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The quality level of a mechanism can be evaluated a posteriori after several months by following the
number of warranty returns. However, it is more interesting to evaluate a predicted quality level in
the design stage: this is one of the aims of statistical tolerance analysis. A possible method consists of
computing the defect probability (PD) expressed in ppm. It represents the probability that a functional
requirement will not be satisfied in mass production. For assembly reasons, many hyperstatic mecha-
nisms require gaps, which their functional requirements depend on. The defect probability assessment
of such mechanisms is not straightforward, and requires advanced numerical methods. This problem par-
ticularly interests the VALEO W.S. company, which experiences problems with an assembly containing
gaps. This paper proposes an innovative methodology to formulate and compute the defect probability
of hyperstatic mechanisms with gaps in two steps. First, a complex feasibility problem is converted into
a simpler problem. Then the defect probability is efficiently computed thanks to system reliability meth-
ods and the m-dimensional multivariate normal distribution Um. Finally, a sensitivity analysis is provided
to improve the original design. The whole approach is illustrated with an industrial case study, but can be
adapted to other similar problems.

1. Introduction

In very competitive industrial fields such as the automotive
industry, more and more interest is being paid to the quality level
of manufactured mechanisms. It is very important to avoid war-
ranty returns and manage the rate of out-of-tolerance products
in production that can lead to assembly line stoppages and/or
the discarding of out-of-tolerance mechanisms.

The quality level of a mechanism can be evaluated by the num-
ber of faulty parts in production or by the number of warranty re-
turns per year. However, these two methods of product quality
evaluation remain a posteriori. Tolerance analysis is a more inter-
esting way to evaluate a predicted quality level in the design stage.
Scholtz (1995) proposes a detailed review of classical methods
whose goal is to predict functional characteristic variations based
on component tolerances. Moreover, statistical tolerance analysis
enables the definition of the probability that this functional
requirement will be respected, as the well known RSS (Root Sum
of Squares) does. Advanced statistical tolerance analysis methods
allow the defect probability of an existing design to be computed,

knowing the dimension tolerances and functional requirements.
Various assumptions about the statistical distributions of compo-
nent dimensions can be made based on their tolerances. This defect
probability, denoted as PD in the following, is expressed in ppm
(parts per million) and predicts the number of faulty parts per
million in mass production. Several authors have proposed well-
established methodologies to evaluate this probability for linear
(Evans, 1975a) or non-linear analytical expressions (Evans, 1975a;
Glancy & Chase, 1999; Hassani, Aifaoui, Benamara, & Samper,
2008; Nigam & Turner, 1995) of functional characteristics.

In many cases, engineers design hyperstatic mechanisms to in-
crease rigidity. For assembly reasons, this kind of mechanism re-
quires functional gaps to remove stresses and fulfill its functions.
Often, the functional requirements depend on these gaps. A statis-
tical tolerance analysis of mechanisms containing gaps is not
straightforward. In the literature, as Ballu, Plantec, and Mathieu
(2008) have noted, hyperstatic mechanisms are rarely studied be-
cause of their complexity. Moreover, gaps within mechanisms are
often neglected or poorly modeled. Valeo W.S., an automotive
company for whom quality management is a top priority, with de-
fect probability goals in ppb (parts per billion), is focused on such a
mechanism with functional gaps for which existing methodologies
are ineffective or unreliable for several reasons.

This paper proposes an innovative methodology able to com-
pute the defect probability of a hyperstatic mechanism containing
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gaps. In the literature focused on this field, either the PD formula-
tion is not adapted to this case study (Ballu et al., 2008; Wu,
Dantan, Etienne, Siadat, & Martin, 2009) or the computation
method (Monte Carlo) of the defect probability can be improved
(Dantan & Qureshi, 2009). The proposed methodology includes a
particular formulation of PD probability and a computation phase.
First, a complex feasibility problem, i.e., the research of the exis-
tence of multiple non-negative gaps, is converted into a simpler
problem consisting of multiple linear equations. Then PD is effi-
ciently computed thanks to the m-dimensional multivariate nor-
mal distribution Um originally used in a system reliability
method, the FORM (First Order Reliability Method) system. More-
over, this methodology can be applied to other similar problems.
In addition, a brief sensitivity analysis is performed in order to im-
prove the quality of the system with a very low increase in manu-
facturing cost.

In the following section, assembly issues regarding the toler-
ance analysis of hyperstatic mechanisms containing gaps are illus-
trated with the particular VALEO W.S. case. A mathematical
formulation of the defect probability PD is proposed. Taking into ac-
count the complexity of this problem, Section 3 describes three
available methods to compute PD including the FORM system
one. Two different dimension models, depicting two part manufac-
turing scenarios, are also proposed. Section 4 compares the differ-
ent methods and exposes the results of their industrial application.
Based on these results, and on a sensitivity analysis, the mecha-
nism is finally redesigned with a very low extra manufacturing
cost. Section 5 concludes the paper and presents perspectives for
the future.

2. Hyperstatic mechanisms tolerance analysis for assembly
issues

2.1. Assembly of a hyperstatic mechanism

A hyperstatic mechanism is overconstrained. When a part is
positioned in space it has six degrees of freedom. It can rotate
about the three orthogonal axes and move along each of the three
axes. In a mechanism, parts are connected to each other by links

which eliminate some of these degrees of freedom. If one or more
is eliminated more than once, the parts are overconstrained. This
creates stresses, and the mechanism is said to be hyperstatic. This
situation appears very often. Most of the time, engineers design
such systems to increase rigidity. Sometimes, hyperstatic mecha-
nisms are not desired but endured. These kinds of mechanism
often involve assembly problems. For this reason, such mecha-
nisms require functional gaps to remove stresses and fulfill their
functions.

These gaps, denoted as g (vector of gaps) in the following, in-
crease the complexity of statistical analysis. They can neither be
directly controlled, nor be considered as random variables. Never-
theless, the gap widths are random variables, although they are not
independent and depend upon the independent dimensions vari-
ables Xi gathered in the vector X. Dantan and Qureshi (2009) intro-
duce the $ ‘‘it exists’’ quantifier in order to formulate correctly
assembly problems concerning mechanisms with gaps. Thus, to
ensure mechanism assemblability, at least one feasible gap config-
uration must be found. The generic defect probability formulation
of such a mechanism is:

PD ¼ Prob Xj9g 2 ½0; gmaxðXÞ� :
m̂

i¼1

fciðX;gÞP 0

!
where fci are functional characteristics which generally have to be
positive to ensure assemblability, m is the number of functional
requirements and gmax is the vector of gap widths, depending on
X as mentioned previously. In the interests of simplification, subse-
quent similar equations are written in the following abbreviated
form:

PD ¼ Prob 9g 2 ½0; gmaxðXÞ� :
m̂

i¼1

fciðX; gÞP 0

!
As soon as a gap is involved in a functional characteristic, the

problem becomes complex. Two different methods can be used
to find a feasible gap configuration. It is possible to consider only
extreme gap configurations, as Ballu et al. (2008) and Wu et al.
(2009) have done, but this method can neglect certain intermedi-
ate situations which play a significant role. To be sure to not

Nomenclature

n number of parts
X vector of part dimensions
Xi ith part dimension
Ti Xi target value
ti Xi tolerance
LSLi, USLi respectively lower and upper specification limits of Xi

ri standard deviation of Xi

li mean value of Xi

di mean shift of Xi, difference between target and mean
values: di = Ti � li

dðmaxÞ
i maximum permissible mean shift of Xi

CðrÞpki; CðrÞpi Xi capability requirements

Cpki, Cpi capability measures of Xi

CðmaxÞ
pi Xi maximum capability level obtained in optimal manu-

facturing conditions
g vector of gaps
g1, g2 gaps between parts
fc1, fc2 functional characteristics of the mechanism
s functional requirement threshold (Permissible tightening)
G(Xi) performance function in physical X space

Ui ith part dimension in standard space
H(Ui) performance function in standard U space
PD defect probability of the mechanism
C95% 95% confidence interval of a random result
P�j most probable failure point associated with the jth

performance function Gj(X)
bj reliability index associated with the jth performance

function Gj(X)
U cumulative density function of the standard Gaussian

distribution
v2

n cumulative density function of the chi-squared distribu-
tion with n degrees of freedom

Um cumulative density function of the m-dimensional
Gaussian distribution

m number of performance functions
[q] covariance matrix

a(j) direction cosines associated with the jth performance
function Gj(X)

Si Xi sensitivity index



neglect any of these, it is possible to run an optimization algorithm
to determine one feasible gap configuration. This method has been
coupled with the Monte Carlo method by Dantan and Qureshi
(2009) to compute defect probability. This association of methods
has the disadvantage of being very time-consuming.

Section 2.2, describes a VALEO W.S. case study. Section 2.3
shows how the defect probability formulation based on extreme
gap configurations can be inadequate when applied to this partic-
ular case study. Then, in Section 2.4, an improved formulation is
proposed to ensure the assemblability of the VALEO W.S. mecha-
nism. Thanks to this formulation, system reliability methods de-
scribed in Section 3.2 can be used to compute the defect
probability.

2.2. VALEO W.S. case study

The problem addressed in this paper is a windshield wiper
mechanism designed and manufactured by VALEO W.S.. For confi-
dentiality reasons, only an operating diagram is provided (Fig. 1). It
is formed of three different parts, H, S and E, whose dimensions are
independent random variables and gathered in X = {E1,E2,E3,E4, -
E5,H1,H2,H3,S1}. This mechanism is hyperstatic since it requires
gaps to assemble it without stresses. Parts H and E are positioned
with respect to part S. The relative positions of parts H, E and S
are determined by the gaps of the mechanism, defined by
g = {g1,g2}. These two gaps are not random variables, cannot be di-
rectly controlled, and vary between zero and a maximum value;
they are shown in Fig. 1:

0 6 g1 6 H1 � S1 ð1Þ
0 6 g2 6 E2 � S1 ð2Þ

The operating diagram is deceptive as regards the influence of
part orientations. In fact in the real mechanism, which is more
compact, orientation defects have no effect. Orientation deviations
are therefore ignored in this paper. Two functional characteristics,
fc1 and fc2 (Fig. 1b), between parts H and E can be measured. To sat-
isfy the functional requirements of the mechanism, fc1 and fc2 must
be greater than a threshold s defining a minimum functional gap if
s has a positive value and defining a maximum tightening value if s
is negative. If one of these two functional characteristics is lower
than s, it might aggravate assembly problems, stoppages in the
production line and potential functional issues. fc1 and fc2 are func-
tions of X and g and are given as follows:

fc1ðX; gÞ ¼ �E1 þ E4 � E5 � H2 � g1 þ g2 ð3Þ
fc2ðX; gÞ ¼ �E3 þ E5 þ H2 þ H3 þ g1 � g2 ð4Þ

The aim is to compute the probability (called defect probability,
denoted PD) that the studied mechanism cannot be assembled (i.e.
there is contact between parts H, S and E in the detailed zone
(Fig. 1b) for s = 0). Practically, the goal is to determine the probabil-
ity that there exist gap values g giving rise to both functional char-
acteristics fc1 and fc2 having a value greater than a threshold s. The
defect probability PD is its complement and reads:

PD ¼ 1� Prob 9g 2 ½0; gmaxðXÞ� : ðfc1ðX; gÞP s ^ fc2ðX; gÞP sÞ½ � ð5Þ

Fig. 1. VALEO W.S. case study. g1 and g2 are the gap parameters and define the positions of parts E and H in relation to part S. Assembly is possible if fc1 and fc2 are greater than
a threshold s.



It is interesting to note that the expression fc1 + fc2 = H3 � E1 �
E3 + E4 is independent of g and quantifies the space required by E
to be inserted into parts H (see the detailed zone in Fig. 1b). Con-
straining fc1 + fc2 P 2s would be a more convenient way to deal
with the problem; unfortunately, it is not sufficient for our pur-
pose. It ensures that there is enough space to assemble the mech-
anism, but nothing guarantees that the relative positions of parts
H, E and S, defined by g = {g1,g2}, allow them to fit into place.

Each dimension Xi is characterized by a target value Ti, a toler-
ance ti and two required capability levels CðrÞpi and CðrÞpki (see Table 1
in Section 4 for the values). A manufactured part is in conformance
if its measured capability levels Cpi and Cpki verify Cpi P CðrÞpi and
Cpki P CðrÞpki. Capability level expressions are recalled as follows:

Cpi ¼
ti

6ri
ð6Þ

Cpki ¼
ðtiÞ=2� jdij

3ri
¼min

li � LSLi

3ri
;

USLi � li

3ri

� �
ð7Þ

where di = li � Ti is the mean shift of Xi, li the mean value, ri the
standard deviation, LSLi and USLi respectively the Lower and Upper
Specification Limits of Xi.

2.3. Defect probability formulation based on the literature

The complexity of this mechanism is due to mobilities arising
from the gaps. To compute the defect probability, the formulation
must be independent of uncontrolled variables: the gaps g. This is
not the case in Eq. (5). Some authors have dealt with such prob-
lems (Ballu et al., 2008; Wu et al., 2009) by considering only

extreme gap configurations. This method can be effective for some
mechanisms, but not for this particular case study. This subsection
proposes a defect probability formulation based on the literature,
and illustrates why it is not appropriate.

Considering extreme configurations and following Ballu et al.
(2008) and Wu et al. (2009), the mechanism can be assembled if
fc1 and fc2 are greater than s in at least one of the four (a, b, c or
d) gap configurations in extreme cases (Fig. 2). This assumption al-
lows us to remove the g variables from Eq. (5) by assigning partic-
ular values to the gaps. Let E(i) be the event (fc1(X,g(i)) P

s ^ fc2(X,g(i)) P s), (i) = (a,b,c,d). Then PD, denoted PðliteratureÞ
D with

this formulation, reads:

PðliteratureÞ
D ¼ 1� ProbðEðaÞ [ EðbÞ [ EðcÞ [ EðdÞÞ ð8Þ

As required, this formulation is independent of g.
Thanks to Zou and Morse (2004), it is possible to represent

(Fig. 3) the gap space of the mechanism in the plane (g1,g2).
Lines fc1 = s and fc2 = s, whose equations are defined in Eqs. (9)

and (10), are plotted.

fc1 ¼ s) �E1 þ E4 � E5 � H2 � g1 þ g2 ¼ s ð9Þ
fc2 ¼ s) �E3 þ E5 þ H2 þ H3 þ g1 � g2 ¼ s ð10Þ

The rectangle represents the numerical limits of g1 and g2

whose corners are extreme configurations (a, b, c, d) of the mech-
anism. Thus, the black zone, which is the intersection of the zone
between the domains fc1 P s and fc2 P s with the rectangle, repre-
sents the g values falling within their bounds and respecting func-
tional requirements. When observing this figure, it is clear that the
consideration of only the four extreme cases a, b, c and d is very
restrictive, and an infinite number of intermediate configurations
would allow a correct assembly. Since there is a black zone, the
functional requirements are respected, whereas none of the ex-
treme configurations (a, b, c, d) are suitable. This kind of configura-
tion must be taken into consideration. By ignoring intermediate
configurations, the formulation based on the literature (Eq. (8))
overvalues the actual defect probability value: PðliteratureÞ

D P PD. This
defect probability formulation is not appropriate to the present
case study.

2.4. Improved defect probability formulation

In this subsection, an improved defect probability formulation
will be proposed. It is based on graphic considerations.

Table 1
Mechanism parameters {E1,E4,H2} are classical dimensions {E2,E3, E5,H1,H3, S1} are
critical ones. CðmaxÞ

pi is obtained by monitoring in optimal manufacturing conditions.

Xi Ti ti CðrÞpi CðrÞpki CðmaxÞ
pi

E1 0.7 0.2 1 1 2
E2 1.35 0.1 1.67 1.33 2
E3 3 0.2 1.67 1.33 2
E4 2.4 0.1 1 1 2
E5 0.955 0.2 1.67 1.33 2
H1 1.5 0.3 1.67 1.33 2
H2 0.7 0.2 1 1 2
H3 1.35 0.2 1.67 1.33 2
S1 1.25 0.06 2 2 2

Fig. 2. Extreme configurations.



The gap space representation (Fig. 3) enables us to see that only
three conditions must be respected to verify the functional
requirements:

� Let G and J be the points of line fc1 = s corresponding respec-
tively to g1 = 0 and g1 ¼ gmax

1 , and F and I the points of line
fc2 = s corresponding respectively to g2 = 0 and g2 ¼ gmax

2 . Since
zones fc1 P s and fc2 P s are located respectively above and
below lines (GJ) and (FI) (see Fig. 3), it is obvious that (FI) must
be placed above (GJ) in order to have both functional character-
istics greater than s (Eq. (11)).

�E3 þ E5 þ H2 þ H3 � s P E1 � E4 þ E5 þ H2 þ s

or � E1 � E3 þ E4 þ H3 � 2s P 0
or G1ðXÞP 0

ð11Þ

� (FI) should cross the rectangle, so I must be placed above d (Eq.
(12)).

E3 � E5 � H2 � H3 þ s 6 H1 � S1

or � E3 þ E5 þ H1 þ H2 þ H3 � S1 � s P 0
or G2ðXÞP 0

ð12Þ

� (GJ) should cross the rectangle, so G must be placed below b (Eq.
(13)).

E1 � E4 þ E5 þ H2 þ s 6 E2 � S1

or � E1 þ E2 þ E4 � E5 � H2 � S1 � s P 0
or G3ðXÞP 0

ð13Þ

It would be possible to do without the gap space representation
to define these three conditions by using only Eqs. (1)–(4). Func-
tional characteristics fc1(g1,g2) and fc2(g1,g2) must be at least great-
er than s in the most favorable configuration:

g1 ¼ 0 and g2 ¼ E2 � S1 for f c1

g1 ¼ H1 � S1 and g2 ¼ 0 for f c2

This gives the two next conditions, already defined in Eqs. (12)
and (13):

fc1ð0; E2 � S1Þ ¼ �E1 þ E2 þ E4 � E5 � H2 � S1 P s

fc2ðH1 � S1;0Þ ¼ �E3 þ E5 þ H1 þ H2 þ H3 � S1 P s

By combining the two functional requirements fc1 P s and
fc2 P s, we obtain the last condition, already defined in Eq. (11):

f c1 þ fc2 P 2s

or � E1 � E3 þ E4 þ H3 P 2s

This is how the three conditions of Eqs. (11)–(13) are obtained
analytically. Finally, based on the three performance functions
Gj(X), j = 1, 2, 3, a new formulation is proposed (Eq. (14)), still inde-
pendent of g and taking into account intermediate gap configura-
tions. It is composed only by the intersection of events.

PD ¼ 1� ProbðG1ðXÞP 0 ^ G2ðXÞP 0 ^ G3ðXÞP 0Þ ð14Þ

If one (at least) equation among the three is negative, the mech-
anism cannot be assembled. In Fig. 4, the X dimensions lead to one
negative performance function: G1(X) < 0. So no black zone appears
in the gap space representation. This particular mechanism is not
functional.

To compute this defect probability (Eq. (14)), two problems
arise:

� Each dimension is modeled by random variables, depending on
its characteristics. Which statistical properties of Xi have to be
considered in this probability evaluation? This point will be dis-
cussed in Section 3.1 and some proposals will be made.
� How can the intersection probability of two or more events be

computed? Two basics probability computation methods are
detailed in Section 3.2. Then Section 3.3 present methods able
to deal with event intersections. Finally, some proposals are
made.

3. Proposed solutions to deal with defect probability
computations

3.1. Probabilistic model

To compute defect probabilities, assumptions about statistical
models must be made. In the following, two different models will
be considered. First, a non-shifted Gaussian scheme will be consid-
ered. Distributions will be centered on their tolerances and
Cpi ¼ CðrÞpi (see Fig. 5a). This hypothesis is optimistic but is the most
commonly used (Ballu et al., 2008; Glancy & Chase, 1999). Second,

Fig. 3. Gap space representation of the mechanism in a particular configuration.
Points a, b, c and d represent extreme gaps configurations. Functional requirements
are respected, since the black zone is not empty, whereas no extreme configuration
is suitable.

Fig. 4. Gap space representation of the mechanism in a particular configuration.
Functional requirements are not respected, since there is no black zone.



Gaussian distributions will be shifted by the maximum permissible
mean shift dðmaxÞ

i . The sign of each mean shift is found in order to
generate the worst combination regarding PD, as in Fig. 5b. The
maximum permissible mean shift dðmaxÞ

i can be reached in the best
manufacturing conditions, defined by an upper value of Cpi denoted
CðmaxÞ

pi Gayton et al. (2011), i.e. when the standard deviation of
the process is the lowest. So Cpi ¼ CðmaxÞ

pi and rðminÞ
i ¼ ti

6CðmaxÞ
pi

, where

ti are dimensions tolerances. Then the capability index Cpki is

bounded by CðrÞpki ¼
ti=2�dðmaxÞ

i

3rðminÞ
i

. By transforming this expression, the

maximum permissible mean shift is obtained: dðmaxÞ
i ¼

ti
2 1�

CðrÞ
pki

CðmaxÞ
pi

� �
. This second hypothesis, called the statistical worst

case, is very pessimistic and accounts for the maximum bound of
PD. Thus, the impact of the mean shift di, which is considered as
crucial by Evans (1975b) and Graves (2001), will be investigated.

3.2. Probability computation for a single event

To analyze tolerances on a mechanism governed by a single de-
fect event, various authors (Evans, 1975a; Glancy & Chase, 1999;
Nigam & Turner, 1995) have published methods to compute the
following probability:

P ¼ ProbðGðXÞP 0Þ ð15Þ

Two methods are described in this section: the well known
Monte Carlo method and the FORM (First Order Reliability Method)
one, which is available from structural reliability theory (Ditlevsen
& Bjerager, 1986; Lemaire, 2009).

The Monte Carlo simulation method (Evans, 1975a; Lemaire,
2009) is used as a reference and can always be used when perfor-
mance functions can be evaluated economically. The idea is to
compute the proportion of successful runs (performance function
positive) over the total number of runs N. The Monte Carlo simula-
tion gives an estimation of the probability and its associated confi-
dence interval depending on N.

The approximation method is called FORM. It requires to trans-
form physical variables Xi into standard ones Ui thanks to an iso-
probabilistic transformation T. In the case of uncorrelated Gaussian
variables (as these case study variables are), whom standard devi-
ations and mean are respectively denoted ri and li, the transfor-
mation is direct: Ui ¼ Xi�li

ri
. In other cases this can be more

complicated (see Ditlevsen & Bjerager (1986) and Lemaire (2009)
for details). In the new U space, the function G(X) becomes
H(U) = G(T�1(U)). Let F and K be the following two complementary
domains:

F ¼ fX : GðXÞ 6 0g ¼ fU : HðUÞ 6 0g
K ¼ fX : GðXÞP 0g ¼ fU : HðUÞP 0g

For illustration purposes, Fig. 6 arbitrarily represents domains F
in gray and K in white in a 2-dimensional standard U space. The
reliability index b is defined as the minimal distance in the stan-
dard U space between the origin and the domain H 6 0. It is ob-
tained by solving the following optimization problem:

b ¼min
U

ffiffiffiffiffiffiffiffiffi
UtU

p
under the constraint HðUÞ 6 0

Several algorithms exist to deal with this problem. The most
used is the iHLRF (improved Hasofer–Lind–Rackwitz–Fiessler) one
(Zhang & Der Kiureghian, 1995). The point, at the distance b of
the origin and belonging to H 6 0, denoted P⁄, is the most important
point in terms of probability and is called ‘‘Most Probable failure
Point’’ (MPP) (Fig. 7). At this point, the density probability is the
greatest in the F domain. Thus, the original limit-state H(U) = 0 is re-
placed by a hyper-plane (a straight line in two dimensions)eHðUÞ ¼ 0 at this P⁄ point. The K region is substituted by the approx-
imated one eK (Fig. 7) and the associated approximated probabilityeP whose formulation is given in Eq. (16) is considered close to P.eP ¼ ProbðeGðXÞP 0Þ ¼ ProbðeHðUÞP 0Þ ð16ÞeP is evaluated thanks to the cumulative density function of the
standard Gaussian distribution:

P � eP ¼ UðbÞ

If the performance function is a linear combination of Gaussian
variables, the limit-state H(U) = 0 in the standard space is linear. So
the evaluated probability is exact ðP ¼ eP ¼ UðbÞÞ. In the case of

Fig. 5. Stochastic model.

Fig. 6. FORM approach. Representation of actual regions F and K. U is the standard
space. b is the reliability index.



non-Gaussian variables, the iso-probabilistic transformation is
more complicated (see Ditlevsen & Bjerager (1986) and Lemaire
(2009) for details) and H(U) = 0 is no more linear. Thus, eP ¼ UðbÞ
is only an approximation of P defined in Eq. (15).

3.3. Probability computation for event intersection

The proposed case study we are dealing with is a ‘‘system’’
problem because its conformity depends on more than one condi-
tion. For the proposed formulation, it has been shown that the de-
fect probability of the VALEO W.S. mechanism is governed by the
intersection of three events. Moreover, these events are interde-
pendent, since their variables are common. This kind of problem
requires advanced numerical methods. Several authors have dealt
with system problems: Ballu et al. (2008), Nakanishi and Nakayasu
(2002), Savage, Tong, and Carr (2006), and Wu et al. (2009). Let us
introduce the general probability formulation:

P ¼ Prob ^m
j¼1GjðXÞP 0

� �
¼ Prob ^m

j¼1HjðUÞP 0
� �

ð17Þ

A selection of the existing methods to compute the P probability de-
fined in Eq. (17) are described in this section, and include the Monte
Carlo and the FORM methods.

The Monte Carlo simulation method is able to deal with system
problem easily. The only difference with the original method is
that all performance functions have to be simultaneously positive
to get a successful run. The P probability is still the proportion of
successful runs over the total number of runs N.

The second method is the system version of FORM. It enables
the estimation of the linearized problem:

eP ¼ Prob ^m
j¼1
eGjðXÞP 0

� �
¼ Prob ^m

j¼1
eHjðUÞP 0

� �
ð18Þ

Domains F and K in the system case (see Fig. 8) are defined as:

F ¼ X :
m̂

j¼1

GjðXÞ 6 0

( )
¼ U :

m̂

j¼1

HjðUÞ 6 0

( )

K ¼ X :
m̂

j¼1

GjðXÞP 0

( )
¼ U :

m̂

j¼1

HjðUÞP 0

( )

Their representation and their approximations eF and eK are
respectively given in Eqs. (8) and (9). Once all reliability indexes
bj (j = 1 to m) are determined, the cumulative density function of

the m-dimensional Gaussian distribution Um enables the computa-
tion of eP:eP ¼ Umðfb1;b2; . . . ; bmg; ½q�Þ

¼
Z b1

�1
� � �
Z bm

�1

1

ð2pÞm=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
det½q�

p e�
1
2fug

t ½q��1fugdu1 � � �dum ð19Þ

where [q] is the covariance matrix of performance functions which
enables dependent limit-state functions to be taken into account.
Um is a m-dimensional integral, numerically computed by the Genz
method (Genz, 1992; Nadarajah, 2008), whose result is given with a
confidence interval depending on the number of runs. This method
is more efficient than usual numerical integration techniques to
deal with small or very small probabilities.

The third method was proposed by Lee and Woo (1990) and
based on Ditlevsen and Bjerager (1986)’s work. Its aim is to bound
the probability eP with fewer calculations than the FORM method
requires. The reliability indexes have still to be determined. Then,
the boundaries of eP defined in Eq. (18), and consequently of P are
given by (Lee & Woo (1990)):

v2
n min

m

j¼1
ðbjÞ

2
� �

6 eP 6 U min
m

j¼1
ðbjÞ

� �
and consequently v2

n min
m

j¼1
ðbjÞ

2
� �

K P KU min
m

j¼1
ðbjÞ

� �
where m is the number of performance functions and v2

n is the
cumulative density function of the chi-squared distribution with n
degrees of freedom (n being the number of variables). Concerning
the upper bound of eP , the probability of the intersection is less than
or equal to the smallest component probability. Thus:

eP 6 U min
m

j¼1
ðbjÞ

� �
The hypersphere of radius minm

j¼1ðbjÞ always lies inside eK . The
lower bound of eP is given by the probability covered by this hyper-
sphere and gives:

v2
n min

m

j¼1
ðbjÞ

2
� �

6 eP
Each method has advantages and disadvantages. Monte Carlo is

accurate, but time-consuming. Conversely, the Lee and Woo meth-
od is very fast to compute (only one bj computation for each limit-
state function) but can be very imprecise, depending on the rela-
tive positions of the limit-states. The method gives only an upper

Fig. 7. FORM approach. Representation of approximated regions eF and eK . U is the
standard space. b is the reliability index.

Fig. 8. Representation of actual regions F and K in the system case. U is the standard
space. bi are the reliability indexes.



and lower bound of eP . It is obvious (see Fig. 9) that the drawn
hypersphere badly approximates the eK region. Another uncer-
tainty comes from the first-order approximation between K andeK . This approximation is computed at a specific point: the most
probable failure point. Nevertheless, experience shows that in
most cases, when limit-states are not too curved, the estimation
is relevant. The FORM system method using Um is more expensive
than the Lee and Woo method, notably when m is large because of
the integral computation, but still economical compared to the
Monte Carlo method. Finally, we conclude that the FORM system
method is a good compromise between computation cost and
accuracy. This conclusion will be underlined in the next section,
where the three methods will be tested and compared in the
industrial case study.

4. Application to the industrial problem

4.1. Tolerance analysis

The parameters of the industrial case study can be found in Ta-
ble 1. Two different kinds of dimensions are presented, classical
ones {E1,E4,H2} and critical ones with severe required capability
levels {E2,E3,E5,H1,H3,S1}. Based on these, the defect probability
PD (Eq. (14)) was computed under Hypothesis 1 and 2 described
Section 3.1. Details of the calculation for the Lee and Woo and
FORM system methods are presented hereafter for the first hypoth-
esis and s = �0.1, whereas the Monte Carlo method does not need
any details and is only presented to validate the results. In this
application, GjðXÞ ¼

Pn
i¼1ðaijXiÞ þ bjs are linear and the dimensions

X are considered as Gaussian, so Hj(U) are linear, K � eK and P � eP .

Reliability indexes are explicit: bj ¼
Pn

i¼1
ðaijliþbjsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðaijriÞ2

p where ri ¼ ti

6CðrÞ
pi

and

li = Ti for the first hypothesis. If limit-state functions are non-lin-
ear, the FORM method (Lemaire, 2009), based on well-known min-
imization algorithms, is often able to obtain these reliability
indexes in a couple of calls to limit-state functions. Thus, reliability
indexes with s = �0.1 are:

fb1;b2;b3g ¼ f5:35;6:25;4:46g

For the Lee and Woo method, the bounds of PD are given using
Eqs. (18) or (19). For the FORM system method, the covariance ma-
trix [q] has to be computed beforehand. Let aðiÞ ¼ rHiðUðiÞ�Þ

krHiðUðiÞ�Þk
and U(i)⁄

respectively be the direction cosines relative to the ith limit-state
function Hi(U) and the P�i point coordinates. According to Lemaire
(2009), qi,j = ha(i) � a(j)i where qi,j and h� � �i are the (i, j)th term of
the correlation matrix [q] and the scalar product. Thus, the PD com-
putation for the first hypothesis, still with s = �0.1, is as follows:

PD ¼ 1� eP
¼ 1�U3 f5:35;6:25;4:46g;

1 0:3 0:54
0:3 1 �0:48

0:54 �0:48 1

264
375

0B@
1CA

Results for Hypothesis 1, following s, are reported in Table 2. For
Hypothesis 2, each dimension can be shifted in two different direc-
tions as shown in Fig. 5b. To identify the worst case, there is a large
number of combinations to study: 2n = 29 = 512 in this case. The
worst case is the worst combination as regards PD (Eq. (12)). The
results are reported in Table 3. The Monte Carlo method provides
its 95% confidence interval width relative to the defect probability,
whereas that of the FORM system method is relative to the integra-
tion method of U3 (Eq. (19)). These two intervals are not strictly
comparable but they both indicate that the estimated defect prob-
abilities have a 95% chance of being contained in these intervals. In
the following, they will be considered as equivalent. Thus, the
FORM system and Monte Carlo results are expressed in the form
of intervals, using their 95% confidence intervals.

The first remark is that defect probabilities increase when the
threshold s increases. This is logical, since the greater the value
of s, the more severe the functional requirement is. There is every
chance that some parts are in contact, while even with s = 0 for the
optimistic hypothesis (Hypothesis 1), PD � 144,000 ppm. Hypothe-
sis 2 leads to greater defect probabilities than Hypothesis 1, and al-
most all the parts are faulty with s = 0. This emphasizes the crucial
role that the component mean shifts play in the quality level of the
mechanism (Evans, 1975b; Graves, 2001). However, investigation
shows that some parts of this mechanism are flexible, so tightening
(s = �0.1) is conceivable. With this value, the risk of non-confor-
mance is much lower, but still substantial with the pessimistic
Hypothesis 2.

Regarding the methods used to compute PD, FORM system re-
sults are very close to the Monte Carlo ones, only used as a refer-
ence to validate the other methods’ results. For this particular
problem, limit-state functions are linear, so the FORM system
method is exact. Its confidence intervals come from the integration
method to compute Um. As predicted in the methods presentation
section, Lee and Woo bounds are sometimes very far from the ac-
tual value, in particular the upper bound, which comes from the
hypersphere approximation. Nevertheless, this method has the

Fig. 9. Representation of approximated regions eF and eK in the system case. P�i are
the most probable failure points in relation to the linearized limit-state functionseHj ¼ 0.

Table 2
Hypothesis 1 PD bounds in ppm. There is a 95% chance that PD belongs to the FORM
system and Monte carlo method bounds, and a 100% chance for the Lee and Woo
bounds, which are very large.

Monte Carlo FORM system Lee and Woo

s = �0.1 [4.20; 4.28] [3.55; 4.86] [4.17; 18,822]
s = �0.05 [845; 847] [841; 854] [667; 327,198]
s = 0 [143,551; 143,565] [143,549; 143,582] [142,425; 999,028]

Table 3
Hypothesis 2 PD bounds in ppm. There are 95% chances that PD belongs to the FORM
system and Monte carlo methods bounds and 100% chances for the Lee and Woo ones,
which are very large.

Monte Carlo FORM system Lee and Woo

s = �0.1 [13,724; 13,728] [13,657; 13,779] [13,596; 844,759]
s = �0.05 [507,483; 507,503] [507,475; 507,818] [395,021; 1,000,000]
s = 0 [999,328; 999,329] [999,327; 999,329] [998,900; 1,000,000]



advantage of giving results instantaneously. The FORM system
method is very accurate and has the advantage of requiring a very
low number of calls to limit-state functions; in this industrial case,
only one call is needed because the functions are linear. This meth-
od, contrary to Monte Carlo, can also deal with problems whose
functional characteristics are obtained from a complex CAD code.
Indeed, while the Monte Carlo method would need millions of calls
to limit-state functions, the FORM system will content itself with
only a small number of calls.

4.2. Sensitivity analysis

As a consequence, a sensitivity analysis of the defect probability
is proposed in order to modify the design to obtain lower defect
probabilities, especially with Hypothesis 2 with s = �0.1, which is
the most pessimistic case. Nominal dimension values and toler-
ances can be modified to reach target probabilities. Changing nom-
inal values is very effective, but can interfere in other dimensional
chains. For this reason, the authors chose to study the influence of
tolerances on defect probability. This analysis was performed by fi-
nite differences applied using the FORM system method, which en-
ables results to be obtained quasi-instantaneously, under
Hypothesis 2 with s = �0.1. The results are presented in Fig. 10,
where the following normalized sensitivity indexes are computed:

Si ¼
1

maxn
i¼1Si

@PðHyp:2;s¼�0:1Þ
D

@ti
ð20Þ

To improve the design, it was supposed that all dimensions
have the same manufacturing cost, but large tolerances are easier
to reduce than tight ones. The following rule was therefore ap-
plied: decrease by 20% the three tolerances of the most sensitive
dimensions whose tolerances were originally greater than or equal
to 0.2 mm. E1, E5 and H2 tolerances will thus be reduced since their
Si indexes are the highest. E3, H1 and H3 sensitivities are null. This is
probably due to the predominance of a particular performance
function in the defect probability, and G3(X) does not contain these
dimensions, so they have no influence on defect probability in this

particular configuration (Hypothesis 2, s = �0.1 mm). The new tol-
erances are noted in bold in Table 4. Based on these new parame-
ters, improved results, obtained by the FORM system method, are
indicated and compared with the original ones in Table 5. Finally,
the defect probability is almost equal to 100 ppm in the statistical
worst case configurations, applying a small tightening
(s = �0.1 mm). This new design is now much safer.

5. Conclusion

Mechanisms containing gaps are complex because their non-
conformance is governed by combinations or intersections of con-
figurations. This requires the use of several interdependent perfor-
mance functions which increase the mathematical complexity.
This paper describes an innovative method from the structural reli-
ability domain. The defect probability PD was computed in the de-
sign phase thanks to the FORM system method. Three main
problems arise in this calculation:

� The functional requirements depend on part mobility. A preli-
minary task is to eliminate uncontrolled mobilities in the prob-
ability formulation. The method proposed in the literature,
taking into account only extreme configurations, is inefficient
in this case. An alternative formulation, considering intermedi-
ate configurations, was used here. Thus, a complex feasibility
problem, i.e., the research of the existence of multiple non-neg-
ative gaps, is converted into a simpler problem consisting of
multiple linear equations.
� Among the available methods to compute PD, two methods are

not convincing. The Lee and Woo approach is not accurate
enough in this case, and the Monte Carlo method consumes
too much time. The FORM system method was chosen, and
proves satisfactory. It seems to be the first application of this
method to tolerance analysis considering intermediate gap
configurations.
� Dimension modeling is a crucial point. It has been shown that

mean shifts play an important role in the tolerance analysis
results. Thus, two different assumptions were made, allowing
us to consider different parts manufacturing scenarios.

Finally, this entire methodology gives the exact defect probabil-
ities PD when the dimensions are assumed to be normally distrib-
uted. This gave rise to a reflection on the choice of tolerances,
thanks to a sensitivity analysis. Based on this work, one major area
of improvement will be to apply this methodology to non-linear
problems such as CAD-based mechanisms. In this case, one evalu-
ation of a limit-state function requires the CAD code to be exe-
cuted, which is very time-consuming. Thus, the efficiency of the
FORM method may be highlighted. This work is already in progress
and should lead to a future publication.
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Fig. 10. Sensitivity analysis. Si indexes of Xi dimensions for Hypothesis 2 with
s = �0.1.

Table 4
Improved parameters. The tolerances of dimensions E1, E5 and H2 have been
decreased by 20%.

Xi Ti ti CðrÞpi CðrÞpki CðmaxÞ
pi

E1 0.7 0.16 1 1 2
E2 1.35 0.1 1.67 1.33 2
E3 3 0.2 1.67 1.33 2
E4 2.4 0.1 1 1 2
E5 0.955 0.16 1.67 1.33 2
H1 1.5 0.3 1.67 1.33 2
H2 0.7 0.16 1 1 2
H3 1.35 0.2 1.67 1.33 2
S1 1.25 0.06 2 2 2

Table 5
Comparison of PD results in ppm between the original and the improved design for
the two hypotheses with s = �0.1.

Original design Improved design

Hypothesis 1, s = �0.1 4.24 0.07
Hypothesis 2, s = �0.1 13,726 127
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