1

(e(|Ψi(p)|−Ψi(p)) − 1)

)
dτ + errorIKM (18)

with Ψi, i ∈ [1 . . . 7] the Lagrange penalty functions and the weighting factor
k chosen rather big to avoid the trajectory reaching the constraints. The
errorIKM term is a flag that takes the value “true” if the inverse kinematic
computation gives a complex value or cannot be calculated. This occurs
when the optimization algorithm chooses a parameter vector which is not
compatible with the workspace of the robot. The unreachable solution must
be discarded in all cases for each robot configuration. At the end of the
optimization, the errorIKM term is equal to zero for all solutions.

In case of a gait composed of SSP followed by an impact, we distinguish
seven constraints:

1. The unilateral contact imposes that the reaction force following the
axis z⃗ remains positive during the movement. Ψ1 = FLz > 0.

2. The position of the ZMP has to stay in the support polygon of the fixed
foot. Ψ2 = xZMP + lp > 0 and Ψ3 = −xZMP + (Lp − lp) > 0.
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Figure 4: Detail of the foot parameters

3. The knee movement reproduces that of humans thus the knees do not
bend backwards. We obtain two new conditions which are Ψ4 = q2 −
q1 > 0 and Ψ5 = q3 − q4 > 0.

4. The non-penetration of the mobile foot into the ground is verified by the
two following conditions, which depend on the robot’s configuration:
Ψ6 = zH2 > 0 and Ψ7 = zT2 > 0 for the CK robot or Ψ6 = z′H2 > 0
and Ψ7 = z′T2 > 0 for the RK robot.

The x-coordinates of the ZMP during the step is calculated with the
equation:

xZMP =
−Γ1 − (mpsxg)− (hpFLx)

FLz

(19)

where mp represents the foot mass, sx is the x-coordinate of center of mass
of the foot (see Fig. 4) and Γ1, FLx, FLz are obtained with equation (8).

4. Parametrization of the gait

Several mathematical expressions are chosen as candidate function for
the optimization. In this work, we use two mathematical functions for the
trajectory angles:
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• Bézier functions.

• Cubic splines functions.

For each candidate function, the velocities and accelerations are obtained
by successive derivation.

Every trajectory was developed to describe the evolution of absolute an-
gles during a step of cyclic walk. The next step is symmetric with an exchange
between the variables of thighs and shins (left leg takes the place of the right
leg and vice versa). To simplify the calculations, the time t is normalized
and described by tn = t/T where T is the period of the step. For tn = 0, the
left foot is on support and the right foot is behind the trunk. For tn = 1,
the right foot is advanced with a distance d and is in front of the trunk. The
vector q = [q0, q1, q2, q3, q4, q5, q6]

⊤ represents absolute angles during the gait.
The conditions of cyclicity for every configuration of gait are as follows:

• Foot soles are horizontal at the beginning and at the end of the step.

• The angle of the fixed foot is equal to zero throughout the gait step
q0(tn) = 0.

• The trunk angle and the mobile foot angle functions are T-periodic.

• The thighs and shins angle functions are 2-T periodic.

4.1. The Bézier function

The first proposed candidate function is Bézier function of order 3. They
are parametric trajectories where the curve is described with control points,
i.e. we build a polygon with control points. The first and the last control
points are the departure and the arrival of the trajectory. Other points serve
to get a smooth trajectory by the determination of the centroid of the points.
The trajectories of every joint are defined under the form below:

Bqi(tn) =
3∑

j=0

3!

j!(3− j)!
cij t

j
n(1− tn)

(3−j) (20)

So, we have twenty four parameters to describe the evolution of the robot.
The parameters ci0 and ci3 define the initial and final points respectively.
The parameters ci1 arise from impact conditions. Other parameters ci2 will
be found by optimization. The reduction of the number of parameters with
the conditions of cyclicity gives:
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• For the trunk: c60 = c63

• For the mobile foot: c50 = c53

• For the thighs: cij = ci(3−j), i = [2, 3], j = [0, 3]

• For the shins: cij = ci(3−j), i = [1, 4], j = [0, 3]

The impact implies conditions on the initial velocities of the robot bodies.
We thus have:

• For the trunk: c61 = 3(c60 − c62) + δ6,

• For the mobile foot: c51 = −3c52 + δ5

• For the thighs: c21 = 3(c20 − c32) + δ2, c31 = 3(c30 − c22) + δ3

• For the shins: c11 = 3(c10 − c42) + δ1, c41 = 3(c40 − c12) + δ4

We finally obtain eleven parameters to define the evolution of a gait step
which are the initial positions of shins, thighs and trunk and the control
points of positions 2 of Bézier function for every body.

4.2. The cubic splines function

In this case, the expressions of joint variables are defined on two half-
period and described by the following equations:

0 ≤ tn ≤ 1
2

→ fqi(tn) =
3∑

j=0

aij t
j
n (21)

1
2
≤ tn ≤ 1 → f ′

qi
(tn) =

3∑
j=0

bij(1− tn)
j (22)

where aj and bj, j = [0 . . . 3] represent the necessary coefficients to parame-
terize every angular trajectory.

An addition of conditions of cyclicity is necessary for the continuity be-
tween both functions. They are detailed below:

• For the trunk: a60 = b60 , a62 = b62 , a63 = b63 = −4
3
a62

• For the mobile foot: a50 = b50 = 0, a52 = b52 , a53 = b53 = −4
3
a52
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• For the thighs: a20 = b30 , a22 = b32 = a32 +6(a30 −a20), b23 = −6((a20 −
a30) +

4
3
(a21 − a22)),

a30 = b20 , a32 = b22 = a22 + 6(a20 − a30), b33 = −6((a30 − a20) +
4
3
(a31 −

a32))

• For the shins: a10 = b40 , a12 = b42 = a42 + 6(a40 − a10), b13 = −6((a10 −
a40) +

4
3
(a11 − a12)),

a40 = b10 , a42 = b12 = a12 + 6(a10 − a40), b43 = −6((a40 − a10) +
4
3
(a41 −

a42))

The impact imposes conditions on the initial velocities of the robot bodies.
We thus have:

• For the trunk: a61 = b61 + δ6,

• For the mobile foot: a51 = b51 + δ5

• For the thighs: a21 = b31 + δ2, a31 = b21 + δ3

• For the shins: a11 = b41 + δ1, a41 = b11 + δ4

To define the evolution of the robot, forty eight parameters are required.
With all the conditions of cyclicity mentioned above, the number of the
parameters drops to seventeen. The remaining parameters are calculated
from the initial angular positions of shins, thighs and trunk, the final speeds
and the initial accelerations of each body.

Vectors that define the cubic splines and Bézier functions can still be
reduced. The initial angular positions of each body can be calculated using
the inverse kinematic model and the conditions of contact of the two feet
with the ground. The Cartesian positions of the hip thus replace the initial
values of the leg angles. The time T is a parameter added to every vector to
find the optimal period for performing the walking step. Table 1 summarizes
the number of parameters used in each case.

5. Simulations and results

The simulations were made with the geometrical and dynamical param-
eters of the robot HYdROı̈d. This robot is 1.39 m tall for a weight around
45 kg. The optimization of the walking trajectories was realized by using
the mathematical expressions of the joint variables developed in Section 4.
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Table 1: Summary of the vectors of the parameters according to the type of trajectories

Joint trajectory Size of Vectors of

parameter vector parameters p

Bézier function 11 xHi
,zHi

,c60 ,

cj2 for j = {1 . . . 6} ,T

Cubic Splines function 17 xHi
,zHi

,a60 ,T ,

bj1 and aj2 for j = {1 . . . 6}

The radii r1 and r2 are chosen identical and equal to 5 cm. The influence
of trajectories on the optimization criterion, the angular evolution and the
torques of the actuator will be shown in the following section. Then, a focus
on the comparison of the energy criteria of both kinematics will be made.

The pre-design parameters of every body for the robot HYDROı̈D are
expressed in Table 2. These values are derived from the CAD model of the
robot.

Table 2: Parameters HYDROı̈D robot

Body Lengths Masses Inertia Positions
moments of CoM

[m] [kg] [kg.m2] [m]
Feet Lp = 0.207 0.678 0.001 sx = 0.0135

lp = 0.072 sz = 0.0321
hp = 0.064

Shin l1 = 0.392 2.188 0.028 0.1685
Thigh l2 = 0.392 5.025 0.068 0.1685
Trunk l5 = 0.543 29.27 0.815 0.1921
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5.1. The gait with different trajectory functions

The evolution of the sthenic criterion with respect to the average walking
speed is depicted as shown in Fig. 5. We observe in blue and green the
optimal criterion for the robot with revolute joints and in red and black the
optimal criterion for the robot with the rolling knee kinematics for the two
types of functions described in Section 4. The results show that the criterion
value of RK robot is lower than that of the CK robot. For the low speeds
(between 0.1 and 0.26 m/s), trajectories described by the Bézier functions
allow to obtain the best results during the walking for both robots. Cubic
spline trajectories are the most adapted to describe the gait for the other
speeds (greater than 0.26 m/s). The criterion mean value for the RK robot
with the cubic spline functions is 7% lower than that for the CK robot. For
example, for the RK robot, the minimum value of the criterion is 19 N2ms
obtained at the speed of 0.29 m/s. At this speed, the difference between the
two criteria values is about 16%. Overall, whatever the type of function used
to describe the gait, the RK robot consumes less energy.

Fig. 6 and 7 present the evolution of the optimal periods of walking and
the optimal step lengths depending on the walking speed resulting from the
optimization. We notice that the periods for trajectories described by the
Bézier function are lower than the ones for cubic spline functions. Accord-
ingly, step lengths are also shorter. We can thus say that robots make smaller
steps more quickly by using the Bézier trajectories. This promotes walking
at very low speeds thus the criterion is improved. We notice discontinuity in
the period in the presented curves. So for criterion values that are quite sim-
ilar, the periods may be very different, which appears in [28] with bifurcation
modes.

The stick diagram (cf. Fig. 8) presents the evolution of the biped ac-
cording to the kinematic used at the speed of 0.7 m/s by using cubic spline
trajectories.

We can notice that whatever the configuration, the robot has the same
gait of walking. The optimal speeds of walking found are close to results
presented in [29] and [8]. The trunk bends slightly more forwards for the
RK robot, unlike the CK robot. Fig. 9 shows the angular evolution of both
configurations using Bézier and cubic spline functions. The analysis of angles
for cubic spline trajectories confirms that the robot angles have the same
shape for shins, thighs and trunk. Only the trajectory of the mobile foot for
the RK configuration differs from the mobile foot for the CK configuration.
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Figure 5: The optimal sthenic criteria versus the walking speed for both robots and for
each trajectory function.

The period for the RK robot is longer than that of the CK robot. For the
Bézier trajectories, the shapes of the angular variables are identical.

Fig. 10 shows the evolution of joint torques for both configurations. The
forms of the evolutions of the joint torques are in accordance with those
quoted in the literature [8]. We notice that for both types of trajectories,
the torques of the hips of the support leg and the mobile leg (Γ3 and Γ4) are
lower for the RK configuration. The consequence is a knee torque slightly
larger.

The analysis of the evolutions of the joint torques leads to the same
selection of the actuators for the two configurations of robots. This means
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Figure 6: Evolution of the period T in function of the walking speed for both robots and
for each trajectory.

that for both knee configurations, motors and gearbox remain the same. In
conclusion, the robot with rolling knee contacts will have greater autonomy.

5.2. Energetic comparison of the two configurations

We are interested here in the distribution and the evolution of the cri-
terion for each joint. The evolution of the joint torques allows the energy
comparison joint by joint of both structures. The study was carried out for all
the speeds. The trend of distribution being the same for the various speeds,
only the results for the speed of 1 m/s are presented here. The equation to
obtain this distribution is the following:

CΓi
=

2

d

∫ T

0

Γ⊤
i Γidt pour i = [1 . . . 6] (23)

EnergyRatio =
CΓi

Cp

(24)
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Figure 7: Evolution of the step length in function of the walking speed for both robots
and for each trajectory.

with Cp from equation (18).
Fig. 11 shows the distribution of the criterion for each joint for the

speed of 1 m/s. We notice that the hip and the knee of support for the
RK configuration use more energy than those of the CK configuration. The
actuator of the mobile hip of the RK structure absorbs less energy. Fig. 12
shows that the various actuators have the same evolution during the phase
of walking for both robots. The energy distribution for the mobile leg and
the ankle of support for RK robot is lower compared to CK robot. Only the
hip of support uses more energy for the RK robot.

6. Conclusion

The model of a new knee kinematic structure has been developed and
compared with that of a robot having a structure with revolute joint on the
knees. The study is made on two types of trajectory that are described with
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Figure 8: Stick diagram of the displacement of bipeds for the walking speed of 0.7 m/s.
At left, the revolute configuration and at right, the rolling knee configuration. The green
diamond represents the center of mass position. The plus marker represents the evolution
of the ZMP position.

cubic spline or Bézier functions. The results show that the new kinematics of
the knee reduces sthenic criterion by about 7% with cubic spline trajectories
compared to the results obtained with the revolute joint structure. The
decrease of this criterion is clearly visible on the graph of distribution (see
Fig. 11).

The perspectives of our study will bring in various phases of walking as
the double support and the modification of the geometrical parameters (radii
r1 and r2) which could be a way of improving energy gain. Thanks to the
selection of actuators, the addition of the parameters of dry and viscous fric-
tions in the dynamic model will allow to know the global energy consumption
and the real advantage of the new knee kinematics.

Our future work concerns the study of trajectories with double support
phase. To improve the energy efficiency of the robot, we propose to change
the radii of the contact cylinders of the knees and/or to modify the shape
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Figure 9: Evolution of absolute joint an-
gles for the walking speed of 0.7 m/s
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Figure 10: Evolution of joint torques for
the walking speed of 0.7 m/s
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Figure 11: Distribution of criterion on the actuators for the walking speed of 1 m/s

of the contact surface of the knees. Using the results of joint torque and
speed profiles, it is possible to select the actuators. Thus, models of friction,
gearboxes and electrical losses can be determined. This leads naturally to
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Figure 12: Evolution of sthenic criterion on the actuators for the walking speed of 1 m/s

repeat the optimizations with an energy criterion to determine the overall
transport cost of the robot.
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