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This paper outlines a new methodology to predict accurately the maximum pit depth related to a local-
ized corrosion process. It combines two statistical methods: the Generalized Lambda Distribution (GLD),
to determine a model of distribution fitting with the experimental frequency distribution of depths, and
the Computer Based Bootstrap Method (CBBM), to generate simulated distributions equivalent to the
experimental one. In comparison with conventionally established statistical methods that are restricted
to the use of inferred distributions constrained by specific mathematical assumptions, the major advan-
tage of the methodology presented in this paper is that both the GLD and the CBBM enable a statistical
treatment of the experimental data without making any preconceived choice neither on the unknown
theoretical parent underlying distribution of pit depth which characterizes the global corrosion phenom-
enon nor on the unknown associated theoretical extreme value distribution which characterizes the
deepest pits.

Considering an experimental distribution of depths of pits produced on an aluminium sample, estima-
tions of maximum pit depth using a GLD model are compared to similar estimations based on usual Gum-
bel and Generalized Extreme Value (GEV) methods proposed in the corrosion engineering literature. The
GLD approach is shown having smaller bias and dispersion in the estimation of the maximum pit depth
than the Gumbel approach both for its realization and mean. This leads to comparing the GLD approach to
the GEV one. The former is shown to be relevant and its advantages are discussed compared to previous
methods.

1. Introduction

Pitting corrosion is an extremely dangerous form of localized
corrosion since a perforation resulting from a single pit can cause
complete in-service failure of installations like water pipes, heat
exchanger tubes or oil tank used for example in chemical plants
or nuclear power stations [1–16]. The pits depth distribution is
an important characteristic of the extent of such damage; the dee-
per the pits, the more dramatic the damage. In order to ensure
safety and reliability of industrial equipments, statistical proce-
dures have to be proposed to assess the maximum pit depth from
data estimated from limited inspection.

In literature, the most common method for safety or reliability
was found in the application of the statistical extreme value anal-
ysis using the Gumbel methodology to predict the maximum pit
depth that will be found in a large scale installation by using a
small number of samples with a small area [1–6,11–14,17,18]. This
methodology is based on the estimation of the two parameters of
the Gumbel distribution. It is worth noting that it has been ex-
tended to the three-parameter Generalized Extreme Value distri-
bution (GEV) [8–11,19–26]. The GEV distribution is expressed
such that:

GðxÞ ¼ exp � 1þ n
x� l

r

� �h i�1=n
� �

; 1þ n
x� l

r

� �
> 0; n – 0

ð1Þ

where l is the location parameter, r is the scale parameter and n is
the shape parameter. Type II (Fréchet) and Type III (Weibull) corre-
spond respectively to n > 0 and n < 0. It should be mentioned that
Type II has a finite lower bound and Type III has a finite upper
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bound. The subset of the GEV family with n = 0 corresponds to the
Gumbel distribution and is expressed such that:

GðxÞ ¼ exp � exp
x� l

r

� �� �
; �1 < x <1 ð2Þ

The use of the three-parameter GEV distribution in corrosion
literature certainly reflects the difficulty in fitting the experimental
distributions of maximum pit depths corresponding to corrosion
phenomena of many types and many environments. In other
words, there is neither a universally admitted distribution family
nor a unique attraction domain for the modelling of the maximum
pit depths corresponding to the overall corrosion experiments. It is
worth noting that methodologies based on extreme value theory
suppose that pit process has the property of homogeneity in law
and that it requires occurring with the same frequency in time
and space. However, it is acknowledged that pitting corrosion is
a stochastic process mainly related to its initiation stage [17]. Fur-
thermore, preliminary hypotheses related to homogeneity are dif-
ficult to verify before applying the extreme value methodologies.
Moreover the distribution used is often chosen according to the
modelling background of the authors or to the ability of the consid-
ered distribution to fit correctly with the shape of the data under
study. Furthermore, the distributions used are scarcely compared
to others and are not always validated by statistical tests of ade-
quacy. Finally, it should be noticed that some maximum value dis-
tributions do not belong to any of the three attraction domains
(Type I, II or III). Therefore it appears that the application of this ex-
treme value theory could lead to major limitations.

Because of these limitations, and others that will be mentioned
later in the particular case of the most common Gumbel and GEV
approaches, this paper proposes an alternative methodology. This
methodology is based on the combination of two statistical meth-
ods: the Generalized Lambda Distribution (GLD) and the Computer
Based Bootstrap Method (CBBM). Contrary to the Gumbel and GEV
approaches that take into consideration inferred parent distribu-
tions constrained by specific mathematical assumptions both the
GLD and the CBBM present the main advantage of avoiding to
make any preconceived choice neither of the unknown theoretical
underlying distribution which governs the corrosion phenomenon
nor on the unknown associated theoretical extreme value distribu-
tion which characterizes the deepest pits [27,28]. Moreover, as far
as GLD are concerned, it is worth noting that these distributions
are highly flexible thanks to their ability to take a large variety of
shapes within one distributional form. These four-parameter dis-
tributions can match with any mean, variance, skewness, kurtosis,
tails that are truncated or extend to infinity on either or both sides.
In this way, GLD can model many distributions often observed with
engineering data [29,30] such as Weibull, Cauchy, Normal, Log-
Normal, Gumbel, Pareto, bell-shaped distribution as well as in-
verted bell-shaped ones to name a few. Furthermore, the GLD is
able to represent distributional characteristics such as moments
(or combination of moments) or percentiles (or combinations of
percentiles). Also due to its flexibility in modelling a range of dif-
ferent distributions, it is possible to directly model the underlying
process, rather than relying on the central limit theorem and the
mean of the process as in the case of traditional statistical analysis.
This eliminates difficulties in choosing the appropriate distribution
for the data set. It must be stressed that the goodness of fit by the
GLD is particularly noticeable in the right tail region of this kind of
distributions i.e. the region of interest for this study since it corre-
sponds to the extreme values of any distribution. Indeed, it should
be noticed that the estimations of GLD parameters are less influ-
enced by the central values than the other distribution estimations.
Because of these various advantages, the family of four-parameter
GLD have been used in many fields where accurate data modelling
is required such as insurance and inventory management [30], fi-

nance [31,32], meteorology [30,33], pipeline leakages [30], statisti-
cal process control [34,35], independent component analysis
[36,37], simulation of queue systems [38] or for generating random
number [39]. For several years, the authors of the present paper
have also developed the use of this versatile family of distributions
in materials science [28,30,40] and statistical control process
[27,41].

In this study, a first algorithm was computed to determine the
GLD that fits with an experimental distribution of pit depths that
propagated from the surface of a A5 aluminium sheet during an
accelerated corrosion test performed at free potential in an aque-
ous acid solution at room temperature. After showing statistically
that the fitting of our experimental data is more relevant than any
fitting by the most common laws (i.e. Normal [9], Lognormal [42],
Weibull [43]) used in corrosion engineering literature to model pit
depth distributions, the GLD model is considered to estimate the
maximum pit depth. Then a second algorithm was computed to
generate a high number of simulated datasets using the CBBM
from the obtained GLD. Each extreme value of the simulated data-
sets is used to construct an empirical Probability Density Function
(PDF) from which the mean of the maximum pit depth and a 90%
confidence interval can be determined.

The GLD and the CBBM are successfully combined to assess the
effect of the exposed surface size on the evolution of these statistic
estimates. The relevance of this new approach is shown by com-
parison of the results with those obtained applying the usual Gum-
bel approach. Differences are explained by the analysis of the
attraction domain of pit depth distribution. The results of the
new approach presented in this investigation are finally compared
with those obtained with the Generalized Extreme Value (GEV) ap-
proach and the advantages of combining GLD and CBBM methods
are demonstrated.

2. Experimental procedure

2.1. Presentation of the material and the corrosion test

The material used in this experiment is A5 aluminium (i.e. for
which purity in mass is higher than 99.5%). This purity level was
checked by means of a scintillation spectrometer. The corrosion
experiment consisted in immersing an aluminium sheet of
75 cm2 by 0.8 mm in thickness at free potential in an aqueous acid
solution at room temperature without any agitation. The as-
received sheet was annealed for one hour at 300 �C, and cleaned
with acetone before 6-h immersion period in the corrosion solu-
tion whose chemical composition was: 0.5 g of NaCl (38 mM), 4 g
of FeSO4 (117 mM), 25 cm3 of H2SO4 (2.1 M) and 200 cm3 of H2O.

2.2. Characterization and distribution of pits formed during the
corrosion test

Firstly, optical macroscopic observation was used to observe at
a large scale the damage due to the accelerated corrosion test.
Fig. 1a and b reveal respectively the spatial distribution of the cor-
rosion pits and the binary image of the corroded sheet. The total
number of pits observed on the surface of the corroded sample
was counted visually without any cleaning process. 603 pits were
counted and the corresponding depths were measured using an
optical microscope with a 50 �magnification. Focus is firstly done
on the top of the pit (i.e. surface of the sample) and secondary at its
bottom. The displacement of the lens corresponds to the pit depth
estimation. Fig. 1c shows the 3D topographical pit measurements
corresponding to a small pit (71 lm), two medium pits (110,
130 lm) and the pit of maximum depth (163 lm). The 603 values
of pit depth were used to determine the experimental frequency



distribution of depths (Fig. 2). The maximum pit depth of this dis-
tribution is equal to 163 lm as show by the descriptive statistics
reported in Table 1.

3. Determination of the pit depths distribution using the GLD
method

3.1. Presentation of the GLD method [27,29,30]

Three ways can usually be considered to specify the probability
for the various values x to occur for a random variable noted X: the
distribution function FX(x) = Pr(X 6 x) which indicates the probabil-
ity of X to be smaller than x, the PDF fX(x) which is obtained by dif-
ferentiating the distribution function, the inverse distribution
function QX(y) which indicates the value of x such that FX(x) = y
(for each y between 0 and 1).

The Generalized Lambda Distribution family is specified in
terms of its inverse distribution function with four parameters
(k1, k2, k3 and k4):

Q Xðy; k1; k2; k3; k4Þ ¼ k1 þ
yk3 � ð1� yÞk4

k2
ð3Þ

The parameters k1 and k2 are, respectively, the location and
scale parameters, while k3 and k4 are related respectively to the
skewness and the kurtosis of the GLD. The definition range of QX

is the [0, 1] interval (i.e. 0 6 y 6 1). QX evolution as a function of
the ki parameters values has been widely detailed in [27,29,30].
The evolution domain of QX, IQ, is a function of the sign of k3 and
k4 (Appendix A). PDF fXðxÞ can then easily be expressed from the in-
verse distribution function of the GLD:

fXðxÞ ¼
k2

k3yk3�1 þ k4ð1� yÞk4�1 ð4Þ

where y is the solution of equation QX(y) = x which can be solved
numerically.

Eq. (3) defines a valid PDF if and only if QX meets the following
conditions:

fXðxÞ � 8x 2 DRþ1
�1 fXðxÞdx ¼ 1

(

where D is the definition domain of QX.
The main problem is to estimate the parameters k1, k2, k3 and k4

in order to have the best fitting of the GLD with the experimental
frequency distribution of corrosion pit depths considered in this
study. To solve this problem, the method of moments described
in Appendix B is performed by a computer treatment of our exper-
imental dataset xi;i 2 f1; . . . ;ng, of size n ¼ 603.

Fig. 1. (a) Optical macrograph of the pits formed during the accelerated corrosion test at the surface of the aluminium sample under study (603 pits). (b) Binarized image
showing the indentified pits. (c) 3D topographical pit measurements obtained by means of an optical profilometer and corresponding to a small pit (71 lm), two medium pits
(110 lm, 130 lm) and the pit of maximum depth (163 lm).



3.2. Procedure and results

An algorithm was written and computed using the Statistical
Analyses System (SASTM) software to determine the GLD and its re-
lated PDF from the experimental dataset by using the method of
moments. This algorithm was used to perform a minimization pro-
cess of function w(k3, k4) (Appendix B) by a gradient decreasing
method processed for �0.25 < k3 < 0.2 and �0.25 < k4 < 0.2. The va-
lue of this function is found to be minimum for the pair (k3 = 0.150,
k4 = 0.086) which subsequently yields to the pair (k1 = 124.3,
k2 = 0.011). Table 2 summarizes the values of moments as well as
the confidence intervals.

Fig. 2a presents the PDF of the GLD corresponding to the exper-
imental frequency distribution of corrosion pit depths. It has been
obtained by replacing the four previous values determined by
using the method of moments. In corrosion literature, it is reported
that the pit depth distribution can be modelled by Normal [9], Log-
normal [42] or Weibull law [43]; distributions which belong to the
exponential type. Fig. 2b presents the fitting of our experimental
pit depth values with those different most common laws and Ta-

ble 3 summarizes the related results of goodness-of-fit Kolmogo-
rov–Smirnov tests. These statistical test results show that these
three distributions of exponential type are unfortunately rejected
at a critical level of 0.05. On the contrary, it can be emphasized that
a Kolmogorov–Smirnov test gives a value of 0.43 for the GLD. This
means that this last distribution fits very well with the experimen-
tal data in comparison with Normal, Lognormal and Weibull distri-
butions which are proposed in corrosion engineering literature to
model pit depth distributions.

4. Estimation of the extreme value combining the GLD and the
CBBM

4.1. Limitations about the application of the Gumbel approach

The Gumbel distribution [44] has been presented in Eq. (2). One
must remember that this distribution is in fact an asymptotic limit
form of the largest values extracted from a parent distribution of
exponential type (i.e. Gumbel attraction domain). Hence, there
are some mathematical requirements to use this analytical expres-
sion in a valid way. The first one relates to the nature of the parent
distribution and the second one to the number of largest values of
this distribution.

As far as the nature of the parent distribution is concerned, it
has been shown just above using a Kolmogorov–Smirnov test that
the most common laws (i.e. Normal, Lognormal, Weibull) used in
corrosion literature to model the distributions of pit depths are
unfortunately rejected at a critical level of 0.05. This means that,
for these most common distributions of the Gumbel attraction do-
main, the first mathematical requirement on the nature of the par-
ent distribution is not satisfied in the case of our experimental
data. Moreover, even if one of these distributions was accepted,
there are only few large values in our experimental data set. As a
consequence, the difference between this expected model and
the unknown true distribution would have been significant in the
right tail region. In other words, the prediction in this right tail re-
gion, which corresponds to the extreme values, would have been
far from being accurate considering the experimental data set of
the present study.

Apart from the particular limitations aforementioned, two gen-
eral limitations have been noted by several authors working in the
field of corrosion [1,12,13,45]. The first limitation is the important
property that the double exponential expression is unbounded,
which implies a small but finite probability of observing a pit of
exceptional depth. Up to now, this conflict between the unbounded

Fig. 2. Experimental frequency distribution of the 603 values of corrosion pit
depths and estimated PDF: (a) of the corresponding Generalized Lambda Distribu-
tion (GLD), (b) of the three hypothesized parent laws: Normal, Lognormal and
Weibull distributions.

Table 1
Descriptive statistics of the 603 pits depths measured at the surface of the corroded
aluminium sheet under study.

Mean Median Mode Minimum Maximum Std.
Dev.

Skewness Kurtosis

119.6 120.6 123.5 70.3 163.4 15.8 �0.285 0.141

Table 2
Values of the fourth moments and the GLD parameters with their 90% confidence
intervals (i.e. the difference between Q95 and Q5 that are the 95th and the 5th
quantiles respectively) resulting from Bootstrap simulations computed from the
original data set of 603 pit depths.

Moments GLD parameters

â1 â2 â3 â4 k1 k2 k3 k4

Value 119.7 15.7 -0.28 3.13 124.2 0.011 0.150 0.086
Q5 118.6 15.0 -0.43 2.85 121.7 0.008 0.102 0.061
Q95 120.7 16.5 -0.13 3.40 127.2 0.014 0.219 0.121

Table 3
Kolmogorov–Smirnov test results for goodness-of-fit tests for Normal, Weibull,
Lognormal and GLD.

Normal Weibull Lognormal GLD

0.012 (rejected) 0.021 (rejected) 0.001 (rejected) 0.43 (not rejected)



nature of the distribution and the physical limits on pit growth
kinetics is subject of debate. The second limitation is that a con-
crete criterion for the number and size of samples to obtain a rea-
sonable accurate extreme value prediction is not available except
by making questionable assumptions. Therefore some criteria de-
duced from simulations can be proposed to estimate and reduce
these uncertainties [46]. Nevertheless, they are based on hypothe-
ses made on the unknown pit location and depth distributions.

Another limitation in the application of the Gumbel distribution
comes from the limit theorem. Indeed, the Fisher theorem asserts
that if (X1,. . ., Xn) is a sequence of independent random variables
representing the pit depths with a common distribution function,

P, of the Gumbel attraction domain, and if a sequence of pairs of
real numbers (an, bn) exists, such that:

lim
n!þ1

P
Mn � bn

an
6 x

� �
¼ FX ð5Þ

where Mn = max(X1,. . ., Xn), then FX is the Gumbel distribution func-
tion presented in Eq. (2) with l = 0 and r = 1. Therefore, this result
supposes that the number of data (i.e. number of pits) must be large
enough to accept this asymptotic law. For a distribution function, F,
of PDF f, in the Gumbel attraction domain, an and bn are given such
that:

Fig. 3. Histograms of the four parameters of the Generalized Lambda Distribution PDF corresponding to the experimental frequency distribution of corrosion pit depths and
obtained with 20,000 Bootstrap simulations.

Fig. 4. Two examples of Bootstrap simulated distributions equivalent to the experimental one.



bn ¼ F�1ð1� 1=nÞ
an ¼ hðbnÞ ð6Þ

where h is the function defined by:

h ¼ ð1� FðxÞÞ=f ðxÞ ð7Þ

In order to evaluate the convergence speed of the maximal
number of samples coming from a Gaussian law, 106 simulations
of the variable Mn�bn

an
are generated with n = 100 for which the

mean and the variance are calculated. The expected values of
these parameters are equal to 0.5772 for the mean, and 1.64
for the variance, whereas the simulated values found are respec-
tively 0.4854 and 1.3126. This simple example shows the prob-
lem of convergence toward the expected values of the Gumbel
distribution and the dependence on the parent distribution,
especially for the Normal distribution. Besides, when the theory
supporting the application of the Gumbel distribution was devel-
oped as the number of samples becomes infinite, Shibata [1]
mentioned that it might not be so plentiful in practice especially
in engineering data because measurements are time consuming
and expensive.

Because of these numerous limitations, an alternative approach
combining the GLD and the CBBM is proposed hereafter to predict
the maximum pit depth with a confidence interval for an exposed
surface of a given size.

4.2. Presentation of the Computer-Based Bootstrap Method [47,48]

Efron introduced first the Computer-Based Bootstrap Method
(CBBM) to avoid the risk of asserting wrong conclusions when ana-
lyzing experimental data that transgress the inference assump-
tions of the traditional statistical theory. One of the main reasons
for making parametric assumptions is to ease out the derivation
from textbook formulae for standard errors. Unfortunately, the tra-
ditional statistical theory does not provide formulae to assess the
accuracy of most statistic estimates other than the mean. Since
no formulae are necessary using the CBBM in non-parametric
mode, restrictive and sometimes-dangerous assumptions about
the form of underlying populations can be avoided. Moreover, a
standard error (thus an assessment of the accuracy) can be calcu-
lated for any computable statistic estimate using the constructed
empirical PDF. The CBBM does not work alone and its efficiency
is indeed emphasized when applied to other statistical procedure,
as will be shown hereafter for the GLD method.

Based on the mathematical resampling technique, the main
principle of the CBBM consists in generating a high number B of
simulated bootstrap samples from the original data points. The ori-
ginal dataset consists of either experimental or simulated points. A
bootstrap dataset of size n, noted x�1; x

�
2; . . . ; x�n

� �
, is a collection of n

values simply obtained by randomly sampling with replacement
from the original data points (x1, x2,. . ., xn), each of them with a
probability of 1/n. the bootstrap dataset thus consists of elements
of the original data points; some appearing zero times, some
appearing once, some appearing twice, etc.

4.3. Procedure and results

The CBBM has been applied onto the experimental dataset of
size n = 603 to estimate the variability of the four coefficients k1,
k2, k3 and k4 considering 20,000 bootstrap simulations. Then histo-
grams of the four coefficients related to the 20,000 new GLD can be
plotted (Fig. 3) from which the confidence intervals of these
parameters are estimated (Table 2).

A second algorithm was computed using Mathematica™ soft-
ware to generate simulated datasets of size n ¼ 603 using a

Monte-Carlo procedure considering the GLD equation correspond-
ing to our experimental dataset:

QXðmÞ ¼ k1 þ
mk3 � ð1� mÞk4

k2
ð8Þ

where v is a uniform random number between 0 and 1 and PðvÞ is
the associated simulated corrosion pit depth. To illustrate the result
of this procedure, two examples of simulated distributions are pre-
sented in Fig. 4. These distributions of corrosion pit depths obtained
by the Monte-Carlo method simulate in fact two possible distribu-
tions equivalent to the experimental one.

The density function, fmax, of the deepest corrosion pit
distribution, corresponding to the GLD, presented in Eq. 8 can be
calculated. Indeed, the inverse distribution function of this distri-
bution, fmax, is given by:

Fig. 5. (a) Representation of the analytical PDF of the maximum pit depths
distribution corresponding to the GLD distribution (603 pits). The vertical solid line
indicates the experimental maximum pit depth value (163 lm); (b) maximum pit
depths probability functions for the four studied parent laws: Normal, Lognormal,
Weibull and finally the GLD.

Table 4
Descriptive statistics of extremes values computed from the four distributions under
study: Normal, Lognormal, Weibull and GLD.

Mean Std. Dev. Skewness Kurtosis Median

Normal 168.5 5.7 0.764 1.060 167.8
Lognormal 176.2 7.7 0.874 1.393 172.2
Weibull 158.5 3.2 0.577 0.557 158.2
GLD 164.5 5.1 0.698 0.761 163.9



Q maxðmÞ ¼ k1 þ
ðm1=nÞk3 � ð1� m1=nÞk4

k2
ð9Þ

and the density function, f, corresponding to any GLD, Q, is:

f ðxÞ ¼ 1
Q 0ðFðxÞÞ

ð10Þ

where Q0 is the derivative function of the Q function and F the
cumulative distribution function (CDF) of the Q function (i.e.
F = Q�1). Therefore the Fmax function can then be calculated for

any depth value x by numerically inversing the Qmax function as
well as the density function fmax. Mathematica™ software has been
used for this purpose. Fig. 5a presents the evolution of this density
function. Both the mean and the 90% confidence interval (i.e. the dif-
ference between the 95th and the 5th quantiles) can then easily be
determined from this density function to assess respectively the
central tendency and the dispersion of the maximum pit depth.
The calculated mean of the pit depth extreme values is 165 lm
and 90% of these values lie between 157 lm and 174 lm.

Fig. 6. Estimated PDFs from GLD combined with Monte-Carlo simulations (603 values) corresponding to the maximum pit depth realizations (a) and its mean (c) on area A0

for various analysed area ratios. Evolutions of the maximum pit depth realizations (b) and its mean (d) as a function of the area ratio for the mean, the median, the 5th, 25th,
75th and 95th quantiles.

Fig. 7. PDFs of the maximum pit depth for larger exposed sample surface sizes. A
surface coefficient of five corresponds to a surface size (375 cm2) equal to five times
that of the experimental aluminium sample (A0 = 75 cm2).

Fig. 8. Influence of the exposed sample surface size on the mean, 5th quantile and
95th quantile of the maximum pit depth. A surface coefficient of 1000 corresponds
to a surface size (7.5 m2) equal to 1000 times that of the experimental aluminium
sample (A0 = 75 cm2).



Besides, it could be interesting to repeat this methodology con-
sidering the most comment parent laws (Gaussian, Lognormal and
Weibull) used in literature to model pitting corrosion. This step is
obviously of major interest to test the relevance of a GLD model to
predict maximum pit depth in comparison to those most comment
statistical laws. Fig. 5b shows the maximum pit depth distributions
for the four previous laws and Table 4 summarizes the associated
main estimates. As can be observed, the mean extracted from the
GLD estimates very well the observed experimental maximum
pit depth. On the contrary, the use of Weibull law leads to an
underestimation of this experimental maximum pit depth whereas
the use of Normal and Lognormal leads to an overestimation.
Besides, the GLD allows a better estimation of the skewness and
the kurtosis of the distribution that control the extreme value
region. These results clearly emphasize the flexibility and the rele-
vance of a GLD model to predict maximum pit depth in comparison
to statistical laws classically used in literature to model pitting
corrosion.

5. Comparison of the GLD method to the usual extreme values
approaches

5.1. Validation of the relevance of a GLD modelling method

To validate our methodology, the following simulation has been
carried out. An area, A, is randomly chosen onto the whole surface
of the sample. This enables to define an area ratio, r = A/A0, regard-
ing the whole sample area, A0 equals to 75 cm2. The area A contains
a subset of size p of the whole 603 pits with p 6 603. The hypoth-
esis is made that pits randomly nucleate at the surface of the alu-
minium sheet. Consequently p is the realization of a Poisson
distribution of parameter qA, where q is the mean number of pits
per unit area (i.e. 8.04 pits/cm2 considering our experimental data).
Thus we can retain a subset of pits whose size follows a Poisson
distribution in order to consider the fraction r of the whole surface.
For each area ratio, r, and corresponding subset, p, a GLD is com-
puted to represent pit depth evolution. The maximum pit depth
of the surface is then estimated using a Monte-Carlo procedure.
This corresponds to estimate the highest realization of the GLD
(i.e. the highest values out a set of 603 realizations). We also com-
puted the mean lmax of this highest value for the each GLD set of
parameters (k1, k2, k3, k4) such that:

lmax ¼
Z 1

0
ntn�1 k1 þ

tk3 � ð1� tÞk
4

k2

!
dt ð11Þ

or

lmax ¼ k1 þ
n

k2ðnþ k3Þ
� nCðnÞCð1þ k4Þ

k2Cð1þ nþ k4Þ
ð12Þ

where n is the total number of pits equal to 603 and C (.) is the
gamma Euler function.

For each of the selected area ratios corresponding to a partial
analysis of the whole area, the CBBM has been performed to gener-
ate 50,000 bootstrap samples resulting from random sampling, and
to compute the estimated PDFs of the maximum pit depth for area
A0 (Fig. 6a) and its mean (Fig. 6c). This latter value (Eq. (12)) can be
considered as the best estimation of the mean of the maximum pit
depth which is usually unknown. The curves in Fig. 6b and d rep-
resent respectively the continuous evolutions of the main statistics
of the maximum pit depth realizations and mean of this maximum
for each estimated GLD set of parameters. Each of the selected ra-
tios for Fig. 6b and d corresponds to 5000 bootstrap simulations
performed in order to estimate the mean, the median and quan-
tiles. If the GLD model is relevant, it is expected that, on average,

the predicted maximum pit depth value is closer to the experimen-
tal one (163 lm) for a sufficient ratio.

As can be observed in Fig. 6a, these PDFs converge towards the
PDF determined from the total dataset p = 603 (called Lambda
PDF). It should be observed in Fig. 6b that the maximum pit depth
realizations are still scattered around the mean values even for an
area ratio of 100%, for which the 90% confidence interval is
[156 lm–175 lm]. It should be also noticed that this confidence
interval is quite stable as soon as the area ratio is higher than
20%. However it should be emphasized that, in practical cases, sta-
tistical extreme value analysis is used to predict the maximum pit
depth that will be found in a large scale installation by using a
small number of samples with a small area. Thus Fig. 6b and d,
as well as the following ones, should mainly be analyzed on the left

Fig. 9. Evolution of the maximum pit depth realizations on the whole sample as a
function of the area ratio for the mean, the median, the 5th, 25th, 75th and 95th
quantiles considering the Gumbel approach. The selected area has been divided into
5 (a), 10 (b) and 15 (c) samples in order to estimates parameters l and r.



side. Particularly, results corresponding to area ratios higher than
50% should not be considered as practical cases [12].

As shown in Fig. 6d, the visual convergence can also be quanti-
tatively confirmed by the mean, the median, the 5th, 25th, 75th
and 95th quantiles curves associated to the overall PDFs. This fig-
ure shows that the mean of the GLD modelling process provides
an accurate estimation of the observed experimental maximum
pit depth of 163 lm considering only the data collected on small
fractions of the inspected surface for the statistical treatment. This
emphasizes the relevance of GLD modelling for pitting corrosion
and validates our methodology. In Fig. 6d, the 90% confidence
interval is [154 lm–171 lm] for an area ratio of 20%. The width
of this confidence interval decreases for higher area ratios. Never-
theless, it should be emphasized that, even if a good prediction of

the mean of the maximum pit depth is done, a large confidence
interval on their related realizations can still be observed.

The extreme value is often used to predict the maximum pit
depth on an area larger than the inspected surface named A0 in this
investigation. Considering Eqs. (9) and (10), the density function of
this maximum pit depth can be calculated considering that each
one follows the previously defined GLD model. Fig. 7 represents
the PDFs of the maximum pit depth on areas that are 2, 3, 4 and
5 times larger than the original one. Maximum pit depth continu-
ously increases above the initial maximum pit depth of 163 lm
with the exposed surface area. Fig. 8 shows the mean of the max-
imum pit depths on larger areas with magnification varying from 1
to 1000. For example, considering a surface area which is 1000
times larger than that of the experimental sample under study,
the mean of the maximum pit depth is 187 lm and 90% of the ex-
treme values lie between 183 lm and 192 lm. It is worth noting
that the slope in the increase of the mean of the maximum pit
depths is lower for the highest magnifications than for the lowest
ones. Consequently the maximum pit depths do not increase much
even for the highest magnification. For example, the pit depth in-
crease is only of 20 lm for the 1000 magnification.

5.2. Comparison of the GLD approach to the usual Gumbel approach

As previously mentioned, the most common method for ex-
treme pit depth prediction is found in literature in the application
of the Gumbel distribution [44]. In this approach, n small samples
with the same area, a, are selected from the whole sheet of area A0.
All the pit depths are measured and the maximum value of each
sample is extracted. Considering that the number of pits per

Fig. 10. Evolution of the mean of maximum pit depth on the whole sample as a
function of the area ratio for the mean, the median, the 5th, 25th, 75th and 95th
quantiles considering the Gumbel approach. The selected area has been divided into
5 (a), 10 (b) and 15 (c) samples in order to estimates parameters.

Fig. 11. (a) Evolution of the UH estimator, nUH, as a function of the number of
maxima. The top and bottom grey lines represent the 90% confidence band. Only the
200 first maxima have been considered. (b) Evolution of the mean of exceedances as
a function of the pit depth threshold.



sample is high, the {pi}16i6n maximum pit depths are the realiza-
tions of a Gumbel distribution (Eq. (2)) where location, l, and scale,
r, parameters have to be determined. The method of moments is
widely used in order to estimate these parameters. First and sec-
ond order moments of the Gumbel distribution are compared to
the estimated ones from the set of measurements, {pi}. The two-
equation system is solved leading to:

r ¼
ffiffi
6
p

p s

l ¼ m� rc

(
ð13Þ

where m and s are respectively the mean and the standard deviation
of the {pi} values. c is the Euler’s constant (c � 0.577216). These
estimations enable to predict the maximum pit depth. Indeed, con-
sidering the CDF (Eq. (2)) of maximum pit depth distribution on

each small sample, the maximum pit depth CDF on the whole sheet
is:

FmaxXðxÞ ¼ exp �T exp � x� l
r

� �� �
ð14Þ

where T is the return period defined by:

T ¼ A0

a
ð15Þ

This CDF and the estimated parameters, l and r, enable to gen-
erate a realization of the maximum pit depth process on area A0.
The mean of the distribution corresponds to the expected value
of the mean of the maximum pit depth, pmax, such that:

pmax ¼ lþ ðcþ logðTÞÞr ð16Þ

Fig. 12. Evolution of the maximum pit depth realizations on the whole sample as a
function of the area ratio for the mean, the median, the 5th, 25th, 75th and 95th
quantiles considering the GEV approach. The selected area ratio has been divided
into 5 (a), 10 (b) and 15 (c) samples in order to estimates parameters l, r and n.

Fig. 13. Evolution of the mean of maximum pit depth on the whole sample as a
function of the area ratio for the mean, the median, the 5th, 25th, 75th and 95th
quantiles considering the GEV approach. The selected area ratio has been divided
into 5 (a), 10 (b) and 15 (c) samples in order to estimates parameters l, r and n.



This approach has been developed in order to compare the max-
imum pit depth realizations (Fig. 9) and its mean estimation
(Fig. 10) to the experimental ones and to GLD predictions (Fig. 6b
and d) using the same number of bootstrap simulations. In order
to avoid discussion on the optimal number of samples n that re-
mains a subject of debate, three values have been chosen: 5, 10
and 15. It should be emphasized that the division with 15 samples
corresponds to a small analysed surfaces. The small number of pits
per area, in particular for the small ratio, involves a small number
of measured pit depths. Consequently this situation does not corre-
spond to valid application conditions of the Gumbel theory.

Firstly, Figs. 6b and 9 show that the pit depth realizations are
less scattered with the GLD approach than with the Gumbel one,
especially for the small area ratios (i.e. small surface analysis). Con-
sidering an area ratio of 20%, the 50% confidence interval is around
9 lm for the GLD approach (Fig. 6b) and 12 lm, 13 lm and 15 lm
for 5, 10 and 15 analysed surfaces respectively in the case of the
Gumbel approach (Fig. 9). Secondly, Figs. 6d and 10 show that
the maximum pit depth means are also less scattered for GLD ap-
proach than the Gumbel one, especially for the small area ratios.
For an area ratio of 20%, the 50% confidence interval is around
7 lm for the GLD approach (Fig. 6d) and 10 lm, 9 lm and 9 lm
for 5, 10 and 15 analysed surfaces in the case of the Gumbel ap-
proach (Fig. 10). Thirdly, more generally, estimations presented
in Fig. 6b and d are centred on the maximum pit depth measure-
ment contrary to estimations in Figs. 9 and 10 where the maximum
pit depth is estimated by excess in comparison to the experimental
value. Contrary to the GLD approach, a bias is noticeable both in
Figs. 9 and 10 whatever the number of analysed surfaces. Besides,
it should be noticed that the difference between the confidence

intervals for the GLD and the Gumbel approaches will increase
while decreasing the area ratio.

These results may firstly be explained by the fact that pit depth
PDF is not in the Gumbel attraction domain. Indeed, the parameter
k4 of the GLD was found to be equal to 0.086 and implies that the
PDF is bounded on the right hand side (Appendix A) and the pit
depth should therefore not exceed an upper bound of 215 lm
(i.e. k1 + 1/k2). Moreover, Fig. 3 shows that the confidence band of
the estimation of this parameter is strictly positive. Thus the pit
depth distribution could not be in the Gumbel attraction domain
which is unbounded and may only be in the Weibull attraction do-
main. This attraction domain of the pit depth distribution is con-
firmed when looking at Fig. 11a presenting the evolution of the
UH estimator of Beirlant et al. [14,49], nUH, as a function of the
number of maxima, k, which corresponds to the selected number
of greatest pit depths. The confidence interval presented on this
figure has been calculated by means of a bootstrap method. The
mean of the UH estimator evolves in the negative domain of the
graph whatever the number of extrema. Moreover the confidence
interval is essentially in the same negative domain, especially for
a number of extrema higher than 50, when nUH slowly evolves. In
the same way, the negative sign of the n parameter is confirmed
considering the method based on the analysis of mean of excee-
dances as proposed by Laycock and Scarf [8]. The mean of excee-
dances has been plotted as a function of the selected pit depth
threshold in Fig. 11b. This plot should follow a straight line with
a slope such that:

a ¼ n
1� n

ð17Þ

Fig. 14. Bias (a, b) and standard deviation (c, d) in the estimation of realization (a, c) and mean (b, d) of maximum pit depth for the various approaches: Gumbel (light gray
lines), GEV (dark gray lines) and GLD (black lines). For the two first approaches, full lines, large dotted lines and small dotted lines represent respectively the various numbers
of samples (5, 10 and 15) contained in the analyzed surface corresponding to the ratio of the whole surface.



The shape parameter n is equal to �0.56 for a selected threshold
of 147 lm pit depth corresponding to a quite linear shape of the
plot. This value is still negative and confirms that the pit depth dis-
tribution is in the Weibull attraction domain.

5.3. Comparison of the GLD and GEV approaches

Considering the previous result, it is proposed to estimate also
the maximum pit depth using the GEV approach. The same proce-
dure of division is used as for the Gumbel approach and the three
GEV parameters are calculated using also the method of moments.
First, second and third order moments of the GEV distribution are
compared to the estimated ones from the measurements set, {pi},
and a three-equation system is solved. The resolution gives the
location parameter, l, the scale parameter, r and the shape param-
eter, n. These estimations enable to predict a realization of the
maximum pit depth using Eq. (1) and the mean of this maximum
pit depth considering the following expression:

pmax ¼ lþ r TnCð1� nÞ � 1
n

!
ð18Þ

This expression can obviously be compared to Eq. (16) when n
tends to 0.

Figs. 12 and 13 show respectively the evolution of the maxi-
mum pit depth realizations and their means obtained using 5000
bootstrap simulations as for the GLD (Fig. 6) and Gumbel (Figs. 9
and 10) approaches. Fig. 14 shows the evolutions of bias and stan-
dard deviation for the various approaches: GLD, Gumbel (5, 10 and
15 samples) and GEV (5, 10 and 15 samples). This figure summa-
rizes the previous results and enables to compare the relevance
of the different approaches to estimate the mean of maximum
pit depths. In the region of interest corresponding to practical cases
(area ratios lower than 50%), the Gumbel approach is shown to pre-
dict the maximum pit depth with a higher bias than the GLD and
GEV approaches both for the realizations (Fig. 14a) and their means
(Fig. 14b). This result can be explained considering the attraction
domain of the pit depth distribution. Indeed, it has been shown
that this distribution is in the Weibull attraction domain and that
the maximum pit depth distribution is bounded. Moreover the
same conclusion can stand for the standard deviation of the real-
izations of the maximum pit depth in the same region of interest
(Fig. 14c) whereas approaches give similar results for its mean
(Fig. 14d). Furthermore, Fig. 14 shows that the GEV and GLD ap-
proaches give similar estimations of the maximum pit depth in
terms of bias and standard deviation both for the realization and
its mean in this region providing that the analysed ratios are higher
than 10%. The value of the bias is lower than 3 lm both for the real-
izations and their means. For an area ratio equal to 10%, the value
of standard deviations of the realizations of the maximum pit
depth and of their means is around 8 lm. For an area ratio equal
to 50%, this value is equal to 6 lm in the case of the GLD approach
and 5 lm in the case of the GEV approach for the realizations of the
maximum pit depth. For their means, the standard deviation is
equal to 3 lm both for the GLD and GEV approaches.

In summary, looking at these results related to the statistical
treatment of the experimental data set considered in the present
investigation, it can be claimed that there is no significant differ-
ence between GLD and GEV approaches in the region of practical
interest. However, whatever the approach, an upper bound can
be defined and this bound corresponds to the limit value which
cannot be exceeded even for an infinite sized surface (i.e. consider-
ing an infinite set of pits). It is worth noting that this upper bound
cannot be defined in the cases where the k4 parameter is found
negative in the case of a GLD modelling or the shape parameter n

is found positive in the case of a GEV modelling. Except these sit-
uations, the upper bound is defined by:

k1 þ 1
k2

for the GLD

l� r
n for the GEV

(
ð19Þ

Previous statistical treatments of our experimental data shown
that the pit depth distribution was bounded whatever the ap-
proach. Fig. 15 shows the evolution of the upper bound value as
a function of the area ratio for these two approaches considering
20,000 bootstrap simulations. It should be mentioned that the
aforementioned situations where the calculated k4 parameter
was negative (GLD modelling) or the shape parameter n was posi-
tive (GEV modelling) were excluded to represent this figure. More-
over, upper bound estimations corresponding to pit deeper than
10 mm which can be considered as an unrealistic pit depth value
with regard to the experimental conditions were also excluded.
These two conditions lead to define a failure proportion corre-
sponding to situations where a realistic pit depth upper bound va-
lue cannot be estimated. Fig. 15a shows that, for area ratios higher
than 10%, this failure proportion is significantly lower in the case of
a GLD modelling than in the case of GEV one whatever the set of
samples. Indeed, while this failure proportion is around few per-
cents for the later method, it is equal to 0 for any area ratio higher
than 20% for the former one. In other words, a GLD modelling en-
ables a better prediction of the attraction domain of pit depth dis-
tribution and of realistic upper bound. Moreover Fig. 15b shows
that the mean values of the upper bound predicted with the GLD

Fig. 15. (a) Proportion of failures to calculate the mean upper bound as a function of
the area ratio. (b) Mean upper bound evolution estimated by mean of GLD (black
lines) and GEV (dark gray lines) approaches as a function of the area ratio. For the
GEV approach, full lines, large dotted lines and small dotted lines represent
respectively the various numbers of samples (5, 10 and 15) contained in the
analyzed surface corresponding to the ratio of the whole surface.



approach are higher than those predicted with the GEV one what-
ever the set of samples (5, 10 or 15). While the GEV approach pre-
dicts an upper bound closer to the experimental maximum pit
depth estimated on the surface specimen, the GLD approach pro-
vides a safety margin corresponding to a higher upper bound pre-
diction. Moreover this predicted upper bound shows a steady value
around 217 lm for area ratios higher than 10%. In comparison, the
GEV approach shows a decreasing value of this upper bound for the
higher area ratios.

6. Conclusion

Because of the limitations of the Gumbel approach outlined in
this paper, a new and alternative methodology was presented in
order to estimate accurately the maximum depth of pits that prop-
agated on an aluminium sheet during an accelerated corrosion test.
It was shown statistically, both for the overall pit depth distribu-
tion and its maximum value, that a fitting of our experimental data
by a Generalized Lambda Distribution (GLD) is more relevant than
one carried out by the most comment laws (which belong to the
Gumbel attraction domain) used in corrosion engineering
literature.

Consequently, the GLD fitting was combined to the CBBM to
simulate distributions of corrosion pit depths equivalent to the
experimental one to predict the mean of the maximum pit depth
as well as its 90% confidence interval that can be found in an instal-
lation having a larger surface than the inspected one. For analyzed
areas larger than 20% of the whole surface, it is shown that estima-
tions of variability in maximum pit depth realizations and means
are quite stable. Therefore such a ratio is proposed in order to esti-
mate maximum pit depth in the case of our experimental data set.
Comparisons of maximum pit depth estimations show the superi-
ority of the GLD approach with regards to the Gumbel one. The
higher biases and wider confidence intervals estimated in the later
case have been explained by the attraction domain of the pit depth
distributions which is not in the Gumbel one. Indeed, it was shown
that the experimental pit depth distribution considered in the
present investigation belongs to the Weibull attraction domain.
On the contrary, no significant difference was shown between
GLD and GEV approaches. Indeed, whatever the approach, esti-
mated biases and standard deviations are similar for area ratios
smaller than 50% which correspond to practical cases with regards
to the use of the extreme value statistics. However, as far as the
estimation of the upper bound is concerned, the maximum pit
depth value is more frequently estimated correctly using the GLD
approach for area ratios higher than 10%. It should be emphasized
that for are a ratio higher than 20%, proportion cases of failure in
the upper bound estimation are extremely scarce in the case of
the GLD approach. Moreover the upper bounds are higher than
those estimated by the GEV approach which corresponds therefore
to more safety situations in practice.

Contrary to the Gumbel and GEV approaches based on the use
of inferred parent distributions constrained by specific mathemat-
ical assumptions that need to be verified to be safety applied, both
the GLD modelling and the CBBM present the main advantage of
avoiding to make any preconceived choice neither on the unknown
theoretical parent underlying distribution of pit depth which char-
acterizes the global corrosion phenomenon nor on the unknown
associated theoretical extreme value distribution which character-
izes the deepest pits. Moreover the GLD approach does not require
making an a priori choice in the division of the surface and the
number of selected samples which is still a subject of debate in
the literature. Furthermore, it should be emphasized that the
GLD are highly flexible because of their ability to fit, with a high
degree of accuracy and within one distributional form, a large vari-

ety of shapes; not only in the central region of the considered dis-
tributions but also in their left and right tails. As far as the
corrosion context is concerned, a high degree of accuracy is re-
quired in the right tail region and a GLD model is therefore well
suited to provide an analytical expression of maximum pit depth
distribution and mean of this distribution.

Considering industrial applications, this alternative approach
based on the use of GLD can be applied to determine a minimum
thickness of a piece of material in order to prevent its perforation
by localized corrosion with a safety margin. Moreover, the alterna-
tive methodology presented in this paper could be also applied for
pits generated with any type of material and any type of environ-
ment leading to localized corrosion since it only necessitates the
knowledge of the distribution of a morphological feature (i.e. pit
depth). Such a methodology, which is a contribution to perform
proper maintenance from limited inspection data in the field of
corrosion, can also be extended to the study of any kind of defects
like inclusions, pores or cracks that may exist in engineering mate-
rials and conduct to fatigue failure.
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Appendix A

The GLD expression and conditions lead to the specification of
six regions of the (k3, k4) space [27,29,30]:

Region 1 = {(k3, k4) | k3 6 �1, k4 P 1},
Region 2 = {(k3, k4) | k3 P 1, k4 6 �1},
Region 3 = {(k3, k4) | k3 P 0, k4 P 0},
Region 4 = {(k3, k4) | k3 6 0, k4 6 0},
Region 5 = {(k3, k4) | �1 < k3 < 0, k4 > 1, ð1�k3Þ1�k3

ðk4�k3Þk4�k3

ðk4 � 1Þk4�1
< � k3

k4
,

Region 6 = ðk3; k4Þ j k3 > 1; �1 < k4 < 0; ð1�k4Þ1�k4

ðk3�k4Þk3�k4
ðk3�

n
1Þk3�1

< � k4
k3
g.

The GLD support can either be bounded or unbounded as a
function of the signs of k3 and k4, as presented in the following ta-
ble [27,29,30]:

k3 k4 Support

k3 < �1 k4 > 1 ]�1, k1 + 1/k2]
k3 > 1 k4 < �1 [k1 � 1/k2, 1[
1� < k3 < 0 k4 > 1 ]�1, k1 + 1/k2]
k3 > 1 �1 < k4 < 0 [k1 � 1/k2, 1[
k3 > 0 k4 > 0 [k1 � 1/k2, k1 + 1/k2]
k3 > 0 k4 = 0 [k1 � 1/k2, k1]
k3 = 0 k4 > 0 [k1, k1 + 1/k2]
k3 < 0 k4 < 0 ]�1, 1[
k3 < 0 k4 = 0 ]�1, k1]
k3 = 0 k4 < 0 [k1, 1[

Appendix B

The method of moments is performed in order to estimate the ki

parameters of the GLD. This method consists in solving the four
equations system of the four moments and their estimates. The
analytical expressions of the estimated moments are:

â1 ¼
Xn

i¼1

xi=n ðB:1Þ



â2 ¼
Xn

i¼1

ðxi � â1Þ2=n ðB:2Þ

â3 ¼
Xn

i¼1

ðxi � â1Þ3=nâ3=2
2 ðB:3Þ

â4 ¼
Xn

i¼1

ðxi � â1Þ4=nâ2
2 ðB:4Þ

It is shown that if k3 > -1/4 and k4 > �1/4 [27,29,30] then:

a1 ¼ k1 þ
A
k2

ðB:5Þ

a2 ¼ r2 ¼ B� A2

k2
2

ðB:6Þ

a3 ¼
C � 3ABþ 2A3

k3
2a

3=2
2

ðB:7Þ

a4 ¼
D� 4AC þ 6A2B� 3A4

k4
2a2

2

ðB:8Þ

with

A ¼ 1
1þ k3

� 1
1þ k4

ðB:9Þ

B ¼ 1
1þ 2k3

þ 1
1þ 2k4

� 2bð1þ k3;1þ k4Þ ðB:10Þ

C ¼ 1
1þ 3k3

� 1
1þ 3k4

� 3bð1þ 2k3;1þ k4Þ þ 3bð1þ k3;1

þ 2k4Þ ðB:11Þ

D ¼ 1
1þ 4k3

þ 1
1þ 4k4

� 4bð1þ 3k3;1þ k4Þ þ 6bð1

þ 2k3;1þ 2k4Þ � 4bð1þ k3;1þ 3k4Þ ðB:12Þ

where

bða; bÞ ¼
Z 1

0
xa�1ð1� xÞb�1dx ðB:13Þ

The ai moments are estimated by âi (Eqs. (B1–4)). It is necessary
to solve a system of equations highly non linear (Eqs. (B5–8)) in or-
der to calculate the four parameters ki,16i64. As Eqs. (7) and (8) de-
pend only on k3 and k4 (after simplification), the four equations
system become a two equations system with more stable numeri-
cal convergence. The values of k3 and k4, solutions of the two equa-
tions systems, are found by a minimization process of the
following function using a steepest gradient method:

W0ðk3; k4Þ ¼
X4

i¼3

ðâi � aiÞ2 ðB:14Þ

After finding k3 and k4, k2 is calculated from Eq. (B6) and finally
k1 from Eq. (B5).
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