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Abstract: In underwater acoustics, detection of buried objects in sediments (cables, 

mines,…) is a complex problem. One reason is that acoustic attenuation in these 

sediments increases with frequency. To ensure sufficient penetration depth in marine 

sediments, low frequencies have to be used, implying a low resolution. A solution 

proposed to solve this problem is the parametric emission based on the nonlinear 

properties of the propagation medium. This method can generate a low frequency wave 

from two directional high frequencies beams. The parametric propagation is simulated in 

seawater and marine sediments. The model developed is based on the fractional-step 

numerical method introduced by Christopher and Parker [1]. In this method, the normal 

particle velocity is calculated plane by plane from the surface of the transducer to a 

specified distance. The effects of nonlinearity, attenuation and diffraction are calculated 

independently for each spatial step. Moreover, to reduce the number of spatial steps, a 

second order operator splitting scheme is used. The diffraction computation is based on a 

method of angular spectrum in the frequency domain where the field across a source 

plane is described by a spatial frequency distribution. To improve code stability, the 

effects of nonlinearity and attenuation are calculated and associated in shorter 

propagation substeps. At the interface between water and marine sediments, the 

transmission conditions are applied. Several tests have been carried out in different 

configurations (changing the primary frequencies, the parametric frequency, the source 

geometry, the inclination of the source with the interface, the focal distance,…). The 3D 

velocity field is calculated in each case, thereby allowing to know the directivity of the 

source, the velocity amplitude in sediments and the performance. 
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1. INTRODUCTION 

In order to detect buried objects in marine sediments, low frequency has to be used, 

implying a low resolution. A solution to solve this problem is the parametric emission. 

The aim of this work is to present a numerical model to simulate a parametric propagation 

in seawater and marine sediments. This model is based on the fractional-step numerical 

method introduced by Christopher and Parker [1]. In this method, the normal particle 

velocity is calculated plane by plane from the source to a specified distance. The effects of 

nonlinearity, attenuation and diffraction are calculated independently for each spatial step. 

Moreover, to reduce the number of spatial steps a second order operator splitting scheme 

is used. The present paper is organized as follows: first, the principle of the model is 

described, then, its application with the parametric emission is presented and last, few 

results are showed. 

2. NUMERICAL MODELING 

Numerical modeling proposed for nonlinear propagation is a frequency domain 

approach based on the Burgers equation and the angular spectrum method. This method is 

a numerical solution of Burgers equation taking into account the effects of nonlinearity, 

diffraction and attenuation with a split-step operator. Over sufficiently small steps, these 

effects can be treated independently. Knowing the normal velocity field for a plane z , the 

particle velocity profile   at position zz   is [2] : 

  zLLLzzz DNA   ˆˆˆ)()( ,  

(1) 

where DNA LLL ˆ and ˆ ,ˆ  are respectively the attenuation operator, the nonlinear operator and 

the diffraction operator. 

 The propagation modeling is divided into three steps [2]: diffraction over substep 
2
z , 

nonlinearity and attenuation over z , and second diffraction over substep 
2
z . 

Moreover, to improve the stability of the code, the calculation of the nonlinearity and 

attenuation on the distance z  is divided into several sub-steps. 

2.1. Nonlinear and attenuation operators 

To model nonlinear propagation, the wave is decomposed into different harmonic 

components : 
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Thereafter, to simplify notations, it is implied that n  and n  systematically depend in 

x , y  and z . 

Integration of expressions (1) and (2) in the Burgers equation gives [3] : 
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(3) 

with *

n  the complex conjugate of n ,   and 0c  respectively the nonlinearity coefficient 

and the celerity of the medium, and n  the attenuation coefficient (in Np.m
-1

) defined by 

the François-Garrison model [4] for the frequency nf . 

2.2. Diffraction operator 

The diffraction algorithm is based on the angular spectrum method which is a 

frequency approach where the field of a source plane is described by a spatial frequencies' 

distribution. The 2D Fourier transform of the velocity field received at depth z  is 

)),,,((),,,( 2 nzyxnzkkV nDyxn F . 

At the depth zz  , the velocity field from this source can be calculated by [5] : 
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where H is the transfer function : 
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where 
0cn
nk


  is the wave number at the frequency nf , yx kk  and  are the wave number 

components in the ),( yx  plane. 

2.3. Sediment influence 

Sediments are considered as an homogeneous fluid with characteristics different from 

those of seawater. At the water/sediment interface, the algorithm automatically handles the 

refraction between the two media, but the velocity transmission coefficient T  depending 

on the incidence angle at the interface has to be included. It is applied in the spatial 

frequency domain :   )],,(),,,([),,,( 1
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where s  and sc  are respectively the sediment's density and celerity, and 0  is the 

seawater's density. 

Beyond the interface, the nonlinear propagation algorithm in sediments is the same as 

in seawater with specific characteristic parameters s , sc , sz  and ns  instead of  , 0c , 

z  and n  respectively. 

3. PARAMETRIC EMISSION 

In the case of a parametric emission, two high frequency waves 
1hf  and 

2hf  are emitted 

in order to generate a wave at beating frequency 
12 hhl fff   (with 

12 hh ff  ) by 

nonlinear interactions. 

The parametric ratio p  is defined as the ratio between the average of primary 

frequencies over parametric frequency : 
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In order to avoid creating even lower frequencies than lf  by interactions between 

harmonics, parametric ratio is a half-integer : 1

2 np  with n  as a non-zero integer [6]. In 

this case, 
1hf  and 

2hf are multiples of the parametric frequency : lh fpf )(
2
1

1
  and 

lh fpf )(
2
1

2
 . To numerically model a parametric emission, the previously described 

code is used. At the source's surface, the velocity profile is initialized : 
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 0

2220 sin)0,,(  xdyxkzyx fnn   can be introduced to take into account both a 

focalization at a distance fd  and an inclination of the source with an incidence angle 0 . 

4. RESULTS 

Simulations were performed with the following acoustic properties : -1

0 m.s 1520c  

and -3

0 kg.m 1025  for the water, -1m.s 1660sc  and -3kg.m 1600s  for the 

sediment. The amplitude of the acoustic velocity at the source is constant for each primary 

wave. Tests were conducted for different primary frequencies hf  and parametric 

frequencies lf . We also considered several water depths between the source and the 

sediment from 1 to 6 meters. 



 

 
(a)                                                                      (b)      

Fig.1: Velocity field (m.s
-1

) : 

(a) for a depth of 6 m and a parametric frequency of 15 kHz 

(b) for a depth of 3 m and a parametric frequency of 50 kHz. 

 

 
(a)                                                                             (b) 

Fig.2: (a) Velocity field (m.s
-1

) for a depth of 1 m and a parametric frequency of 

15 kHz. (b) Axial propagation curves for depths of 1 m (─) and 6 m (---) for a parametric 

frequency of 15 kHz. 



 

Figure (1a) shows the normal velocity field obtained for a parametric frequency of 

15 kHz with a parametric ratio of 6.5 and a 6 m water height. For the frequency involved, 

attenuation is quite low and the parametric wave is generated through the entire water 

column. And despite high nonlinearity, velocity quickly decreases in the sediment. For a 

parametric frequency of 50 kHz (Fig.1b), as expected, maximal values of the parametric 

waves increase with frequency. Nevertheless, the growth of the parametric wave takes 

place only on the first meter due to attenuation. 

 

Figure (2a) presents the velocity field obtained for a parametric frequency of 15 kHz 

for a depth of 1 m. In this case, the value is higher in the first 20 cm of the sediments. As 

shown in figure (2b) with the axial propagation curves, when the source is 1 m above the 

sediments, their nonlinearity implies an increase in the parametric amplitude on the first 

20 cm. But this one decreases quickly with the attenuation. 

5. CONCLUSION 

A parametric acoustic emission has been simulated in seawater and marine sediments 

with a numerical model based on a fractional-step method. The normal velocity is 

calculated plane by plane from the source considering the effects of nonlinearity, 

attenuation and diffraction. Simulations show that this numerical model gives results in 

concordance with the theory and that primary frequencies have to be optimal : if they are 

too low, the nonlinear effects do not create a sufficient level of parametric wave, and if 

they are too high, the attenuation will prevent any significant level on sediment surface. 

Simulations were also performed with different focalizations but did not give 

significant differences in sediments. 
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