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Abstract

In this paper, we propose an a posteriori error estimator for the numer-
ical approximation of a stochastic magnetostatic problem, whose solution
depends on the spatial variable but also on a stochastic one. The spatial
discretization is performed with finite elements and the stochastic one with
a polynomial chaos expansion. As a consequence, the numerical error results
from these two levels of discretization. In this paper, we propose an error
estimator that takes into account these two sources of error, and which is
evaluated from the residuals.

Keywords:
Residual-based a posteriori error estimate, stochastic partial differential
equation, finite element method, polynomial chaos expansion, stochastic
spectral finite element method.

1. Introduction

Nowadays, numerical simulation is often used to predict the behavior
of physical systems. The mathematical equations describing the physical
phenomena under consideration are solved by using a numerical method such
as the Finite Element Method (FEM). The input data of the numerical model
are usually defined as the dimensions of the device, the behavior law of the
materials and the sources. The information on these input data is available
with some uncertainties due to several factors such as the imperfections of
the manufacturing processes, the ageing of the material or the influence of
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the exterior environment. As long as the error due to the approximation is
large enough, the impact of the uncertainties on the output results can be
considered as negligible, leading to a deterministic problem. Nevertheless,
this assumption is no more always valid because of the high reduction of
the numerical error due to the progress in the numerical analysis domain
and to the increasing capabilities of the computers. Therefore, for a better
description of the realistic physical system, the uncertainties of the input
data have to be taken into account.

A probabilistic approach [2, 6, 7, 18, 20] is one possibility for accounting
for uncertainties on the inputs and to characterize their influence on the
outputs. In this approach, the uncertain quantities are modeled by random
variables (or random fields). There are two steps to be followed. The first
step consists in modeling the input data by random variables (or random
fields) with known probability density functions. In the second step, these
uncertainties are propagated through the numerical model to quantify their
effects on the outputs. Many methods are proposed in the literature to deal
with this second step [2, 6, 7, 12, 13, 18, 19, 20].

In a stochastic problem, the solution of the mathematical equations de-
pends on the spatial dimension as well as the stochastic one. In [12, 13, 19, 20]
a spatial discretization using finite elements along with a stochastic dis-
cretization using polynomial chaos [29] is used to approximate the stochastic
solution. When the stochastic solution is approximated explicitly as a func-
tion of the spatial dimension and the stochastic dimension, the statistics of
the output response can be characterized easily in the postprocessing step.

The reliability of the characteristics of the output data depends obviously
on the accuracy of the approximated solution. In this paper, we are interested
in an a posteriori error estimation. This kind of error estimation (compared
to an a priori error estimation) is evaluated from the numerical solution and
does not depend on the exact solution, in particular on its regularity.

The analysis of the error due to the spatial discretization has already
been performed in the pure deterministic case. In [1], an error estimation
based on the gradient recovery method is proposed. The principle of this
method is that one can build an approximation of the gradient of the exact
solution from the numerical solution. The error estimation is obtained by
evaluating the distance between this approximated gradient and the gradient
of the numerical solution itself. Some techniques to build this approximated
gradient were proposed in [4, 30, 31].

In [24], the error estimation is based on the hypercycle principle (equi-
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librated error estimation) and evaluated from two admissible fields coming
from the numerical solutions of two complementary formulations.

In [3, 5, 8, 9], the error estimation is derived by solving the error equa-
tion with the right hand-side being a residual evaluated from the numerical
solution (implicit residual method). The equation on the error can be global
[8, 9] or local [3, 5] and must be solved in a richer basis (finer mesh or higher
order of the shape functions).

In [10], the distance between the approximated value of a global quantity
(obtained from the numerical solution) and its exact value (obtained from
the exact solution) is estimated by introducing a dual problem. Both ap-
proximated and exact solutions of the dual problem are required. Actually,
the exact solution of the dual problem is replaced by another approximated
solution obtained using a richer basis.

In [27], an explicit residual method is proposed. This method is different
from the implicit residual method in that the error estimation is evaluated
directly from the residual. Therefore, the computational cost of the error
estimation is much smaller. However, the true magnitude of the real approx-
imation error is not available due to some non explicit constants appearing
in the development of this kind of error estimator.

Inspired by the above method for deterministic problem, some methods
have been proposed to deal with the stochastic case. In [17], due to the fact
that the approximated stochastic solutions obtained from two complementary
formulations are also admissible, an equilibrated error estimator has been
proposed. This error estimator provides a global estimation of the error but
does not allow to distinguish the spatial contribution from the stochastic one.

In [23], an error estimation based on the solution of a dual problem is
proposed. The interesting point in this paper is that for some initial non-
linear problems, the dual problem becomes linear. Therefore, the solution
of the dual problem needs much less time than the initial one. The error
estimation in [23] is also global and it is applicable only for the numer-
ical solution obtained by the Spectral Stochastic Finite Element Method
(SSFEM)[12, 19, 20].

In [28] an error estimator based on the implicit residual method is pro-
posed. A richer basis in the stochastic dimension is applied using polynomials
of higher order than the ones used for the solution. An error estimator eval-
uated from the stochastic residual and the mean value of the stiffness matrix
has also been proposed recently in [22]. These papers [22, 28] focus on the
stochastic error and the spatial error is assumed to be negligible.
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In this paper, the explicit residual method in the deterministic case [27] is
extended to the stochastic case. Our purpose is to propose an error estima-
tion that splits the stochastic and the spatial errors. The paper is organized
as follows. In section 2, the functional spaces are defined. In section 3, we
define the deterministic magnetostatic problem, and the problem is extended
to the stochastic case. Some methods to approximate the stochastic solution
are briefly recalled. Section 4 is devoted to the derivation of the error es-
timator. We will show that the stochastic error can be bounded by a term
including the stochastic residual. Then, an estimation of the global error is
proposed where the stochastic and the spatial error are separated. In section
5, a numerical application illustrates the obtained theoretical results.

2. Functional spaces definition

We are interested in a magnetostatic problem defined in a polyhedral do-
main D ⊂ R3 with uncertainties on the material behavior law. A probabilistic
approach [20] is used to take into account the effect of these uncertainties
on the output data. We introduce then the probability space (Ξ, F,P) where
Ξ is the set of elementary events, F is a σ-algebra on Ξ and P is a prob-
ability measure. For a given vector of M independent random variables
ξ : Ξ → ΘM ⊂ RM , where M is a positive integer, we introduce also the
space Vξ of real functions defined in ΘM :

Vξ = {u| E[u2] =

∫
ΘM

|u(x)|2fξ(x) dx <∞}, (1)

where E[u] is the expectation of the random variable u and fξ the probability
density function of ξ, assumed to be defined. The dot product on Vξ is defined
by:

〈u, v〉Vξ =

∫
ΘM

u(x)v(x)fξ(x) dx. (2)

In [15, 29], it is shown that a set of polynomial chaos {Ψα| α ∈ NM} defines
a basis of the Hilbert space Vξ, meaning that all u ∈ Vξ admits a unique
decomposition:

u(ξ) =
∑

α∈NM

uαΨα(ξ) (3)
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with uα = E[u(ξ)Ψα(ξ)] and N the set of natural numbers. For P ∈ N∗ we
define a finite dimension sub-space V P

ξ ⊂ Vξ by:

V P
ξ = span

{
Ψα| α ∈ KP = (α1, α2, ..., αM) ∈ NM |

M∑
k=1

αk 6 P

}
. (4)

Here, P denotes the order of the polynomial chaos. We denote L2(D) the
space of real scalar square integrable functions defined on D. We introduce
the functional spaces:

Vx =

{
u ∈ L2(D) ;

∫
D

|grad u(x)|2 dx <∞
}
,

V 0
x =

{
u ∈ Vx ;

∫
D

u(x) dx = 0

}
.

(5)

We denote by Th a spatial tetrahedral mesh of the domain D which is
regular in the Ciarlet sense (that is to say that for each of the tetrahedra,
the ratio between its diameter and the diameter of its largest inscribed ball
is uniformly bounded). Here, the index h arising in Th characterizes the ac-
curacy of the mesh, defined as the maximum value of all the diameters of
the tetrahedra in the mesh. The mesh is composed of n0 nodes, n1 edges,
n2 facets and n3 tetrahedral elements. We define the following discrete func-
tional spaces on Th [14]:

V h
x = span{w0i , i = 1 : n0}, (6)

V hi0
x = span{w0i , i = 1 : n0, i 6= i0}, (7)

V h0
x =

{
u ∈ V h

x |
∫
D

u(x) dx = 0

}
, (8)

where w0i is the usual first order nodal shape function associated with the
node i, and i0 is a given arbitrary node of Th. The tensorial functional space
is defined by the following way:

Vx ⊗ Vξ = {u| ∀x ∈ D, u(x, .) ∈ Vξ and ∀ξ ∈ ΘM , u(., ξ) ∈ Vx}. (9)

3. Magnetostatic problem

In this section, we first present the deterministic magnetostatic problem
and its numerical approximation by the Finite Element Method (FEM). It
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will be the starting point to derive our error estimator for the stochastic mag-
netostatic problem. We then introduce the stochastic magnetostatic problem.
Some numerical methods to deal with this problem are briefly discussed.

3.1. Deterministic magnetostatic problem

The deterministic magnetostatic problem is defined on a polyhedral do-
main D (cf. Fig. 1) where the permeability at point x is denoted by µ(x).

Figure 1: Magnetostatic problem defined on the domain D.

The boundary of D is denoted by ΓD. A stranded inductor is fed by a di-
vergence free current density Js. A source field Hs is introduced such that
curl Hs(x) = Js(x) ∀x ∈ D. In this paper, we suppose that this source field
can be written in the following form:

Hs(x) =

n1∑
i=1

γi w1i(x), (10)

where w1i is the usual first order Nédélec shape function associated with the
edge i of the mesh Th [14] and γi ∈ R, 1 ≤ i ≤ n1. The magnetostatic
problem is given by: {

div B(x)=0,
curl (H(x)−Hs(x))=0,

(11)

with the following constitutive laws between the magnetic induction B and
the magnetic field H:

B(x) = µ(x) H(x) ∀x ∈ D. (12)

Equations (11)-(12) are completed by the following boundary conditions:

B(x) · n(x) = 0 on ΓD. (13)
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Now we introduce a scalar potential Ω [14] such that:

H(x) = −grad Ω(x) + Hs(x). (14)

Then the problem (11)–(13) can be written as:{
div (µ(x)grad Ω(x)) = div (µ(x)Hs(x)) in D,

µ(x) (grad Ω(x)−Hs(x)) · n(x) = 0 on ΓD.
(15)

The corresponding weak formulation takes the form:

Find Ω ∈ Vx such that for all λ ∈ Vx, we have :∫
D

µ(x) grad Ω(x) · grad λ(x) dx =

∫
D

µ(x) Hs(x) · grad λ(x) dx. (16)

Clearly, the solution of (16) is defined up to an additive constant and is not
reachable in the general case. Consequently, we look for an approximation
Ωh of Ω belonging to the discrete space V h

x :

Find Ωh ∈ V h
x such that for all i, 1 ≤ i ≤ n0, we have :∫

D

µ(x) grad Ωh(x) ·grad w0i(x) dx =

∫
D

µ(x) Hs(x) ·grad w0i(x) dx. (17)

Once again, the solution of (17) is defined up to an additive constant. To
ensure the uniqueness of the solution, a gauge condition has to be imposed
(a value of the scalar potential at one point or its zero mean value on D
can for example be prescribed). However, let us note that the corresponding
magnetic fields

H = −grad Ω + Hs and Hh = −grad Ωh + Hs,

as well as the corresponding magnetic flux densities

B = µH and Bh = µHh

do not depend on this chosen gauge condition. Many a posteriori error
estimations have been proposed in the literature to evaluate the error between
H, B and Hh, Bh (see e.g. [3, 5, 8, 9, 24, 27]).
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3.2. Stochastic magnetostatic problem

In this section, we are interested in a stochastic magnetostatic problem
with uncertainties on the behavior law. The difference between the stochastic
and the deterministic cases appears only on the permeability value, which
is now supposed to be random. In the stochastic case, it is no longer a
deterministic function of the spatial variable x, but it becomes a random
field µ(x, θ) where θ ∈ Ξ is an elementary event. We assume moreover that
the permeability µ(x, θ) can be explicitly expressed as a function of a random
vector ξ (of independent random variables ξi) with a joint probability density
function fξ, and that for each realization of ξ the permeability µ is constant
in each tetrahedral element T of the mesh Th. We also assume that there
exist µ0

min ∈ R and µ0
max ∈ R such that:

0 < µ0
min < µmin(x) < µ(x, ξ) < µmax(x) < µ0

max ∀ ξ ∈ ΘM , x ∈ D. (18)

The equations modeling the stochastic problem are very similar to (11)–(13),
except that the magnetic flux density, the magnetic field and the scalar po-
tential become now random fields and are expressed as functions of x and ξ,
namely B(x, ξ), H(x, ξ) and Ω(x, ξ). The semi-weak formulation is given by:

Find Ω ∈ Vx ⊗ Vξ such that for all ξ ∈ ΘM and λ ∈ Vx, we have:∫
D

µ(x, ξ) grad Ω(x, ξ) · grad λ(x) dx =

∫
D

µ(x, ξ) Hs(x) · grad λ(x) dx.

(19)
In the general case, the exact solution of (19) (defined up to an additive

constant) can not be evaluated analytically. In the literature, some numer-
ical methods have been proposed to approximate it [12, 13, 19, 20]. These
methods consist in looking for an approximation Ωhi0,P ∈ V hi0

x ⊗ V P
ξ of Ω

such that:

Ωhi0,P (x, ξ) =
∑

α∈KP

n0∑
i=1,i 6=i0

Ωiαw0i(x)Ψα(ξ), (20)

where Ψα is a polynomial chaos [15, 29] and Ωiα are real coefficients to be
determined. Let us denote that this choice of Ωhi0,P means that the value
of Ωhi0,P at the node i0 is equal to zero. Two kinds of methods allowing to
determine Ωiα can be considered, namely non intrusive ones and intrusive
ones. Concerning the non intrusive methods (see [11, 13] and the references
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therein), for a given Q ∈ N∗ the coefficients Ωiα are defined by:

Ωiα =

Q∑
k=1

ωk Ωh
i (ξk) Ψα(ξk). (21)

The evaluation of coefficients Ωiα in (21) requires Q evaluations of the scalar
potential at node i: Ωh

i (ξk), k = 1 : Q at special points ξk. ωk denotes the
associated weight with the point ξk. Consequently, Q deterministic problems
corresponding to the cases of deterministic permeability µ(x, ξk) have to be
solved.

Concerning the intrusive method (SSFEM method, see [12, 19, 20]), the
coefficients Ωiα are determined by using the Galerkin projection:

E

[∫
D

µ(x, ξ) grad Ωhi0,P (x, ξ) · grad w0i(x) dx Ψα(ξ)

]

= E

[∫
D

µ(x, ξ) Hs(x) · grad w0i(x) dx Ψα(ξ)

]
,

(22)

with i = 1 : n0\ i0, α ∈ KP . Equation (22) leads to a linear system of
dimension (n0−1)×Pout where Pout is the cardinality of KP and the solution
is the set of the coefficients Ωkαi

: [E [Ψα1(ξ)Ψα1(ξ)Λ(ξ)]] · · ·
[
E
[
Ψα1(ξ)ΨαPout

(ξ)Λ(ξ)
]]

...
. . .

...[
E[ΨαPout

(ξ)Ψα1(ξ)Λ(ξ)]
]
· · ·

[
E[ΨαPout

(ξ)ΨαPout
(ξ)Λ(ξ)]

]

 [Ωα1 ]

...[
ΩαPout

]


=

 [E[β(ξ)Ψ1(ξ)]]
...

[E[β(ξ)ΨPout(ξ)]]

 . (23)

The matrix Λ(ξ), the vector β(ξ) and the vector Ωαi
, i = 1 : Pout are written

in the following form:

[Λ(ξ)]kl =

∫
D

µ(x, ξ) grad w0k(x) · grad w0l(x) dx, (24)

[β(ξ)]l =

∫
D

µ(x, ξ)Hs(x) · grad w0l(x) dx, (25)

[Ωαi
]k = Ωkαi

, (26)
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with k = 1 : n0, k 6= i0, l = 1 : n0, l 6= i0.

In the following section, we propose a residual based a posteriori error
estimator which allows us to estimate the error between the solution Ω of
(19) and its approximation Ωhi0,P given by (20) .

4. Error estimation

4.1. Definition of the errors

We first introduce Ωhi0 such that∫
D

µ(x, ξ) grad Ωhi0(x, ξ) · grad w0i(x) dx =

∫
D

µ(x, ξ) Hs(x) · grad w0i dx

(27)
∀i = 1 : n0, i 6= i0, ∀ξ ∈ ΘM , where Ωhi0 ∈ V hi0

x ⊗ Vξ is given by:

Ωhi0(x, ξ) =

n0∑
i=1,i 6=i0

Ωi(ξ)w0i(x). (28)

The field Ωhi0(x, ξ) is not explicitly available because the terms Ωi are not
real coefficients any more but unknown function of random variables. In this
section, we first consider the error between Ωhi0,P given by (20) and Ωhi0

given by (27)–(28), namely the stochastic error, which is defined by:

e2
sto(ξ) =

∫
D

µ(x, ξ) |grad εsto(x, ξ)|2 dx, (29)

with
εsto(x, ξ) = Ωhi0,P (x, ξ)− Ωhi0(x, ξ). (30)

Then, we consider the error between Ωhi0,P and Ω, namely the global error,
given by:

e2
glo(ξ) =

∫
D

µ(x, ξ) |grad εglo(x, ξ)|2 dx, (31)

with
εglo(x, ξ) = Ωhi0,P (x, ξ)− Ω(x, ξ). (32)

We denote Ω0 ∈ V 0
x ⊗ Vξ such that for all λ ∈ Vx and ξ ∈ ΘM we have:∫

D

µ(x, ξ) grad Ω0(x, ξ) · grad λ(x) dx =

∫
D

µ(x, ξ) Hs(x) · grad λ(x) dx.

(33)
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Similarly, we denote Ωh0 ∈ V h0
x ⊗ Vξ such that for all i = 1 : n0 and ξ ∈ ΘM

we have:∫
D

µ(x, ξ) grad Ωh0(x, ξ)·grad w0i(x) dx =

∫
D

µ(x, ξ) Hs(x)·grad w0i(x) dx.

(34)
The existence and uniqueness of Ω0 and Ωh0 have been proved in [26]. Since
Ω0 and Ω are equal up to an additive constant, they lead to the same magnetic
field: grad Ω0(x, ξ) = grad Ω(x, ξ). For the same reason, Ωh0 and Ωhi0 lead
also to the same magnetic field. We also introduce Ωh0,P ∈ V h0

x ⊗V P
ξ defined

by:

Ωh0,P (x, ξ) = Ωhi0,P (x, ξ)− 1

|D|

∫
D

Ωhi0,P (x, ξ) dx. (35)

Clearly, we have:

e2
sto(ξ) =

∫
D

µ(x, ξ) |grad ε′sto(x, ξ)|2 dx (36)

and

e2
glo(ξ) =

∫
D

µ(x, ξ) |grad ε′glo(x, ξ)|2 dx, (37)

where
ε′sto(x, ξ) = Ωh0,P (x, ξ)− Ωh0(x, ξ) (38)

and
ε′glo(x, ξ) = Ωh0,P (x, ξ)− Ω0(x, ξ). (39)

4.2. Stochastic error estimator

Definition 1. The stochastic estimator ηsto is defined by:

η2
sto(ξ) = rt(ξ)Λ−1

0 r(ξ), (40)

where r(ξ) is the residual vector term given by:

[r(ξ)]i =

∫
D

µ(x, ξ)grad Ωhi0,P (x, ξ) · grad w0i(x) dx

−
∫
D

µ(x, ξ)Hs(x) · grad w0i(x) dx (41)

for all 1 ≤ i ≤ n0, i 6= i0, and Λ0 is the mean value of the stiffness matrix:

Λ0 = E[Λ(ξ)], (42)

with Λ defined in (24).
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The purpose of this subsection (see Theorem 1 below) is to prove the
equivalence between the stochastic error (29) and the estimator (40). In
order to do it, two lemmas are first established.

Lemma 1. The stochastic error esto defined in (29) can be written in the
following form:

e2
sto(ξ) = rt(ξ)Λ−1(ξ)r(ξ). (43)

Proof. Let us define the vector ε(ξ) such that

[ε(ξ)]i = εi(ξ), i = 1 : n0, i 6= i0, (44)

where
εi(ξ) =

∑
α∈KP

ΩiαΨα(ξ)− Ωi(ξ), (45)

with Ωiα defined in (20) and Ωi defined in (28). From the definitions (24)
of Λ(ξ) and (44) of ε(ξ), the definitions (20) of Ωhi0,P and (28) of Ωhi0 , as
well as the weak formulation (27) associated to the definition (41) of r(ξ),
we obtain:

Λ(ξ)ε(ξ) = r(ξ). (46)

Then, substituting (20) and (28) in (29) and using the definitions (45) and
(24), we have:

e2
sto(ξ) = εt(ξ)Λ(ξ)ε(ξ). (47)

(43) is a direct consequence of (46) and (47).

Lemma 2. Let us denote Λ1(ξ) and Λ2(ξ) the two matrices of dimension
(n0 − 1)× (n0 − 1) such that:

[Λ1]ij (ξ) =

∫
D

µ1(x, ξ)grad w0i(x) · grad w0j(x) dx,

[Λ2]ij (ξ) =

∫
D

µ2(x, ξ)grad w0i(x) · grad w0j(x) dx,

with 1 ≤ i ≤ n0, i 6= i0, 1 ≤ j ≤ n0, j 6= i0 and 0 < µ1(x, ξ) ≤ µ2(x, ξ) for
all x ∈ D, and ξ ∈ ΘM . Then we have:

rt(ξ)Λ−1
2 (ξ)r(ξ) ≤ rt(ξ)Λ−1

1 (ξ)r(ξ), ∀ξ ∈ ΘM . (48)
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Proof. Let us denote
ε2(ξ) = Λ−1

2 (ξ)r(ξ), (49)

Λ3(ξ) = Λ2(ξ)−Λ1(ξ). (50)

First,

rt(ξ)Λ−1
2 (ξ)r(ξ) = εt2(ξ)Λ2(ξ)ε2(ξ). (51)

Since
rt(ξ)Λ−1

1 (ξ)r(ξ) = εt2(ξ)Λt
2(ξ)Λ−1

1 (ξ)Λ2(ξ)ε2(ξ), (52)

we have:

rt(ξ)Λ−1
1 (ξ)r(ξ) = εt2(ξ)(Λt

1(ξ) + Λt
3(ξ))Λ−1

1 (ξ)(Λ1(ξ) + Λ3(ξ))ε2(ξ)

= εt2(ξ)Λ1(ξ)ε2(ξ) + 2εt2(ξ)Λ3(ξ)ε2(ξ) + εt2(ξ)Λt
3(ξ)Λ−1

1 (ξ)Λ3(ξ)ε2(ξ)

= εt2(ξ)Λ2(ξ)ε2(ξ) + εt2(ξ)Λ3(ξ)ε2(ξ) + εt2(ξ)Λt
3(ξ)Λ−1

1 (ξ)Λ3(ξ)ε2(ξ)

= rt(ξ)Λ−1
2 (ξ)r(ξ) + εt2(ξ)Λ3(ξ)ε2(ξ) + εt2(ξ)Λt

3(ξ)Λ−1
1 (ξ)Λ3(ξ)ε2(ξ). (53)

(48) is deduced from (53), due to the facts that the matrix Λ−1
1 and the

matrix Λ3 are semi positive definite.

Theorem 1. Let us denote

k2 = maxx∈D

(
E[µ(x, ξ)]

µmin(x)

)
(54)

and

k1 = minx∈D

(
E[µ(x, ξ)]

µmax(x)

)
. (55)

Then,
k1 η

2
sto(ξ) 6 e2

sto(ξ) 6 k2 η
2
sto(ξ). (56)

Proof. (56) is deduced by using Lemma 1, Lemma 2 and the definition of Λ0

in (42).
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Here, one can notice that the coefficients k1 and k2 can be evaluated ex-
plicitly. In practice, the ratio k2/k1 is in the order of some units. Then, the
ratio between the upper bound and the lower bound of the stochastic error
is also in the order of some units. Furthermore, the estimation (56) does
not depend on the choice of the stochastic approximation basis (even if the
polynomial chaos are used in this paper to illustrate the approach) and on
the uncertainties propagation method (non intrusive or intrusive one). It can
also be used for the case of wavelet decomposition for example [21]. How-
ever, the error estimator requires the computation of the term rt(ξ)Λ−1

0 r(ξ)
that might be numerically expansive. By the way, as the matrix Λ0 is de-
terministic, some techniques can be used to calculate this term (triangular
decomposition of Λ0 if the memory system allows the storage of the triangu-
lar matrices, or performing a super pre-conditioning on the matrix Λ0).

We are now interested in estimating the global error defined by (37).
In the following of the paper, the constant C denotes to a generic constant
independent on the mesh Th, on the exact solution Ω(x, ξ), and on the degree
of the polynomial chaos P .

4.3. Reliability of the global error estimator

Definition 2. The global estimator ηglo is defined by:

ηglo(ξ) =

√
1

µ0
min

( ∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωhi0,P (x, ξ)−Hs(x))

]2
F
ds

+
∑
F∈∆B

∫
F

hF
∣∣µ(x, ξ)(grad Ωhi0,P (x, ξ)−Hs(x)) · n(x)

∣∣2 ds) 1
2

+

√
k2
µ0

max

µ0
min

ηsto(ξ),

(57)
where

[
µ(x, ξ)(grad Ωhi0,P (x, ξ)−Hs(x))

]
F

denotes the jump of the normal

component of µ(x, ξ)(grad Ωhi0,P (x, ξ) − Hs(x)) through the facet F , and
∆in and ∆B are the set of facets respectively located inside the domain D
and on the boundary of the domain ΓD.

The purpose of this section (see Theorem 2 below) is to prove the reliabil-
ity of the estimator (57). In order to do it, five lemmas are first established.
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Lemma 3. Let us denote Πε′(x, ξ) ∈ V h
x the Scott-Zhang interpolation of

ε′glo(x, ξ) ∈ Vx [25] defined in (39):

Πε′glo(x, ξ) =

n0∑
i=1

ai(ξ)w0i(x), (58)

where the dependency of ai(ξ) in ε′glo(x, ξ) is described in section 2 of [25].
Then we have :

e2
glo(ξ) = Eglo1(ξ) + Eglo2(ξ), (59)

where:

Eglo1(ξ) =

∫
D

µ(x, ξ)grad Ωh0,P (x, ξ) · grad (ε′glo(x, ξ)− Πε′glo(x, ξ)) dx

−
∫
D

µ(x, ξ)Hs(x) · grad (ε′glo(x, ξ)− Πε′glo(x, ξ)) dx,

(60)
and

Eglo2(ξ) =

∫
D

µ(x, ξ)grad (Ωh0,P (x, ξ)− Ωh0(x, ξ)) · grad Πε′glo(x, ξ) dx.

(61)

Proof. From the definitions (37), (39) and the formulation (33) we have:

e2
glo(ξ) =

∫
D

µ(x, ξ)grad Ωh0,P (x, ξ) · grad ε′glo(x, ξ) dx

−
∫
D

µ(x, ξ)Hs(x) · grad ε′glo(x, ξ) dx.

(62)

Since Πε′glo(x, ξ) ∈ V h
x , from (34) we can deduce that:∫

D

µ(x, ξ)grad Ωh0(x, ξ) · grad Πε′glo(x, ξ) dx

=

∫
D

µ(x, ξ)Hs(x) · grad Πε′glo(x, ξ) dx. (63)

(59) is deduced from (62) and (63).
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Lemma 4. We have:∫
D

µ(x, ξ)|grad Πε′glo(x, ξ)|2 dx ≤ C
µ0

max

µ0
min

∫
D

µ(x, ξ)|grad ε′glo(x, ξ)|2 dx.

(64)

Proof. From corollary 4.1 in [25] with l = m = 1, p = 2 we can deduce that:∫
D

|grad Πε′glo(x, ξ)|2 dx ≤ C

(∫
D

|grad ε′glo(x, ξ)|2 dx+

∫
D

|ε′glo(x, ξ)|2 dx
)
.

(65)
We can notice that∫

D

ε′glo(x, ξ) dx =

∫
D

(Ωh0,P (x, ξ)− Ω0(x, ξ)) dx = 0. (66)

Then, applying the Poincaré inequality we have:∫
D

|ε′glo(x, ξ)|2 dx ≤ C

∫
D

|grad ε′glo(x, ξ)|2 dx. (67)

From (65), (67) and (18), (64) is established.

Lemma 5. ∑
F∈∆

∫
F

h−1
F |ε

′
glo(x, ξ)− Πε′glo(x, ξ)|2 ds

+
∑
T∈TTh

∫
T

h−2
T |ε

′
glo(x, ξ)− Πε′glo(x, ξ)|2 dx

≤ C

∫
D

|grad ε′glo(x, ξ)|2 dx,

(68)

where ∆ and TTh are respectively the set of facets and elements of the mesh
Th and hF , hT are respectively the diameters of circumscribed circle of the
facet F and of circumscribed sphere of the element T .

Proof. From corollary 4.1 in [25] with l = 1, m = 0, p = 2 , and using (67)
we can deduce that:∑

T∈TTh

∫
T

h−2
T |ε

′
glo(x, ξ)− Πε′glo(x, ξ)|2 dx ≤ C

∫
D

|grad ε′glo(x, ξ)|2 dx.

(69)
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By using Lemma 4 in [25] we have:

hT

∫
FT

|ε′glo(x, ξ)− Πε′glo(x, ξ)|2 ds

≤ C
(∫

T

|ε′glo(x, ξ)− Πε′glo(x, ξ)|2 dx

+h2
T

∫
T

|grad (ε′glo(x, ξ)− Πε′glo(x, ξ))|2 dx
)
,

(70)

where FT is the set of the four facets belonging to the element T . By using
(69) and (70) we obtain:∑

T∈TTh

h−1
T

∫
FT

|ε′glo(x, ξ)− Πε′glo(x, ξ)|2 ds

+
∑
T∈TTh

h−2
T

∫
T

|ε′glo(x, ξ)− Πε′glo(x, ξ)|2 dx

≤ C

∫
D

|grad ε′glo(x, ξ)|2 dx.

(71)

Inequality (68) is deduced from (71) by the fact that hT ∼ hF , using the
regularity of the mesh Th.

Lemma 6.

Eglo1(ξ) ≤

C eglo(ξ)

√
1

µ0
min

(
∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

]2
F
ds

+
∑
F∈∆B

∫
F

hF
∣∣µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x)) · n(x)

∣∣2 ds) 1
2 .

(72)
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Proof. By applying the Green formula, we obtain:

Eglo1(ξ) =

∑
T∈TTh

∫
FT

µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x)) · n(x)(ε′glo(x, ξ)− Πε′glo(x, ξ)) ds

+
∑
T∈TTh

∫
T

div
(
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

)
(ε′glo(x, ξ)− Πε′glo(x, ξ)) dx.

(73)
By using the assumption that the permeability µ is constant in each element
T of the mesh Th and (10), we can deduce that:

div
(
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

)
= 0 ∀x ∈ T. (74)

By splitting the first term of the right hand-side of (73) on the facets in a
boundary contribution and an inner contribution, we obtain:

Eglo1(ξ) =

∑
F∈∆in

∫
F

[
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

]
F

(ε′glo(x, ξ)− Πε′glo(x, ξ)) ds

+
∑
F∈∆B

∫
F

µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x)) · n(x)(ε′glo(x, ξ)− Πε′glo(x, ξ)) ds.

(75)
Consequently, we deduce from the Cauchy-Schwarz inequality that:

Eglo1(ξ) ≤

{∑
F∈∆

∫
F

h−1
F

(
ε′glo(x, ξ)− Πε′glo(x, ξ)

)2
ds

} 1
2

×

{ ∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

]2
F
ds

+
∑
F∈∆B

∫
F

hF
∣∣µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x)) · n(x)

∣∣2 ds} 1
2

.

(76)
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By using Lemma 5 we obtain:

Eglo1(ξ) ≤ C

{∫
D

|grad ε′glo(x, ξ)|2 dx
} 1

2

×

{ ∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

]2
F
ds

+
∑
F∈∆B

∫
F

hF
∣∣µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x)) · n(x)

∣∣2 ds} 1
2

.

(77)

We can notice that:∫
D

∣∣grad ε′glo(x, ξ)
∣∣2 dx ≤ 1

µ0
min

∫
D

µ(x, ξ)
∣∣grad ε′glo(x, ξ)

∣∣2 dx, (78)

so that we can deduce (72) from (77) and (78).

Lemma 7. We have:

Eglo2(ξ) ≤ C

√
µ0

max

µ0
min

esto(ξ)eglo(ξ). (79)

Proof. By using the Cauchy-Schwarz inequality, we obtain:

Eglo2(ξ) =

∫
D

µ(x, ξ)grad (Ωh0,P (x, ξ)− Ωh0(x, ξ)) · grad Πε′glo(x, ξ) dx

=

∫
D

µ(x, ξ)grad ε′sto(x, ξ) · grad Πε′glo(x, ξ) dx

≤
(∫

D

µ(x, ξ)|grad ε′sto(x, ξ)|2 dx
) 1

2
(∫

D

µ(x, ξ)|grad Πε′glo(x, ξ)|2 dx
) 1

2

.

(80)
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By using Lemma 4, we obtain:

Eglo2(ξ) ≤ C

√
µ0

max

µ0
min

(∫
D

µ(x, ξ)|grad ε′sto(x, ξ)|2 dx
) 1

2

×
(∫

D

µ(x, ξ)|grad ε′glo(x, ξ)|2 dx
) 1

2

= C

√
µ0

max

µ0
min

esto(ξ)eglo(ξ).

(81)

Theorem 2. By defining e2
glo(ξ) in (37) and η2

glo(ξ) in (57) we have:

e2
glo(ξ) ≤ Cη2

glo(ξ). (82)

Proof. From Lemmas 3, 6 and 7 one can deduce that

eglo(ξ) ≤ C

√
1

µ0
min

( ∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

]2
F
ds

+
∑
F∈∆B

∫
F

hF
∣∣µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x)) · n(x)

∣∣2 ds) 1
2

+

√
µ0

max

µ0
min

esto(ξ).

(83)
By using Theorem 1, we can deduce

eglo(ξ) ≤ C

√
1

µ0
min

( ∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

]2
F
ds+

∑
F∈∆B

∫
F

hF
∣∣µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x)) · n(x)

∣∣2 ds) 1
2

+

√
k2
µ0

max

µ0
min

ηsto(ξ).

(84)
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Then, (82) is deduced by using the definition (57), due the fact that
grad Ωhi0,P (x, ξ) = grad Ωh0,P (x, ξ).

One can notice that the global error estimator η2
glo defined in (57) can be

divided in two parts. The first part related to

η2
spa(ξ) =

∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωhi0,P (x, ξ)−Hs(x))

]2
F
ds

+
∑
F∈∆B

∫
F

hF
∣∣µ(x, ξ)(grad Ωhi0,P (x, ξ)−Hs(x)) · n(x)

∣∣2 ds
(85)

evaluates the discontinuity of the normal component of the magnetic flux
density at the interior facets of tetrahedral elements, and the verification
of the boundary conditions. This part represents so in some way the error
coming from the spatial discretization and is called the spatial part of the
estimator. The second part related to

η2
sto(ξ) = rt(ξ)Λ−1

0 r(ξ) (86)

represents the error coming from the stochastic discretization, so called the
stochastic part of the estimator.

4.4. Efficiency of the error estimator

In this section, following the work [27], we aim to prove the local efficiency
of the estimator (57).

Lemma 8 (Bubble functions). For a given facet F of the mesh Th, we
introduce γ(F ) the set of elements having F as a facet (γ(F ) contains 2
elements if F is an interior facet and one element if F is located on the
boundary of the domain D). The facet bubble functions (see [27]) ψF (x) :
γ(F ) 7→ R vanishes on all facets excepting on the facet F and is non zero in
the interior of γ(F ). Let Gk

F be a polynomial functional space defined on the
facet F whose order is lower than k.

We have, for any v ∈ Gk
F :

C

∫
F

v2(x) ds ≤
∫
F

ψF (x)v2(x) ds ≤ C

∫
F

v2(x) ds, (87)
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Moreover, there exists an extension v of v to γ(F ) such that:

h
− 1

2
F

√∫
γ(F )

ψ2(x)v2(x) dx+h
1
2
F

√∫
γ(F )

(grad (ψ(x)v(x)))2 dx ≤ C

∫
F

v2(x) dx.

(88)

Proof. See [16].

Lemma 9. We have: √
1

µ0
max

ηspa(ξ) ≤ C eglo(ξ). (89)

Proof. For any v ∈ Vx ⊗ Vξ by using (33), we can deduce that:∫
D

µ(x, ξ)grad ε′glo(x, ξ) · grad v(x, ξ) dx

=

∫
D

µ(x, ξ)grad Ωh0,P (x, ξ) · grad v(x, ξ) dx

−
∫
D

µ(x, ξ)Hs(x) · grad v(x, ξ) dx.

(90)

By applying an integration by part, and due to (74), we obtain:∫
D

µ(x, ξ)grad ε′glo(x, ξ) · grad v(x, ξ) dx

=

∫
F∈∆in

RF (x, ξ)v(x, ξ) ds+

∫
F∈∆B

Rn(x, ξ)v(x, ξ) ds,

(91)

where

RF (x, ξ) =
[
µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x))

]
F

and
Rn(x, ξ) = µ(x, ξ)(grad Ωh0,P (x, ξ)−Hs(x)) · n(x). (92)

We are first interested in an interior facet F . We can notice that ψFRF can be
extended to ψFRF defined on the whole domain D where ψF (x)RF (x, ξ) = 0
if x is located outside of γ(F ) such that ψFRF is piecewise polynomial and
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globally continuous on D. Then ψFRF ∈ Vx ⊗ Vξ. By replacing v in (91) by
ψFRF we obtain:∫

γ(F )

µ(x, ξ)grad ε′glo(x, ξ) · grad (ψF (x)RF (x, ξ)) dx (93)

=

∫
F

RF (x, ξ)ψF (x)RF (x, ξ) dx. (94)

By applying the Cauchy-Schwarz inequality, we obtain:∫
γ(F )

µ(x, ξ)grad ε′glo(x, ξ) · grad (ψF (x)RF (x, ξ)) dx

≤
(∫

γ(F )

µ(x, ξ)|grad ε′glo(x, ξ)|2 dx
) 1

2

×
(∫

γ(F )

µ(x, ξ)|grad (ψF (x)RF (x, ξ))|2 dx
) 1

2

.

(95)

We can also notice that for each value of ξ, RF (·, ξ) ∈ G1
F . Therefore, by

applying (87) and (88) we obtain:∫
γ(F )

µ(x, ξ)|grad (ψF (x)RF (x, ξ))|2 dx

≤ µmaxF (ξ)

∫
γ(F )

|grad (ψF (x)RF (x, ξ))|2 dx ≤ Ch−1
F µmaxF (ξ)

∫
F

RF
2
(x, ξ) ds

(96)
and: ∫

F

R2
F (x, ξ) ds ≤ C

∫
F

RF (x, ξ)ψF (x)RF (x, ξ) ds, (97)

where µmaxF (ξ) is the maximum value among the two permeabilities of the
two adjacent elements of γ(F ). From (94), (95), (96) and (97) we can deduce
that:

1

µmaxF (ξ)

∫
F

hFR
2
F (x, ξ) ds ≤ C

∫
γ(F )

µ(x, ξ)|grad ε′glo(x, ξ)|2 dx. (98)

23



Considering a facet F ′ located on the boundary of D, by using the same
arguments, we can obtain:

1

µT (ξ)

∫
F ′
hF ′R2

n(x, ξ) ds ≤ C

∫
T (F ′)

µ(x, ξ)|grad ε′glo(x, ξ)|2 dx, (99)

where T (F ′) is the element having F ′ as facet and µT (ξ) is the permeability
in the element T . From (98), (99) and (85) and due to the fact that the
permeability is bounded (see (18)) and grad Ωhi0,P (x, ξ) = grad Ωh0,P (x, ξ),
Lemma 9 is proved.

Lemma 10. We have: √
k1ηsto(ξ) ≤ eglo(ξ). (100)

Proof. We can easily deduce from (19) and (34) that:

e2
glo(ξ) = e2

sto(ξ) +

∫
D

µ(x, ξ)|grad (Ωh0(x, ξ)− Ω(x, ξ))|2 dx. (101)

We conclude the proof by using Theorem 1.

Theorem 3.

√
k1ηsto(ξ) +

√
1

µ0
max

ηspa(ξ) ≤ C eglo(ξ). (102)

Proof. Direct consequence of Lemmas 9 and 10.

5. Numerical example

We now perform some numerical simulations to underline the estimator
behavior. We are interested in the following magnetostatic example. The
domain D is splitted into 5 sub-domains with the relative permeabilities
µ0 = 1, µ1 = µ2 = 1000, and µ3 and µ4 are two independent uniform random
variables defined in the range [600 - 1400]. This test is a benchmark allowing
to illustrate our theoretical results. Nevertheless, in real cases, the number of
random variables should be significantly larger. The current |Js| is imposed
equal to 1A. We use the SSFEM method associated to Legendre polynomial
chaos expansion with the scalar potential formulation [19, 12] to solve this
stochastic problem. In the SSFEM method, the obtained solution depends
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Figure 2: Stochastic magnetostatic problem.

on the spatial mesh size parameter h as well as on the order of the polynomial
chaos and the accuracy of the solution of the linear system (23). Therefore,
the numerical error also depends on these three factors. Here, the system (23)
is solved by a conjugate gradient method and the accuracy of the numerical
solution of (23) is evaluated by a stopping criterion R based on the residual of
(23). We are interested at first in the mean value of the stochastic error with
a fixed mesh of 2617 nodes (Fig. 3). With a given numerical solution Ωhi0,P

Figure 3: Mesh with 2617 nodes.

the mean value of the stochastic estimator (40) is compared to the mean
value of the stochastic error approximated by the Monte-Carlo method with
1000 samples which process is described in Fig. 4. In Fig. 5 (similar to
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Figure 4: Mean value of the stochastic error obtained by the Monte-Carlo method.

Fig. 3 in [22]), we plot the evolution of the mean stochastic estimator (40)
and the stochastic error estimated by the Monte-Carlo method (see Fig. 4)
as a function of the order of polynomial chaos and of the accuracy of the
solution of the linear system (23). From Fig. 5, some informations can be
deduced : 1. The estimator and the approximated stochastic error obtained
by the Monte-Carlo method are very close. 2. While the accuracy level
of the solution of the linear system (23) is low (R is upper than 10−4 in
Fig. 5) the stochastic error is the same with different orders of truncated
polynomial chaos decomposition. 3. While the accuracy level is high enough
(R is lower than 10−4 in Fig. 5) a higher order of polynomial chaos yields a
smaller stochastic error. 4. With a given order of polynomial chaos, when
the accuracy level increases, the evolution of the stochastic error decreases
up to a given value before being stable (log(R) = −6 with order P = 2 and
log(R) = −8 with order P = 4). Then, it is wasteful to increase the accuracy
level of the solution of the linear system (23) beyond these points.

We are interested now in the spatial estimator (85). The order of the
polynomial chaos is fixed equal to 4. At first, we use the mesh presented
in Fig. 3. Then, the obtained numerical solution Ωhi0,P depends only on
the stopping criterion R of (23). For each value of R, the mean value of
the spatial estimator (85) and of the stochastic estimator (86) are evaluated.
In Fig. 6, we plot the evolution of the mean value of spatial estimator in
function of the mean value of the stochastic estimator. One can notice that
when the stochastic estimator is small enough (10−2 in this example), with
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Figure 5: Stochastic estimator and estimated stochastic error in function of order of
polynomial chaos and of the stopping criterion R.

Figure 6: Spatial error estimation in function of stochastic error estimation .

a given mesh, the mean value of (85) seems to be stable. The stability of the
mean value of the spatial estimator can be explained by the fact that when

27



the stochastic error is small enough, we can consider that:∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωhi0,P (x, ξ)−Hs(x))

]2
F
ds

+
∑
F∈∆B

∫
F

hF
(
µ(x, ξ)(grad Ωhi0,P (x, ξ)−Hs(x))n(x)

)2
ds

≈
∑
F∈∆in

∫
F

hF
[
µ(x, ξ)(grad Ωhi0(x, ξ)−Hs(x))

]2
F
ds

+
∑
F∈∆B

∫
F

hF
(
µ(x, ξ)(grad Ωhi0(x, ξ)−Hs(x))n(x)

)2
ds.

(103)

The right hand side of (103) only depends on the mesh and it can be shown
[8] that the right hand-side of (103) is an equivalent measure of the spatial
error evaluating the distance between grad Ωhi0(x, ξ) and grad Ω(x, ξ).

We are finally interested in the numerical solution Ωhi0,P obtained by
using the different meshes. In Fig. 7 we can notice that with a given order
of polynomial chaos (P = 4) and a given R, the stochastic estimator (86)
depends on the mesh because Ωhi0,P and Ωhi0 are mesh dependent. However,
when the stopping criterion R is small enough, it seems to be independent
on the mesh (the lowest curve in Fig. 7). Figure 8 represents the evolution

Figure 7: Stochastic error estimation in function of number of nodes, order of polynomial
chaos P = 4.
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Figure 8: Spatial error estimation in function of of number of nodes.

of the mean value of the spatial error estimator (85) as a function of the
number of nodes of the mesh and of the value of R. One can notice that
the mean value of the spatial estimator depends only on the mesh and is
almost independent on the approximation in the stochastic dimension since
the error does not depend on the value of R.

6. Conclusion

In this paper we have presented an a posteriori error estimation for a
stochastic magnetostatic problem. The error estimator is decomposed into
two terms, one depending on the stochastic discretization and one depending
on the spatial discretization and on the stochastic discretization. Neverthe-
less, we have observed on the example that the last term depends only on the
spatial accuracy provided that the approximation in the stochastic dimension
is sufficiently accurate.

The residual-based error estimator has been developed for an approxi-
mation in the stochastic dimension based on a truncated polynomial chaos
expansion. The strategy can also be applied for other kinds of approxima-
tion spaces based on wavelets or piecewise polynomials for example. The
proposed error estimator can be used to compare the accuracy of the dif-
ferent approximation spaces and numerical methods by evaluating the two
parts of the estimator (spatial and stochastic one). It enables also to make a
relative comparison in terms of accuracy between the spatial errors and the
stochastic errors.
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