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Abstract 

Thread milling is a machining technique which is becoming widely used in specific contexts such as large diameter threading. Furthermore, 
compared to tapping, it is fully adapted to produce internal threads in difficult-to-cut materials, because the tool can be easily removed if a 
breakage occurs. For thread milling, as well as for form milling, groove and worm machining, geometrical considerations are critical aspects to 
succeed surface machining with the required accuracy. Interference phenomena may appear and appropriate cutter profiles and tool trajectories 
have to be defined to generate the desired shape. The proposed study is focusing on the threading of non-symmetric profile. A geometrical 
model computing the envelope profiles and using full parametrical definitions of the tool and thread is proposed. Its exploitation allows an 
analysis to explain and to quantify the influencing parameters on overcut. Then, an iterative method based on a direct approach, is proposed to 
define the tool design allowing to machine non-symmetric threads with good accuracy. 

© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of The International Scientific Committee of the “15th Conference on Modelling of Machining Operations”. 
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1. Introduction

Thread milling allows producing both internal and external
threads and is more and more used instead of tapping for high 
cost parts manufacturing. Thread milling induces a lower 
torque, a constant cutting speed, and the tool can be easily 
removed when breakage occurs. As a consequence, this 
technique is well adapted for low machinability materials. 

Thread milling is a complex technique, due to the cutting 
tool geometry [1] and the milling trajectory. Thus, several 
studies focus on geometrical and mechanical aspects [2],
cutting geometry effects [3, 4], penetration strategies [4, 5],
cutting force modeling [6, 7] and dynamical stability [7].  

Furthermore, there is a drawback linked to the thread 
milling technique, interferences appear and affect the thread 
accuracy. This geometrical phenomenon implies more, or less 
respectively, material is removed, i.e. overcut, undercut 
respectively. The reason is that the tool shape does not fit 
everywhere along its profile or for any tool position, with the 
desired surface which is intended to machine. This is quite 

common in machining with form tools, as in 5-axis flank 
milling [8-9], during helical groove [10-14], thread [15,16] 
and worm [17,18] grinding or milling with disc-type tools.
From a global approach, interference can be compensated by 
adapting the tool profile, its trajectory, or both. Finally there 
are two main problems linked to the interference [10,17]. The 
first is to compute the geometrical error from the tool shape 
and its trajectory; it is named the direct problem. The second 
is to determine the tool profile from the desired surface 
geometry; it is named the inverse problem. Few studies are 
focused on the second approach [10,11,19], most of them only 
deal with the computation of geometrical errors [13,14,16,18], 
and someone may implement an iterative algorithm to the 
direct model to establish the tool profile for thread grinding 
[15] or for thread milling [20].  

In internal thread milling, the configuration is different 
from groove, worm or thread machining with disc type tools,
because the tool axis is parallel to the thread one, which is a 
less favorable situation from the interference point of view. 
Moreover, it is proven that the tool penetration can induce a

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
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significant overcut of the nominal thread, and the penetration 
has to respect different constraints to avoid it [5]. With 
symmetric thread profiles, the interference can be 
compensated during the full thread machining by changing the 
radius of the helical trajectory [20], which is not possible with 
non-symmetric thread profiles. 

The present study deals with the interference compensation 
during the internal thread milling of non-symmetric thread 
profiles, such as buttress threads (S, GS & KS threads defined 
by DIN 513-1, DIN 55525, DIN 6063-1 standards). The used 
approach is based on a direct model of geometrical errors, and 
associated to an iterative algorithm for computing the tool 
profile correction and fitting the generated thread profile with 
the nominal one. 
Nomenclature 

Nominal thread characteristics: 
i: ith thread flank angle 

 D: major/nominal diameter (mm) 
 D1: minor diameter (mm) 
 D2: pitch diameter (mm) 
 Lc: crest length (mm) 
 Lg: groove length (mm) 
 P: pitch (mm) 
Pti: ith characteristic point of the nominal thread profile 

 R: major radius of the thread (mm) 
 R1: minor radius of the thread (mm) 
 R2: thread pitch radius (mm) 
Mill cutter characteristics: 
 Dm: major diameter (mm) 
 D2m: pitch diameter (mm) 
 Lcfe: length of the front cutting edge 
 Pmi: ith characteristic point of the mill profile 
 Pmi

n: ith characteristic point of the new mill profile 
 Rm: major radius of the thread (mm) 
 R1m: minor radius of the thread (mm) 
 R2m: thread pitch radius (mm) 
Computed parameters: 
 Er: radial error between nominal and generated thread ( m)
 Ea: axial error between nominal and generated thread ( m)
 Rmc: helix radius of the mill center trajectory (mm) 
 Dmgt: maximum diameter of the generated thread flank 
Geometrical objects: 
 FTP(z): fundamental thread profile in (O,E1,E3) frame 
MP(zce): mill profile in (O,e1,e3) frame 
 NTP(z): nominal thread profile in (O,E1,E3) frame 
 EMET(zce): envelope of the mill envelope trace in the 

(O,E1,E3) plane 
GTP(z): generated thread profile in (O,E1,E3) frame 

2. Thread milling parameterization

The parameterization of the thread milling operation is 
presented in Fig. 1. The nominal thread profile (NTP) is 
composed of 5 lines as shown in Fig. 2 and the mathematical 
formulation is the one used in [20]. Equations (1) give a full 
analytical definition of this profile and its 6 characteristic 
points in (O,E1,E3) reference system. They depend on the 
following parameters: thread radius (R, R1, R2), flanks angles 

( 1, 2) and groove and crest lengths (Lg, Lc) from which 
result the thread pitch (P). 

Fig. 1. Thread milling parameterization. 

For the initial start of the simulation, the mill profile (MP)
corresponds to the nominal thread one, i.e. same groove and 
crest lengths, same flank angles, but with considering lower 
diameters so the tool can enter into the hole. 

Fig. 2. Nominal thread profile (NTP) & mill profile (MP) in (O,E1,E3) –
case B: D = 16 mm; P = 2.Lc = 2.Lg =3 mm; Dm = 10 mm; 1 = 60°; 

2 = 80°). 
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In order to focus on well-defined thread applications,
further down, the following relations (2) are considered,
which match with buttress thread profile according to DIN 
513-1 standard. 

1

2

c g

D D 1.5P
D D 0.75P
P 2L 2L

               (2) 

3. Interference modelling

An interference model aims at the computation of 
geometrical errors. The steps of the algorithm are presented in 
Fig. 3. The used model is the one fully detailed in [20] and 
which is experimentally validated and confirmed by a 
different mathematical approach in [5]. The principle is as 
followed. The radius of the mill center trajectory (Rmc) is 
computed, as explained in Fig. 2. For each point of the mill 
profile, defined by its altitude zce in mill referential, the mill 
envelope trace (MET) in a thread cross section, i.e. (O, E1,
E3) plane, is calculated. Then, the generated thread profile 
(GTP) is resulting from the envelope of every mill envelope 
traces (EMET). Finally the radial error (Er) and the axial error 
(Ea) are obtained by calculating the distances from the GTP
profile to the fundamental thread profile (FTP), as shown in 
equations (3) and Fig. 4. 
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Fig. 3. Computerized simulation algorithm, included correction loops. 

The Fig. 4 shows an example of a generated thread profile. 
Several points have to be underlined. The internal flank points 
of the GTP profile, at the D1 diameter, are generated by MP

profile points which are a completely different attitude is the 
tool referential, i.e. PGTP5 generated by Pm5g. The extreme 
points of the mill profile, Pm3 and Pm4, generate a curved 
thread root, even if the mill profile is composed of lines. The 
errors and the root length depend greatly on the flank angles 
which are different for the upper and the lower flanks. Thus, 
the flank of the generated thread profile is much shorter that 
the NTP one and the maximum diameter of the generated 
thread (Dmgt) is calculated from equations (4). 

Fig. 4. Interference and errors – case B: D = 16 mm; P = 3 mm; Dm = 10 mm; 
1 = 60°; 2 = 80°). 
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4. Parametric study

The overcut is resulting both from thread dimensions and 
tool ones. Table 1 is showing 8 configurations with constant 
flank angles and gives the maximal radial error (Er max) for 
each flank. It has to be noticed that the error may vary from a 
1000 factor, and up to 1 mm. Consequently, errors linked to 
interference have to be corrected to produce thread within a
given tolerance. 

The higher the P/D ratio is, the higher the radial error is. 
This ratio is in relation with the thread helix angle. From a 
geometrical point of view, when the thread helix angle is 
higher, the nominal thread surface crosses much more the tool 
envelope which has no helix angle, because it is a revolution 
surface. The error sensitivity to this ratio error is very high. 
Nevertheless, this parameter cannot be changed from the 
manufacturer position, and it is only linked to thread 
dimensions. 

The higher the Dm/D ratio is, the higher the radial error is. 
Thus, it is constrained, because from a mechanical point of 
view a bigger mill diameter makes the tool stronger and limits 
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its deflection. Nonetheless, this ratio sensitivity on error is 
lower than the one of the previous ratio. 

Table 1. Effect of thread and tool dimensions on radial error ( 1 = 60°; 2 =
80°). 

Case D
[mm]

P
[mm]

Dm
[mm] P/D Dm/D

Er max on 
lower 

fl. [ m]

Er max on 
upper fl.

[ m]
A 16 1 10 0.06 0.63 8 85
B 16 3 10 0.19 0.63 72 797
C 32 1 10 0.03 0.31 1 12
D 32 3 10 0.09 0.31 10 104
E 32 6 10 0.19 0.31 39 409
F 32 1 20 0.03 0.63 4 42
G 32 3 20 0.09 0.63 36 386
H 32 6 20 0.19 0.63 143 1595

These observations are also established in [5,20]. 
Furthermore, the effect of the flank angle is studied, and Fig. 
5 shows simulation results for  flank angles changing from 
45° to 80°. 

For a given flank angle, it is observed that the error on 
flank slightly increases, which means the generated flank has 
a different angle than the nominal one. 

When the flank angle moves from 70° to 80°, the 
maximum radial error on the flank increases from 180 m to 
800 m. Thus, the sensitivity to the flank angle is very high,
but like with the P/D ratio, it is a fixed constraint. Moreover, 
it appears that the flank becomes shorter when the flank angle 
increases (as observed on Fig 4.). Consequently, in addition to 
the radial error, it is also needed to produce threads with a
Dmgt diameter at least equal to the D nominal diameter to 
allow the assembly with the screws. 

Fig. 5. Radial error along flanks and roots for different thread flank angles 
(case B: D = 16 mm; P = 3 mm; Dm = 10 mm). 

5. Interference compensation

5.1. Simulation algorithm 

The strategy for the interference compensation is mainly 
based on modification of the mill profile (MP). An iterative 
approach and the direct model for the error computation are 
used. Fig. 6 presents the correction algorithm which is 
integrated as a loop in the simulation detailed in Fig. 3. Fig. 7 
shows the geometrical construction for the mill profile 
correction. 

The main idea is to shift extreme points of the mill profile 
flanks prohibit the overcut, i.e. Pm2 and Pm3 for the lower 
flank, and Pm4 and Pm5 for the upper flank are modified.
Nonetheless, there are constraints relatively to the thread 
geometry and several cases may appear. 

First of all, the 1st test concerns the flank length. It is a 
condition expressed by equation (5), and the length of the 
front cutting edge (same condition than for the 3rd test). On 
the one hand, the flank has to be long enough, but on the other 
hand the front cutting edge length cannot be reduced over a 
too low value which makes the tool too brittle. At the 
simulation start, a low length of the front cutting edge (fce) 
may result directly from nominal thread geometry. 

T1: flank length 
& fce length

 Yes No

2nd Step: overcut correction
Pm2g

n & Pm5g
n axial translation - Eq. 8

3rd Step: root profile definition
Pm2

n & Pm5
n defined by lines intersections - Eq. 9

T2: point position
Pm3r

n < Pm4r
n

NoYes

Start

T3: fce length
Pm3z

n -Pm4z
n Lfce

5th Step: imposition of fce length
Pm3

n & Pm4
n translation - Eq. 12

Yes
No

End

1ast Step: overcut correction
Pm3

n & Pm4
n (r,z) translation 
- Eq. 6

1bst Step: overcut correction
Pm3

n & Pm4
n axial translation 
- Eq. 7

4ath Step: vertical front 
edge constrain

Pm3
n translation - Eq. 10

4bth Step: vertical front 
edge constrain

Pm4
n translation - Eq. 11

Fig. 6. Correction algorithm of MP mill profile points. 

During the 1st step, if it is necessary to increase the flank 
length and if it can be, Pm3 and Pm4 are translated in r & z 
directions as defined by equations (6). If not, it is most of the 
time after the 1st correction loop, when the MP height has 
been adjusted, these 2 points are only shifted in the axial 
direction from the axial error (equations (7)) in order to get 
the new points (noted with a “n” exponent).
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Fig. 7. Radial error along flanks during correction algorithm (case B: D = 16 
mm; P = 3 mm; Dm = 10 mm; t1 = 60°; t2 = 80°). 

The 2nd step consists of shifting the two mill profile points, 
Pm2g and Pm5g, axially from the axial error, which generate the 
inner extreme points of the flanks. Equations (8) are applied. 

n T
m2g m2g a m2gz

n T
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The 3rd step, the new points Pm2
n and Pm5

n are built by 
extension of flank lines, with considering the equations (9). 

n n n
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After the 1ast step, the Pm3
n and Pm4

n points are not 
vertically aligned because they were translated in the r & z 
directions with different vectors. Then, the 4th step shifts one 
of these two points to the right side. Depending on the 2nd test, 
Equation (10), (11) respectively, is used for the Pm3

n point, for 
the Pm4

n point respectively. 
n n n n

m3 m2 m3 m4( ) ( )3P P P P ,E               (10)
n n n n

m4 m4 m5 m3( ) ( )3P P P P ,E          (11) 
Moreover, the initial step may also translate the Pm3

n and 
Pm4

n points to the right side of the extreme right point of the 
fundamental thread profile (FTP). Practically, it means in this 
case that the Pm3

n point is up to the Pm4
n point, which is 

conditioned by the 3rd test. Then, if it is necessary, Pm3
n and 

Pm4
n points are one more time translated along the flanks with 

respecting equations (12), in order not to have a too short 
front cutting edge. It is necessary, but reduces the flank 
length. 
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The correction algorithm is completed after these 4 steps,
and from the new mill profile (MPn), the error computation 
can be run again. As shown on Fig. 7, the corrected mill 

profile is thinner and deeper than the thread crest to machine 
initially. However, the generated thread profile will match the 
flanks of the nominal thread profile because of the overcut. 
The generated thread profile is effectively deeper than the 
nominal one, which does not make any problem; it is usually 
not standardized, e.g. for M metric thread. 

The global simulation, presented Fig. 3, uses this 
correction loop until two conditions are realized. The 1st

corresponds to the 4th test on the obtained precision vs the 
desired precisions (Er

*). The 5th test is necessary to stop the 
correction loop after 2 iterations if the front cutting edge is 
equal to the minimum value, i.e. Lfce, and if the Dmgt diameter 
is still not large enough. If this case, it is clearly impossible to 
produce the thread with the tool having the input diameter. It 
may be possible will a smaller milling cutter, and then the Dm
mill diameter has to be decreased. If it is still impossible with 
considering a smaller tool, then it has to be concluded that the
desired thread profile cannot be obtained by thread milling.
Thus, another threading technique like cut tapping, or form 
tapping for a greater precision [21], has to be chosen. 

5.2. Applications of the computerized simulation 

It is considered the thread milling case G, cf. Table 1. The 
initial maximum radial error is near 390 m on the upper 
flank and 36 m one the lower one. Fig. 8 presents the error 
along the flanks after each correction loop.

The maximal error after the 1st loop is drastically reduced 
to 6 m. The upper flank reaches the R radius. Because 2
flank angle is higher than the one on the lower flank, the error 
is more important on it. Thus, the correction algorithm 
translates further the Pm4 point in r & z directions than the Pm3
point (1ast step). The 4ath step shifts the Pm3 point to the right 
side to align vertically these two points, then it results the 
lower flank length is longer than needed. 

Fig. 8. Radial error along flanks during correction algorithm (case G: D = 32 
mm; P = 3 mm; Dm = 20 mm; t1 = 60°; t2 = 80°). 

During the 2nd correction loop, 1bth step is applied, the 
points are only vertically shifted, and the flank length is not 
affected. The resulting radial error becomes insignificant on
both flanks. This error can be considered to be null on the 
flanks extreme points, which is the principle of the correction 
algorithm. Then, the goal is reached, additional loops are 
useless, and this case was solved with only two iterations. 
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Moreover, the error being null at the extreme flank points 
and having a parabolic form between these points, it can be 
deduced that the exact solution to fit the nominal thread 
profile along the entire flank, is not a straight line. 
Nevertheless, the error being already so small, and also other 
phenomena that cause interference appear (tool bending, 
machine error), it is really considered that the simulation is 
sufficient enough to improve the thread accuracy. 

The case B is presented on Fig. 9. The initial and maximal 
radial error is around 800 m on the upper flank. Here three
correction loops are needed to obtain no error on the extreme 
upper flank points. The residual radial error reaches 9 m. A
better profile cannot be obtained with a mill profile composed 
of straight lines, however it is considered to be sufficient 
enough. Furthermore, the main point in this application is 
concerning the upper flank length which does not match the R 
nominal thread radius. The root length of the nominal thread 
is initially low vs the overcut to correct, and the algorithm 
enforces a minimum front cutting edge length which equals to 
Lfce = 0.2 mm. Then, in this case the new mill profile is 
modified by the 5th step of the algorithm at each loop. 
Consequently, the profile cannot be higher because of the fce 
length constraint, and then no more flank can be generated. 

In this case, the mill diameter being already low, it might 
not be reduced anymore. Nonetheless, the accuracy may be 
sufficient; it depends on the required precision. Furthermore, 
it also has to be considered that the root is tangent to the flank 
and this curve smoothly evolves. Then, for a given interval
tolerance, the flank which contributes effectivity to the 
assembly with the screw, may be partially the root of the 
generated thread.  

Fig. 9. Radial error along flanks during correction algorithm (case B: D = 16 
mm; P = 3 mm; Dm = 10 mm; t1 = 60°; t2 = 80°). 

6. Conclusion

This study presents an iterative algorithm for correcting the 
thread milling overcut by modifying the mill profile. This 
approach uses a direct model which has been already 
experimentally validated [20] and is fully adapted for non-
symmetric thread profiles. The results are: 

a full analytical formulation of non-symmetric thread 
profiles, 
an algorithm, using a direct model of interference, and 
which shows high performance, 

and a global approach about the possibility to machine 
accurate threads with using thread milling, which would be 
experimentally validated with considering other aspects 
(tool bending…).
Furthermore, about the understanding of interference in 

thread milling, it is also established that the perfect solution 
for the mill flank profile, is not exactly a straight line, but it 
can be approximated very precisely by it. 

The proposed simulation is only available for thread 
milling of profiles composed of straight lines. Further works 
would consider curved thread profiles, such as Rd round 
thread. Thus, the approach would consider the inverse 
problem, i.e. build the mill profile directly from the thread 
one, and not an iterative method. 
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