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Model order reduction applied to the numerical study of electrical
motor based on POD method taking into account rotation

movement
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1 L2EP/Université Lille1, Cité Scientifique, 59655 Villeneuve d’Ascq, France.
2 L2EP, Arts et Métiers ParisTech, 59046 Lille, France

SUMMARY

In order to reduce the computation time and the memory resources required to solve an electromagnetic field
problem, Model Order Reduction (MOR) approaches can be applied to reduce the size of the linear equation
system obtained after discretisation. In the literature, the Proper Orthogonal Decomposition (POD) is widely
used in engineering. In this paper, we propose to apply the POD in the case of a Finite Element problem
accounting for the movement. The efficiency of this method is evaluated by considering an electrical motor
and by comparing with the full model in terms of computational time and accuracy.
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1. INTRODUCTION

Applying numerical method such as the Finite Element Method to solve model based on
partial derivative equation can lead to huge linear equation system to solve. In order to reduce
the computation time required to solve this equation system, Model Order Reduction (MOR)
approaches can be applied to reduce the size of the system. In the literature, the Proper Orthogonal
Decomposition (POD) is widely used in engineering, as for example to study turbulent fluid flows
or structural vibrations. This approach has been introduced by [1] in turbulence in order to extract
the most energetic structures of the flow. In term of practical aspect, the method of snapshots
introduced by [2] enables to reduce the computational requirements of the POD calculations.
The POD approach has been already applied in computational electromagnetics to solve linear or
non linear magnetoquasistatics and electroquasistatics problems [3][4][5][6][7]. The accounting of
movement was not addressed until now whereas it is an important feature when studying rotating
electrical machine. In this paper, we propose to apply the POD approach with a numerical model
obtained from the Finite Element method. Magnetostatics problem express in term of potential
formulations is considered. A electrical motor is studied with POD models and then to take into
account the rotation movement with reduced models.

In a first part, the numerical models obtained from the scalar and vector potential formulations
are presented. In the second part, the proper orthogonal decomposition approach is developed in
the case of a rotation movement. Finally, The reduced models are applied to study a synchronous
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2 T. HENNERON, S. CLÉNET

machine with the scalar and vector potential formulations. Two methods derived from the POD to
choose the number of snapshots on the period of rotation have been compared.

2. NUMERICAL MODEL

2.1. Magnetostatic problem

Let us consider a domain D of boundary Γ (Γ = ΓB ∪ ΓH and ΓB ∩ ΓH = 0). In D, the source of
magnetic field is created by permanent magnets and stranded inductors. We assume that the domain
D is divided into two parts: the static part and the moving part. The position of the moving part
is given by an angle θ with respect to the static part (Fig. 1). In the following, we will consider
only the movement of rotation but the method can be also applied with a movement of translation
or a combination of translation and rotation. Even though the approach remains valid with several
stranded inductors and permanent magnets, we consider only one stranded inductor in the static part
and one permanent magnet in the moving part.

Figure 1. Computational domain

The magnetostatic field problem can be described by using Maxwell’s equations,

curlH(x, θ) = Js(x) (1)
div B(x, θ) = 0 (2)

with H the magnetic field, Js the known current density flowing through the stranded inductors
and B the magnetic flux density. Taking into account the material behavior, the constitutive relation
between the fields B and H must be considered. In the linear case, we have

B(x, θ) = µH(x, θ) +Br(x, θ) (3)

with µ the magnetic permeability and Br the remanent magnet flux density of the permanent
magnet. To get a unique solution, the following boundary conditions must be prescribed,

H(x, θ)× n = 0 on ΓH (4)
B(x, θ) · n = 0 on ΓB (5)

with n the outward unit normal vector.

2.2. Potential formulations

To solve the previous problem, two potential formulations can be used: the vector and scalar
potential formulations.
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2.2.1. Vector potential formulation
A magnetic vector potential A is defined in the whole domain according to (2) such that:

B(x, θ) = curlA(x, θ) with A(x, θ)× n = 0 on ΓB (6)

Combining the previous expression and the behavior law, we obtain the vector potential formulation
of the problem to be solved. The weak form is then written∫

D

1

µ
curlA(x, θ) · curlA′(x, θ)dD = (7)∫

D

1

µ
Br(x, θ) · curlA′(x, θ)dD +

∫
D

Js(x) ·A′(x)dD

where A′(x, θ) is a test function defined on the same space of A(x, θ). In the 3D case, the vector
potential is semi-discretised in the edge shape function space [8]

A(x, θ) =

Ne∑
i=1

Ai(θ)wai(x, θ) (8)

with Ai(θ) the circulation of the vector potential A(x, θ) along the i-th edge, Ne the number of
edges of the mesh and wai the edge shape function associated with the i-th edge. The circulation of
wai along the i-th edge is equal to one and zero on all others edges [8][9]. In the stator, the shape
functions does not depend on θ. Only shape functions related to the rotor are angle dependent. We
denote by AD(θ) the vector of components (Ai(θ))1≤i≤Ne . The vector Js is expanded in the facet
shape function space. This field can be determined by a tree technic to impose its free divergence
[10][11]. Then, we solve the following equations system

MA(θ)AD(θ) = FA(θ) (9)

with MA(θ) a Ne ×Ne square matrix which the entries mA(θ)i,j satisfy

mA(θ)i,j =

∫
D

1

µ
curlwai(x, θ) · curlwaj(x, θ)dD

and FA(θ) a Ne × 1 vector with

fA(θ)i =

∫
D

1

µ
Br(x, θ) · curlwai(x, θ)dD +

∫
D

Js(x) ·wai(x)dD

2.2.2. Scalar potential formulation
A scalar potential Ω is defined in the whole domain according to (1) such that

H(x, θ) = Hs(x)− gradΩ(x, θ) with curlHs(x) = Js(x) (10)
Ω(x, θ) = 0 on ΓH and Hs(x)× n = 0 on ΓH

Combining the previous relation and the behavior law, we obtain the scalar potential formulation of
the problem. The weak form to be solved is then written∫

D

µgradΩ(x, θ) · gradΩ ′(x, θ)dD = (11)∫
D

Br(x, θ) · gradΩ ′(x, θ)dD +

∫
D

µHs(x) · gradΩ ′(x)dD
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with Ω′(x, θ) a test function defined on the same space of Ω. In the 3D case, the scalar potential is
semi-discretised in the node shape function space

Ω(x, θ) =

Nn∑
i=1

Ωi(θ)wni(x, θ) (12)

with wni the node shape function associated with the i-th node, Ωi(θ) a function of the angle θ and
Nn the number of nodes of the mesh. The value of wni is equal to one on the i-th node and zero on
all others nodes. We denote by ΩD(θ) the vector of components (Ωi(θ))1≤i≤Nn . The vector Hs is
expanded in the edge shape function space [8]. Then, we solve the following equations system

MΩ(θ)ΩD(θ) = FΩ(θ) (13)

with MΩ(θ) a Nn ×Nn square matrix which the entries mΩ(θ)i,j satisfy

mΩ(θ)i,j =

∫
D

µgradwni(x, θ) · gradwnj(x, θ)dD (14)

and FΩ(θ) a Nn × 1 vector with

fΩ(θ)i =

∫
D

Br(x, θ) · gradΩ ′(x, θ)dD +

∫
D

µHs(x) ·wni(x)dD

2.2.3. Locked step method
To take into account the movement of the moving part with respect to the static part of the system,

the locked step method can be used with the scalar and vector potential formulations. This method,
mainly used to study electrical motors in the literature [12] [13], imposes constraints on the mesh
of the boundary between the static part and the moving part which requires to be meshed with a
regular grid. The rotation movement is simply modeled by a circular permutation of unknowns on
the mesh of the common surface of the moving part. We denote by ∆θ the angular step between two
positions of the moving part. Then, the rotation angle θ is discretised by θk = k∆θ. In the following,
we denote by

M(θ)XD(θ) = F (θ) (15)

the equation system (9) or (13).

3. PROPER ORTHOGONAL DECOMPOSITION

The Proper Orthogonal Decomposition is based on a separated representation of functions of the
solution [1] [2]. In our case, if we denote by X(x, θ) the scalar or vector potential (see (8) and
(12)), we can write

X(x, θ) ≈
M∑
n=1

Rn(x)Sn(θ) (16)

with Rn(x) defined on D, Sn(θ) defined on [θ0, θT ] with θ0 and θT the initial and final angles and
M the number of modes taken into account for the approximation of the solution. The functions
Rn(x) form an orthogonal basis which verify∫

D

Ri(x) ·Rj(x)dD = δij (17)
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where δij is the knonecker product. The functions Sn(θ) can be expressed from the projection of
X(x, θ) on the basis of functions Rn(x) such that

Sn(θ) =

∫
D

X(x, θ) ·Rn(x)dD (18)

To determine the set of functions Rn(x), we aim at minimizing the quantity

∥X(x, θ)−
M∑
n=1

Rn(x)Sn(θ)∥2 (19)

= ∥X(x, θ)− (

M∑
n=1

∫
D

X(x, θ) ·Rn(x)dD) ·Rn(x)∥2

with ∥∥2 the L2-norm. To determine a discrete representation of the functions Rn(x), the Snapshot
method can be used [2]. In a first step, the matrix system (14) is solved for M angular steps (called
Snapshots). The M vectors of XD(θk) obtained at each angular step are gathered in a matrix MS .
Then, the matrix MS of size Nx ×M is defined with Nx the number of unknowns (nodes or edges
depending on the formulation) of the mesh. The discrete forms of (17) and (15) can be written as

Ψ = MSR (20)
MS = ΨMSr (21)

where R is a matrix whose the column i corresponds to the discrete values of the function Ri(x) (in
the edge or nodal element space), Ψ the discrete projection operator between the values of X in the
basis of the Nx functions and the reduced basis. The expression of Ψ can be deduced from a Singular
Value Decomposition (SVD) of the matrix of Snapshots MS . Then, we obtain MS = V ΣW t with
Σ the diagonal matrix of the singular values, V and W the orthogonal matrices of the left and right
singular vectors. By combining (19), (20) and the SVD of MS , we have

MS = V ΣW tRMSr (22)

By assuming that R = W , we have WW t = I. The previous equation can be simplified as:

MS = V ΣMSr (23)

By identification, the expression of Ψ can be defined such that Ψ = V Σ. The reduced matrix system
can be deduced by using the operator Ψ in (14)

M r(θ)Xr(θ) = F r(θ) (24)
with M r(θ) = ΨtM(θ)Ψ and F r(θ) = ΨtF (θ)

The size of the matrix M r and the vector F r depend on the number of Snapshots. To obtain the
solution on [θ0, θT ], the reduced matrix system is solved for all angular steps. As the matrix M r(θ)
depends on the angle, the matrix M(θ) is determinated at each angular step. For each step, the
solution in the original basis can be determined such that

XD(θ) = ΨtXr(θ) =

M∑
n=1

Ψt
iXrn (25)

In term of implementation, the computational cost of the singular value decomposition of MS

can be important due to the size of snapshot matrix. Another approach to obtain the expression
of W can be carried out by the calculation of the eigenvalue decomposition of the correlation

matrix defined by CM =
1

M
M t

sM s. The size of CM is M ×M and the SVD of this matrix give

CM = WΣ2W t.
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4. APPLICATIONS

In term of applications, a permanent magnets synchronous machine is studied. This machine is
composed of three phases and 8 poles. The rotation movement of the rotor is imposed at the angular
speed 100π rad/s. The three phases of the stator are not connected with an electrical circuit. We
study the magnetic flux associated with a phase created by the permanent magnets of the rotor.
Due to symetries, only one eighth of the machine is modelled (Fig. 2). The rotation of the rotor
is taken into account with the locked step approach. The angular step between two successive
positions of the rotor is ∆θ = π/80. The 3D spatial mesh has 40449 nodes and 53672 prisms.
The electrical motor is studied with the full and reduced models from the potential formulations.
For the scalar and vector formulations, the number of unknown is 40311 and 60377 respectively.
With the POD approach, two methods to choose the M snapshots on the period of rotation are
compared. In the first approach, snpashots are the solutions of the M first positions of the rotor. The
snapshots correspond to successive positions (∆θsp = ∆θ). In the second approach, M snapshots
are uniformly distributed on the whole interval [0, π/2] (∆θsp = π/2M ). In the following, we
denote by ”reference model” the full model solved with the original mesh before reduction. We
will compare in terms of computational time and accuracy the reduced model with the reference
model.

Figure 2. Permanent magnets synchronous machine

4.1. Influence of the number of modes on the magnetic flux associated with a phase

Figures 3 and 4 present the magnetic flux of a phase obtained from the reference and POD models
with the scalar and vector potential formulations by using the M first time steps as snapshots
(∆θsp = ∆θ). On both figures, the curves of the magnetic flux computed with the POD models
diverge to the reference when the angle is greater than M∆θ. The solution of the reduced model
on the position corresponding to the snapshot should give the same result as the full model. That
is why the reference model and the reduced model give the same result for the M first positions.
Figures 5 and 6 present the magnetic flux of a phase obtained from the reference and POD models
with the scalar and vector potential formulations in the case of the snapshots uniformly distributed
on [0, π/2] (∆θsp = π/2M ). On both figures, the shape of curves converge until the ones of the
reference with respect to the number of snapshots. The error between the results obtained from a

reference model and a POD approach can be expressed such that ε =
∥Φref − Φpod∥2

∥Φref∥2
with Φ the

vector of discrete values of the magnetic flux. For the scalar formulation, 12 snapshots are required
to obtain a good approximation of the solution with an error equal to 0.009% and 15 snapshots for
the vector potential formulation with an error equal to 0.007%. In the case of an uniform distribution

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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MOR APPLIED TO THE NUMERICAL STUDY OF ELECTRICAL MOTOR BASED ON POD METHOD 7

of snapshots, the reduced basis are more accurate to approximate the solutions on [0, π/2] than by
using the M first time steps.

Figure 3. Magnetic flux associated with a phase obtained from reference and POD models with the scalar
formulation by using the M first time steps as snapshots

Figure 4. Magnetic flux associated with a phase obtained from reference and POD models with the vector
formulation by using the M first time steps as snapshots

4.2. Influence of the number of modes on the distribution of the magnetic flux density

From equation (24) of the approximated solution, it is possible to represent a distribution of
the magnetic flux density associated to each vector of the reduced basis. Figure 7 shows the
distributions of Bi = curlΨt

iXri with i = 1, 2, 3 at a given angle θk obtained from the vector
potential formulation in a cross section of the stator. The distributions of B2 and B3 are similar but
shifted with an electrical angle of π/2. It can be interpreted as a field distribution due to the rotor
permanent magnets in the d-axis and q-axis. the field B1 represents the distribution of the magnetic
flux density at the extremity of the teeth.

Figure 8 shows the distribution of the magnetic flux density obtained from the POD model of the
vector potential formulation and the difference with the reference model at a given angle. A good
approximation of the solution is obtained and we can note that the maximum of the error is not
located where the magnetic flux density is the most important.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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Figure 5. Magnetic flux associated with a phase obtained from reference and POD models with the scalar
formulation by using an uniform distribution of the snapshots on [0, π/2]

Figure 6. Magnetic flux associated with a phase obtained from reference and POD models with the vector
formulation by using an uniform distribution of the snapshots on [0, π/2]

Figure 7. Distribution of B1, B2 and B3 (T)

4.3. Computational time

For 80 steps corresponding to different positions of the rotor, the computation time is equal to 9
minutes for the scalar formulation and 33 minutes for the vector formulation. In the case of 12
snapshots for the scalar formulation, the reduced model needs 8 minutes and for 15 snapshots with
the vector formulation, the computation time is 10 minutes. These computation times take into
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Figure 8. Distribution of B (T) obtained from the reduced model of the vector formulation and its difference
with the reference model

account the simulations of the reference models for the snaphots and those of the reduced models
for 80 angular steps. For one iteration, the ratio of computation time between the reference and
reduced models is 1.35 and 8.67 for the scalar and vector formulations respectively. The small size
of the reduced model explain the reduction of the computational time. The iterative method, in
our case based on a conjugate gradient, requires less iterations with the reduced models than with
the reference models. In our case and as usual, the solving of the reference models based on the
scalar formulation is faster than the one of the vector potential formulation. However, with the two
reduced models associated with both formulations, the unknown number and the computational
times are similar.

5. CONCLUSION

The Proper Orthogonal Decomposition method associated with the 3D vector and scalar potential
formulations has been developed in order to study electrical motors. The rotation of the rotor
has been taken into account with the locked step approach. Two methods to choose the positions
of snapshots computations on the period of rotation have been compared. With our application
example, the use of an uniform distribution of the snapshots on the period of rotation gives better
results compared with those obtained from the use of the first positions of the rotor. Then, it appears
that the accuracy of the solution obtained from a reduced model is similar compared with this one
of a fully described model. Finally, the computation time of the model order reduction approach
remains lower than the one obtained with a reference model.
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