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Abstract. Forming processes usually involve irreversible plastic transformations. The calculation in
that case becomes cumbersome when large parts and processes are considered. Recently Model Order
Reduction techniques opened new perspectives for an accurate and fast simulation of mechanical
systems, however nonlinear history-dependent behaviors remain still today challenging scenarios for
the application of these techniques. In this work we are proposing a quite simple non intrusive strategy
able to address such behaviors by coupling a separated representation with a POD-based reduced basis
within an incremental elastoplastic formulation.

Introduction

Themain difference between viscoplascticity and elastoplasticity is that in elastoplascitity the behavior
at each position and time depends on all the previous mechanical history as well as on the present
loading. Obviously if the deformation history is given at each position, the elastoplastic behavior law
can be easily integrated in order to compute the stress evolution. However such an information is
not generally available when proceeding with standard discretization strategies where the solution is
computed incrementally.

When using standard incremental discretization techniques we must proceed differently. We as-
sume at time tn (time in the sense of loading) the state of the systems perfectly defined, verifying the
equilibrium and the constitutive equations. The mechanical state is given by ϵn, σn, ϵ

p
n and αn, the last

being the internal variable describing the material hardening (accumulated plastic deformation, plastic
work, ... ) assumed isotropic without loss of generality.

The equilibrium at time tn writes in discrete form:

Fint(σn) = Fext
n (1)

Now, an increment of load applies due to volume forces or surface tractions, and the problem
consists in computing the displacement change ∆un+1 and the associated final state defined by
ϵn+1, σn+1, ϵ

p
n+1 and αn+1. The new state must verify both the equilibrium

Fint(σn+1) = Fext
n+1 (2)

and the rate-independent elastoplastic constitutive equations. As the problem is nonlinear we must
iterate.We denote by∆Uk

n+1 the nodal displacements increment at the loading step tn and the nonlinear
iteration k.

A soon as the nodal displacement increment ∆Uk
n+1 is given, we can compute σk

n+1 by using an
appropriate return mapping [10] that allows after assembling evaluating the internal contributions
Fint(σk

n+1).
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The displacement increment results from the Newton linearization of Eq. (2) that results in

Fint(σk
n+1)− Fext

n+1 = Kk
n+1 ∆Uk+1

n+1 (3)

where in the calculation of the tangent matrixKk
n+1 the return mapping algorithm is considered again.

The possibility of applying a space separated representation for alleviating the complexity of 3D so-
lutions is being evaluated.

The main difficulty associated with such an approach is its incremental character that makes dif-
ficult the use of model order reduction techniques based on the use of separated representations.

The LATIN method is one exception. The LATIN method, proposed by Pierre Ladeveze in the 80s
[8] proceeds by assuming a space-time representation of both the deformation and the stress fields. It
consists of two stages. In the first, stresses and strains are calculated in order to verify the constitutive
equation, by assuming a certain (a priori arbitrary) relation between both fields, that is: knowning at
iteration k (iteration in the nonlinear sense) ϵk(x, t) and σk(x, t), we look for ϵ̂k(x, t) and σ̂k(x, t), such
that {

ϵ̂k(x, t) = F(σ̂k(x, t))
ϵ̂k(x, t)− ϵk(x, t) = K(σ̂k(x, t)− σk(x, t)) (4)

where F() denotes the behavior law and K the searching direction. This calculation is purely local.
The computed fields verify the constitutive equation, however they do not verify the equilibrium.

Then, a new stress-strain couple ϵk+1(x, t) and σk+1(x, t) is searched in order to fulfill with the
equilibrium equation and a particular (a priori arbitrary) searching direction:{ ∫

Ω×I ϵ
∗ : σk+1 dx dt =

∫
∂Ω×I u

∗ · t dx dt
σk+1(x, t)− σ̂k+1(x, t) = G(ϵk+1(x, t)− ϵ̂k+1(x, t)) (5)

where t denotes the tractions, I the time interval and G the new searching direction. Second relation
in Eq. (5) ensures the existence of second derivatives of the displacement field in the equilibrium
equation. The trickiest issue of this approach is related to the choice of the searching directionsK and
G.

In the present work we consider an integration that avoids the use of such searching direction and
at the same time allows for the consideration of space and time separated representations all within an
incremental explicit elastoplastic formulation.

Incremental elastoplastic model

The elastic behavior is given by
σ = C ϵ (6)

The main steps of the calculation are:

• Compute the deviatoric stress σ′ from

σ′ = σ − (1 + ν) Tr(σ) (7)

where ν is the Poisson coefficient.

• Determine the equivalent stress

σe =

√
3

2
σ′ : σ′ (8)



• Determine the yield function

f = σe − (r + σy) (9)

where r is the hardening and σy the yield stress.

• Determine if yielding occurs, that is, if f > 0. If f ≤ 0 then the plastic multiplayer dλ vanishes
dλ = 0. On the contrary, i.e. if f > 0 the plastic multiplayer results from

dλ =
n · Cdϵ

n · Cn+ h
(10)

with h the plastic tangent modulus and n given by

n =
∂f

∂σ
=

3

2

σ′

σe

(11)

• Determine the stress and the isotropic hardening increments:

dσ = Cdϵe = C(dϵ− dλn) (12)

and
dr = h dλ (13)

• Update all the quantities


σ(x, t+∆t) = σ(x, t) + dσ
ϵp(x, t+∆t) = ϵp(x, t) + dλn
r(t+∆t) = r(t) + dr

(14)

The equilibrium writes (using vector notation)∫
Ω

ϵ∗ · dσ dx =

∫
∂Ω

u∗ · dσ dx (15)

or ∫
Ω

ϵ∗ · Cdϵ dx =

∫
Ω

ϵ∗ · Cdλn dx+
∫
∂Ω

u∗ · dσ dx (16)

Now, a standard finite element discretization results in∫
Ω

ϵ∗ · Cdϵ dx = U∗TKdU (17)

and ∫
Ω

ϵ∗ · Cdλn dx+
∫
∂Ω

u∗ · dσ dx = U∗TF (18)



Space-time separated representation

If we consider n time steps (again time in the sense of loading) we can write
KdU1 = F1

KdU2 = F2
...

KdUn = Fn

(19)

Now, we can apply the singular value decomposition to the matrix F

F = [F1 F2 · · · Fn] (20)

that allows approximating it from

F ≈
NF∑
i=1

Ri ⊗ Si (21)

With the unknown field dU(t) expressed in the separated non-incremental form

dU =

j=NU∑
j=1

(Xj ⊗ Tj) (22)

and using tensor notation the problem becomes

(K+ I)
j=NU∑
j=1

(Xj ⊗ Tj) =

NF∑
i=1

(Ri ⊗ Si) (23)

For more details on the use of separated representations the interested reader can refer to [1] [2]
[3] [4] [5] [7] and he references therein.

The main drawback of such a procedure is the necessity of reconstructing the plastic history and
then applying a SVD to the large resultingmatrix to perform its space-time separation. It is important to
recall that the number of snapshots n in (20) could be extremely large. To alleviate such a calculation in
the next section we propose the use of a POD-based reduced basis for the plastic history representation.

POD-based reduced modeling

To avoid the application of the SVD on the whole matrix F defined in (20) we consider few number
of snapshots p, with p large enough but p ≪ n, and define matrix Q1

Q1 = [F1 F2 · · · Fp] (24)

then Q2 from
Q2 = [Fp+1 F2 · · · F2p] (25)

and so on.
Now the SVD can be applied on the different matrix Qj for extracting the main important modes

of each group

Bj = [ϕj
1 ϕ

j
2 · · · ϕj

rj
] (26)

By projecting the snapshots of each group Qj into their respective reduced basis Bj we can write

Qj = Bj · Aj (27)



that allows writing
B = [B1 B2 · · · ] (28)

and A whose blocs components are Aj such that

F ≈ B · A (29)

The searched separated representation of the term representing the plastic history

F ≈
NF∑
i=1

Ri ⊗ Si (30)

involves modes Ri coming from the SVD decomposition of B and modes Si result the projection of
A into the the basis now involving modes Ri.

Even if many other strategies exist, as for example a progressive construction and enrichment of
the reduced basis [9], the one described above allows a significant computing time reduction.

Numerical results

We apply on a rectangular specimen two kind of uniaxial ciclic displacements on its opposite borders,
one with constant mean value and the other with a mean value that increases linearly with the time,
both illustrated in Fig. 1.

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time

di
sp

la
ce

m
en

t

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time

di
sp

la
ce

m
en

t

Fig. 1: Applied ciclic displacements: (left) constant mean value; (right) displacement mean value
increasing in time

Fig. 2 depicts the stress σxx evolution in both cases (constant and increasing displacement mean
value) at the center of the specimen, both solutions computed without any model order reduction, that
is, by applying a standard incremental explicit elastoplastic integration.

Fig. 4 compares the first three more significant space modes involved in the separated representa-
tion of the displacement increment field, that isXi, i = 1, 2, 3, for both the constant and the increasing
ciclic loadings. Finally from the reconstructed solution at the central point after each solution enrich-
ment, Fig. 4 depicts the whole history of the stress versus the applied displacement. It can be noticed
that the reduced solutions converge in both loading cases to the reference ones (the ones depicted in
Fig. 2) after only 3 enrichment steps.
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Fig. 2: Stress versus applied displacement at the center of the specimens for both (left) constant and
(right) increasing mean value of the applied displacement.
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Fig. 3: First three space modes involved in the separated representation of the displacement increment
dU: (left) constant and (right) increasing mean displacement



−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

displacement

σ 11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

displacement

σ 11
−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

displacement

σ 11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

displacement

σ 11

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

displacement

σ 11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

displacement

σ 11

Fig. 4: Stress versus applied displacement at the center of the specimen for one, two and three terms
involved in the separated representation (from top to down) and (left) constant and (right) increasing
mean displacement
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