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We report, in this work, on unprecedented levels of parametric amplification in microelectromechanical

resonators, operated in air, with integrated piezoelectric actuation and sensing capabilities. The

method relies on an analytical/numerical understanding of the influence of geometrical nonlinearities

inherent to the bridge-like configuration of the resonators. We provide analytical formulae to predict

the performances of the parametric amplifier below the nonlinearity threshold, in terms of gain and

quality factor (Q) enhancement. The analysis explains how to overcome this nonlinearity threshold

by controlling the drive signals. It predicts that in theory, any Q-factor enhancement can be

achieved. Experimental validation demonstrates a Q-factor enhancement by up to a factor 14 in air.
VC 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4802786]

Micromachined mechanical resonators are the subject of

much attention due to their very high natural frequencies,

large mechanical quality factor, high mechanical responsiv-

ity, and low power operation. Applications include electronic

filtering and ultra-sensitive mass detection.1–4 In those appli-

cations, one key parameter is the quality factors of the

resonances, which are directly related to either the sensor

sensitivity or the filter selectivity, since they govern the

sharpness of the resonances.4 When operated in air or in liq-

uid, the quality factors dramatically decrease, thus leading to

loss of performance. Several strategies have been proposed

to overcome those difficulties, such as active closed loop

enhancement4,5 or parametric amplification, introduced by

the pioneering work of Rugar and Gr€utter6 and used for tor-

sional microresonators.7 More recently, this principle has

been applied to micro and nano-beams driven by Lorentz

forces8 or by piezoelectric action,9,10 to an array of micro-

cantilevers11 and to carbon nanotubes.12 Pure parametric

actuation has also been widely considered, for signal filter-

ing,13 mass sensing,14 signal amplification,15 or logic cir-

cuitry.16 Geometrically nonlinear parametric amplifiers have

been theoretically addressed,17 and a strategy to tune and

cancel their hardening/softening effect by active control has

been proposed.18

This paper addresses the parametric amplification of

micromachined resonators, with three main characteristics:

(i) The actuation and detection are fully integrated in the res-

onator via the use of a single piezoelectric layer. (ii) The res-

onator is operated in air and we demonstrate a Q-factor

enhancement of up to a factor 14 by parametric amplifica-

tion. (iii) The impact of geometrical nonlinearities, which

limits the devices performance, is investigated through a one

degree of freedom model and numerical simulations. This

leads to closed form expressions for the Q-factor enhance-

ment and to an efficient design rule to predict and overcome

the nonlinearity threshold.

It must be noted that the Q-enhancement reported in this

work refers only to the artificial bandwidth decrease of

resonances induced by parametric amplification. Even if this

effect does not increase the ultimate mass sensing sensitivity,

which is limited by thermomechanical noise,19,20 it is of

prime importance when one wants to operate the resonators

into liquid or air media,4 for which resonances as sharp as

possible are sought.

The devices under study have the form of doubly

clamped beams composed of several layers: a Si/SiO2 core

with piezoelectric stacks (a PbZr0:52Ti0:48O3 (PZT) layer

with top Pt and bottom Pt/Ti electrodes) at each end (Fig.

1(b)). For each device, the piezoelectric elements’ lengths

are 1/4 of the total length of the beams. The lengths of the

two bridges selected for the experiments are 500 lm and

700 lm (Fig. 1(a)). The fabrication process has been detailed

elsewhere.21

When electrically actuated, the piezoelectric elements

attempt to contract laterally in proportion to the applied volt-

age V(t). The mechanical action on the beam is equivalent to

a concentrated moment and an axial force applied at the end

of the piezoelectric element22 (Fig. 1(c)). As a consequence,

the beam is subjected to a bending action as well as a modu-

lation of its axial tension. Since the axial tension modifies

the natural frequencies of the beam, parametric driving is

achievable. Parametric amplification consists of driving

the beam in bending at a frequency X (with a voltage of am-

plitude Vd) and superimposing a parametric “pump” at 2X
(of amplitude Vp), which is simply realized here with

VðtÞ ¼ VdcosðXtþ uÞ þ Vpcos2Xt. By choosing the phase

difference u, amplification of the resonance peak can be

obtained when X is close to a natural frequency of the

beam.6,23

A model of the microelectromechanical beams that

includes the constituent layers, the change in cross-section,

and the geometrical nonlinearities can be obtained by the

0003-6951/2013/102(16)/163504/5/$30.00 VC 2013 AIP Publishing LLC102, 163504-1

APPLIED PHYSICS LETTERS 102, 163504 (2013)

Downloaded 25 Apr 2013 to 163.173.128.10. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4802786
http://dx.doi.org/10.1063/1.4802786
http://dx.doi.org/10.1063/1.4802786
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4802786&domain=pdf&date_stamp=2013-04-25


finite-element method.24 If this model is reduced to only

one mode of vibration, the transverse displacement is

wðx; tÞ ¼ UðxÞuðtÞ, where UðxÞ is the deformed shape of the

mode. Then, the corresponding modal coordinate u(t) obeys

€u þ Q�1x0 _u þ x2
0uþ Cu3 þ du cos 2Xt ¼ Fd cosðXtþ uÞ;

(1)

where Q is the mechanical quality factor of the mode, x0

is its natural frequency, Fd ¼ HVd and d ¼ vVp are the

direct and parametric forcing amplitudes, H and v are two

piezoelectric coupling coefficients, and C is the geometrical

nonlinearity parameter.24 Because of the asymmetric beam

cross-section (due to the layered structure) as well as the

initial curvature of the structures at rest (stemming from

residual stress), the sign of C is not necessarily positive, and

hardening as well as softening behaviors can be obtained.25

It must be noted that piezoelectric nonlinearities can also

produce a softening effect,26,27 due to the comparatively

lower mobility of ferroelastic domain walls in thin PZT film

and clamped PZT structures.28,29 This effect is expected to

be modest in this work.

The motion of the beam is monitored by measuring the

electric charge q(t) on the electrodes of the driving piezoelec-

tric element (Fig. 1(b)), which is used both as an actuator and

a sensor. From the model,24 one has qðtÞ ¼ CVðtÞ � vuðtÞ,
where C is the capacitance of the piezoelectric layer. Since

the magnitude of the “driving term” CV(t) is much greater

than that of the “sensing term” vuðtÞ, electric cancellation is

done in practice, by connecting the piezoelectric layer of the

vibrating beam to a second beam that is subjected to the same

input voltage V(t) and that is blocked from any mechanical

displacement (it has not been released from the wafer during

fabrication). An adjustable gain is used to cancel the driving

term CV(t). Then, a charge amplifier provides an output volt-

age proportional to u(t).21

The parametric amplification is first considered by

means of the model of Eq. (1), without geometrical nonli-

nearities (C ¼ 0). It can be shown by a first order perturba-

tion expansion of the solution that uðtÞ ¼ a cosðXtþ wÞ,
where a is known from a closed-form expression6,23 as a

function of X, u, Fd, d, x0, and Q. For a non zero parametric

pump (d 6¼ 0), the curve a as a function of X has a reso-

nant shape, which depends on u, as shown in Fig. 2(a).

With u ¼ �p=4 and X ¼ x0, the system’s response under

parametric excitation has a higher amplitude at resonance

with a narrower bandwidth, associated with an effective

quality factor Qeff ¼ x0=Dx, where Dx is the �3 dB band-

width. This is confirmed by Fig. 2(b), where the gain at reso-

nance G ¼ aðd 6¼ 0Þ=aðd ¼ 0Þ, given by Eq. (2a), is shown

as a function of u.

In the case of parametric amplification (u ¼ �p=4), the

main theoretical result is that the gain G0 ¼ Gðu ¼ �p=4Þ
and the quality factor enhancement Qeff=Q are functions of

only one dimensionless parametric driving amplitude
�d ¼ d=dcr

G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �d

2 � 2�d sin 2u
q

1� �d
2

; G0 ¼
1

1� �d
;

Qeff

Q
¼ 1

ð1� �dÞg
;

(2)

where g ¼ 0:527 and dcr ¼ 2x2
0=Q. The gain relations (G and

G0) are related to closed-form expression6,23 while the one for

Qeff was obtained here by a numerical fit, with a ¼ f ðXÞ com-

puted by numerical continuation of periodic solutions with the

software MANLAB
30,31 and with Qeff estimated from the �3 dB

resonance bandwidth. dcr is the critical amplitude of the pure

parametric forcing: if the system is driven only by parametric

actuation (Fd ¼ 0 in Eq. (1)), a non-zero response is obtained

only if the driving amplitude d is above dcr. Experimental

examples of purely parametric response are shown in Figs.

5(c) and 6(c). In contrast, if Fd 6¼ 0, parametric amplification

is obtained with d below dcr. As d approaches dcr, G0 and Qeff

theoretically tend to infinity, so that any quality factor is

potentially attainable by this method. With the present model

without geometrical nonlinearities, if d > dcr, the response is

infinite in a frequency band around X ¼ x0.32

Practically, the immovable ends of the beam in the axial

direction create a nonlinear axial/bending coupling, mod-

elled here by the cubic term of coefficient C. Its influence is

noticeable for large amplitudes of the response, for which

the resonance curve is bent toward high frequencies (if

C > 0) or toward low frequencies (if C < 0). This phenom-

enon is observed for pure direct forcing (d ¼ 0;Fd 6¼ 0),

pure parametric forcing (Fd ¼ 0; d > dcr), and parametric

amplification, as shown in Figs. 5(a), 5(c), 6(a) and 6(c). To

illustrate this point, several resonance curves have been com-

puted with MANLAB
30,31 (see Fig. 3(a)), and for each set of pa-

rameters, the gain G0 and the effective quality factor Qeff

have been estimated. Figure 3 shows the result and exhibits

the effect of nonlinearities: for a given value of direct forcing

FIG. 2. (a) Experimental resonance curves of the 76.1 kHz mode of the

700 lm bridge for various phase differences u between the direct and the

parametric forcing and a constant direct forcing Vd ¼ 3:5mV. (b) Gain at

resonance as a function of u. The solid line is from the analytical linear

model (Eq. (2a)) and the markers are experimental data from Fig. 2(a).

FIG. 1. (a) Scanning electron microscopy image of the devices. The two

bridges selected for the experiments of Figs. 5 (500 lm) and 6 (700 lm) are

shown; (b) schematic of the micro-bridges; (c) piezoelectric equivalent

actuation.
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Fd, if one increases the parametric forcing d, the response

amplitude increases until a critical value above which the

bending of the resonance curve is noticeable (the thick black

curve of Fig. 3(a)). At this point, G0 and Qeff diverge from

the theoretical formula (2) (Qeff loses its physical meaning,

especially when jump phenomena occur). This divergence

from theory appears for a value of d that decreases as Fd is

increased.

It thus appears that the geometrical nonlinearities

impose a limit on the response amplitude above which bend-

ing of the resonance curve is noticeable. Figure 4(a) illus-

trates this point: we denote by a0 the amplitude of the base

resonant response without parametric pump (curve 1,

F ¼ Fd; d ¼ 0), by acr the amplitude of the critical resonant

response without parametric pump above which jump phe-

nomena appear (curve 3, F ¼ Fcr; d ¼ 0) and amax the critical

amplitude of the parametrically amplified resonance above

which jump phenomena are observed (curve 2, F ¼ Fd;
d ¼ dmax). In the case of no parametric excitation, consider-

ing a Duffing oscillator leads to a critical amplitude at reso-

nance acr ¼ ax0=
ffiffiffiffiffiffiffi
QC
p

, with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

ffiffiffi
3
p

=27

q
.33,34 Since

amax is associated with a greater quality factor than acr

(Qeff > Q), the resonance curve of the parametrically ampli-

fied resonance (curve 2) is sharper than the Duffing one

(curve 3), so that the nonlinearities become noticeable for a

smaller amplitude. One then observes amax < acr.

We note N ¼ acr=a0 the gain between the base resonant

response and the critical one. We here assume that amax is

defined by an analogous formula, associated with Qeff , so

that amax ¼ ax0=
ffiffiffiffiffiffiffiffiffiffiffi
QeffC
p

. This might appear to be a crude

assumption since the resonance curves have different shapes

with and without parametric amplification. However, for

high values of the quality factor, the curves at the resonance,

near the maximum, have similar shapes. As a consequence,

with this assumption, one has

Gmax ¼
amax

a0

¼ Namax

acr

¼ N

ffiffiffiffiffiffiffiffi
Q

Qeff

s
: (3)

Then, following Eqs. (2b) and (2c)

1

ð1� �dÞg
¼ Qeff

Q
¼ Gg; (4)

so that

Gmax ¼ Nc;
Qeff

Q

� �
max

¼ Ngc; �dmax ¼ 1� N�c; (5)

where c ¼ 2=ð2þ gÞ ’ 0:792 is a constant, obtained by sub-

stitution of Eq. (4) into Eq. (3).

To assess the validity of those formulas, they are

compared to numerical results in Figs. 4(b)–4(d), which

show Gmax and ðQeff=QÞmax as a function of N. The five

grey markers are associated with the values of N ¼ acr=a0

¼ Fcr=Fd from Fig. 3, where the numerical computations

(with geometrical nonlinearities, C 6¼ 0) diverge from lin-

ear theory of Eqs. (2) (without geometrical nonlinearities,

C ¼ 0). An excellent agreement is obtained as shown in

Figs. 4(b)–4(d), thus validating formula (5).

The experimental response of one mode of a 700 lm

micro-bridge is shown in Fig. 5. The geometrical nonlinear-

ities have a softening effect. It is believed to result from ei-

ther the residual stresses in the micro-bridge,35 yielding a

non-zero static curvature, and/or the non-symmetrical beam

cross-section.36 Figure 5(b) leads to a critical value of the

parametric pump Vp;cr ¼ 1:1235V. Figures 5(c) and 5(d) val-

idate the analytical gain and Qeff=Q formulae (2) in the linear

range, and clearly show an effect of the geometrical nonli-

nearities analogous to the one predicted by the numerical

simulations shown in Fig. 3.

Another beam is considered in Fig. 6, where the consid-

ered mode is subjected to a nonlinear hardening effect. This

probably stems from the fact that the length of the micro-

bridge (500 lm) is shorter, so that the residual stresses lead

to a less buckled state of the beam at rest. Figs. 6(c) and 6(d)

FIG. 3. (a) Resonance curves a ¼ f ðXÞ obtained by numerical computations

with MANLAB,30,31 from Eq. (1), with Q¼ 500, Fd ¼ 4� 10�6;C¼ 1;
�d 2 f0;0:8;0:9;0:92;0:93;0:94;0:95g. (b) and (c) Gain G0 and Q-factor

enhancement as a function of �d. The solid lines are from the linear model

(Eqs. (2b and (2c)) and the markers (�;�;�;�;D) are from the numerical

results with C¼ 1, for various values of Fd 2 f20;50;100;1;4g� 10�6 and

Q 2 f100;100;100;500;500g. The black markers and the dotted lines are

associated with the geometrical nonlinearities threshold, shown in Figs. 4(c)

and 4(d).

FIG. 4. (a) Various resonance curves with geometrical nonlinearities

(C ¼ 1, Q¼ 100). 1: base resonance curve (F ¼ Fd , d ¼ 0); 2: maximal

parametrically amplified resonance below a noticeable nonlinear bending

(F ¼ Fd ; d ¼ dmax), and 3: critical resonance curve without parametric

amplification (F ¼ Fcr; d ¼ 0). (b)–(d) Maximal Gmax, Q-factor enhance-

ment ðQeff=QÞmax, and corresponding value of �d obtainable without noticea-

ble bending of the resonance curve, as a function N ¼ Fcr=Fd . Solid lines:

model (Eq. (5)); grey markers (�;�;�;�;D): numerical values of Fig. 3;

black markers: experimental results (3: Fig. 5;": Fig. 6).
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show only a qualitative agreement to the linear theory,

mainly because the output electric charge response of this

beam is one order of magnitude smaller than for the 700 lm

beam at equivalent input voltage, so that the measured output

voltages are very close to the noise floor. Thus, the tuning of

the adjustable gain to cancel the parasitic electric capaci-

tance is rendered very difficult and disturbance-prone.

The utility and the relevance of the theoretical gain and

Qeff=Q formulas (5) were evaluated from the experiments.

The value of Vd;cr (Fcr), for a given mode, was evaluated by

monitoring the resonance curve without parametric pumping

for increasing driving amplitude and estimating the one

above which jumps in the resonance curve appear. Then, the

same procedure was applied with parametric pumping (Figs.

5(b) and 6(b)). The corresponding experimental values of

N ¼ Fcr=Fd, Gmax, ðQeff=QÞmax, and �dmax lead to the black

markers on Figs. 4(c) and 4(d). Good quantitative agreement

is observed for the 700 lm bridge mode, thus validating the

formula. For the same reasons as before, results for the 500

lm bridge are not as good. The experimental value of C has

not been estimated, since we are interested only in the ratio

N ¼ Fcr=Fd which does not depend on C (Eq. (3)).

The parametric amplification process is clearly observ-

able in Figs. 5(b) and 6(b), with a Q-factor enhancement of 3

on the 700 lm beam and up to a factor 14 for the 500 lm

beam (Figs. 5(e), 6(e), and 4(c)), in air. Following Eq. (5),

since Fcr and dcr are fixed parameters, a given Q-factor

enhancement relies only on the choice of Fd, with no theoret-

ical limitation: the smaller Fd is, the larger the parametric

amplification effect will be. In practice, the voltages Vd and

Vp can be separated by several orders of magnitude (The best

Q-factor enhancements were obtained with Vd ¼ 2:5mV and

Vp ¼ 1:01V for the 700 lm beam and with Vd ¼ 4mV and

Vp ¼ 1:15V for the 500 lm beam), which is the main

limitation.

In future work, further improvements could be

achieved by designing the piezoelectric layers to have cou-

pling coefficients such that H is large and v is very small

(since Fd ¼ HVd and d ¼ vVp). A simple solution would be

to cover the whole length of the beams with the piezoelectric

layer. This might theoretically lead to v ¼ 0 because of the

clamped boundary conditions. In practice, because the

boundary conditions are not ideal, it would lead to a small v
that should provide an efficient parametric amplification pro-

cess. This solution has been tested,9 but not analyzed in

terms of efficiency and design.

The authors would like to thank C�edric Ayela and

Isabelle Dufour from IMS Brodeaux for dynamic measure-

ments with a Polytec MSA500 laser vibrometer as well as

Bernard Legrand from IEMN Lille for fruitful discussions.

The French National Agency for Research (Program ANR/

PNANO 2008 and Project NEMSPIEZO “ANR-08-NANO-

015”) is also gratefully acknowledged for financial support.

Support for the Penn State Nanofabrication Laboratory was

provided in part by the National Science Foundation

Cooperative Agreement No. ECS-0335765.

1B. Ilic, Y. Yang, and H. G. Craighead, Appl. Phys. Lett. 85, 2604 (2004).
2Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes,

Nano Lett. 6, 583 (2006).
3V. B. Chivukula and J. F. Rhoads, J. Sound Vib. 329, 4313 (2010).
4T. Alava, F. Mathieu, L. Mazenq, C. Soyer, D. Remiens, and L. Nicu,

J. Micromech. Microeng. 20, 075014 (2010).
5T. Manzaneque, J. Hernando-Garc�ıa, A. Ababneh, P. Schwarz, H. Seidel,

U. Schmid, and J. L. S�anchez-Rojas, J. Micromech. Microeng. 21, 025007

(2011).
6D. Rugar and P. Gr€utter, Phys. Rev. Lett. 67, 699 (1991).

FIG. 6. Experimental results on a 500 lm micro-bridge, for a mode of resonance

frequency x0=2p ¼ 263:1kHz and Q¼ 125 (see Fig. 5 for analogous details).

(b) Vd ¼ 5mV;Vp 2 f0; 0:65; 0:9; 1; 1:05; 1:1; 1:15; 1:2; 1:25; 1:3; 1:35gV; (c)

contour plot of the resonance curves in pure parametric driving (Vd ¼ 0,

y-axis: Vp, color levels: output voltage); (d) and (e) �;D; � : Vd 2 f2:5;
4; 5gmV.

FIG. 5. Experimental results on a 700 lm micro-bridge, for a mode of reso-

nance frequency x0=2p ¼ 76:1kHz and Q¼ 400. (a) Deformed shape meas-

ured with a laser vibrometer; (b) resonance curves for various values of the

parametric pump (Vd ¼ 20mV, Vp 2 f0; 0:16; 0:3; 0:5; 0:7; 0:9; 1:1gV); (c)

resonance curve in pure parametric driving (Vd ¼ 0, Vp 2 f1:1235; 0:127;
1:129; 1:131; 1:138; 1:155; 1:19gV); (d) and (e) Gain Gmax and quality factor

enhancement ðQeff=QÞmax as a function of the parametric forcing voltage Vp.

The solid lines show the theoretical formula (2) (associated with C ¼ 0) and

the markers stems from experiments, for various values of the direct forcing

amplitude (�;D; �;� : Vd 2 f2:5; 3:5; 5; 20gmV). The black markers mark

the threshold for geometrical nonlinearities, as shown in Figs. 4(c) and 4(d).

163504-4 Thomas et al. Appl. Phys. Lett. 102, 163504 (2013)

Downloaded 25 Apr 2013 to 163.173.128.10. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1794378
http://dx.doi.org/10.1021/nl052134m
http://dx.doi.org/10.1016/j.jsv.2010.04.022
http://dx.doi.org/10.1088/0960-1317/20/7/075014
http://dx.doi.org/10.1088/0960-1317/21/2/025007
http://dx.doi.org/10.1103/PhysRevLett.67.699


7D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl.

Phys. Lett. 77, 1545 (2000).
8R. B. Karabalin, X. L. Feng, and M. L. Roukes, Nano Lett. 9, 3116 (2009).
9R. B. Karabalin, S. C. Masmanidis, and M. L. Roukes, Appl. Phys. Lett.

97, 183101 (2010).
10I. Mahboob and H. Yamaguchi, Appl. Phys. Lett. 92, 173109 (2008).
11Z. Yie, N. J. Miller, S. W. Shaw, and K. L. Turner, J. Micromech.

Microeng. 22, 035004 (2012).
12C.-C. Wu and Z. Zhong, Appl. Phys. Lett. 99, 083110 (2011).
13J. F. Rhoads, S. W. Shaw, K. L. Turner, and R. Baskaran, J. Vib. Acoust.

127, 423 (2005).
14W. Zhang and K. L. Turner, Sens. Actuators, A 122, 23 (2005).
15R. B. Karabalin, R. Lifshitz, M. C. Cross, M. H. Matheny, S. C. Masmanidis,

and M. L. Roukes, Phys. Rev. Lett. 106, 094102 (2011).
16I. Mahboob and H. Yamaguchi, Nat. Nanotechnol. 3, 275 (2008).
17J. F. Rhoads and S. W. Shaw, Appl. Phys. Lett. 96, 234101 (2010).
18J. M. Nichol, E. R. Hemesath, L. J. Lauhon, and R. Budakian, Appl. Phys.

Lett. 95, 123116 (2009).
19K. L. Ekinci, Y. T. Yang, and M. L. Roukes, J. Appl. Phys. 95, 2682 (2004).
20A. N. Cleland, New J. Phys. 7, 235 (2005).
21F. Mathieu, F. Larramendy, D. Dezest, C. Huang, G. Lavallee, S. Miller,

C. M. Eichfeld, W. Mansfield, S. Trolier-McKinstry, and L. Nicu,

“Reducing parasitic effects of actuation and sensing schemes for piezo-

electric microelectromechanical resonators,” Microelectronic Eng.

(in press) (2013).
22J. Ducarne, O. Thomas, and J.-F. De€u, J. Sound Vib. 331, 3286 (2012).
23R. Lifshitz and M. C. Cross, “Nonlinear dynamics of nanomechanical and

micromechanical resonators,” in Reviews of Nonlinear Dynamics and
Complexity (Wiley, 2008), Vol. 1, p. 52.

24A. Lazarus, O. Thomas, and J.-F. De€u, Finite Elem. Anal. Des. 49, 35 (2012).
25In fact, a quadratic nonlinear term bu2 should be included in Eq. (1). Not

considering it here is fully justified by the concept of nonlinear modes,

where an efficient one degree of freedom approximation of the dynamics

around one resonance leads to a normal form without quadratic nonlinear-

ities. (see C. Touz�e, O. Thomas, and A. Chaigne, J. Sound Vib. 273, 77

(2004) and C. Touz�e and O. Thomas, Int. J. Non-Linear Mech. 41, 678

(2006).
26U. von Wagner and P. Hagedorn, J. Sound Vib. 256, 861 (2002).
27S. C. Stanton, A. Erturk, B. P. Mann, and D. J. Inman, J. Appl. Phys. 108,

074903 (2010).
28F. Xu, S. Trolier-McKinstry, W. Ren, B. M. Xu, Z. L. Xie, and K. L.

Hemker, J. Appl. Phys. 89, 1336 (2001).
29F. Griggio, S. Jesse, A. Kumar, O. Ovchinnikov, H. Kim, T. N. Jackson,

D. Damjanovic, S. V. Kalinin, and S. Trolier-McKinstry, Phys. Rev. Lett.

108, 157604 (2012).
30B. Cochelin and C. Vergez, J. Sound Vib. 324, 243 (2009).
31A. Lazarus and O. Thomas, C. R. Mec. 338, 510 (2010).
32A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley, 1979).
33V. Kaajakari, T. Mattila, A. Lipsanen, and A. Oja, Sens. Actuators, A 120,

64 (2005).
34N. Kacem, S. Hentz, D. Pinto, B. Reig, and V. Nguyen, Nanotechnology

20, 275501 (2009).
35C. Ayela, L. Nicu, C. Soyer, �E. Cattan, and C. Bergaud, J. Appl. Phys.

100, 054908 (2006).
36It is known that the curvature of an arch or a shell, which breaks the sym-

metry of the transverse stiffness, leads, in general, to a softening nonlinear

effect. In contrast, a plate or a straight beam always shows a hardening

nonlinear effect.

163504-5 Thomas et al. Appl. Phys. Lett. 102, 163504 (2013)

Downloaded 25 Apr 2013 to 163.173.128.10. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1308270
http://dx.doi.org/10.1063/1.1308270
http://dx.doi.org/10.1021/nl901057c
http://dx.doi.org/10.1063/1.3505500
http://dx.doi.org/10.1063/1.2903709
http://dx.doi.org/10.1088/0960-1317/22/3/035004
http://dx.doi.org/10.1088/0960-1317/22/3/035004
http://dx.doi.org/10.1063/1.3627178
http://dx.doi.org/10.1115/1.2013301
http://dx.doi.org/10.1016/j.sna.2004.12.033
http://dx.doi.org/10.1103/PhysRevLett.106.094102
http://dx.doi.org/10.1038/nnano.2008.84
http://dx.doi.org/10.1063/1.3446851
http://dx.doi.org/10.1063/1.3232232
http://dx.doi.org/10.1063/1.3232232
http://dx.doi.org/10.1063/1.1642738
http://dx.doi.org/10.1088/1367-2630/7/1/235
http://dx.doi.org/10.1016/j.jsv.2012.03.002
http://dx.doi.org/10.1016/j.finel.2011.08.019
http://dx.doi.org/10.1016/j.jsv.2003.04.005
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.12.004
http://dx.doi.org/10.1006/jsvi.2002.5024
http://dx.doi.org/10.1063/1.3486519
http://dx.doi.org/10.1063/1.1325005
http://dx.doi.org/10.1103/PhysRevLett.108.157604
http://dx.doi.org/10.1016/j.jsv.2009.01.054
http://dx.doi.org/10.1016/j.crme.2010.07.020
http://dx.doi.org/10.1016/j.sna.2004.11.010
http://dx.doi.org/10.1088/0957-4484/20/27/275501
http://dx.doi.org/10.1063/1.2338139

