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POD Preprocessing of IR Thermal Data to Assess Heat
Source Distributions

N. Ranc · A. Blanche · D. Ryckelynck · A. Chrysochoos

Abstract Infrared thermography is a useful imaging tech-
nique for analyzing the thermomechanical behaviour of
materials. It allows, under certain conditions, surface tem-
perature monitoring and, via a diffusion model, estimation
of heat sources induced by dissipative and/or thermally
coupled deformation mechanisms. However, the noisy and
discrete character of thermal data, the regularizing effect
of heat diffusion and heat exchanges with the surround-
ings complicate the passage from temperature to heat
source. The aim of this paper is to show that the prior use
of reduced-basis projection of thermal data improves the
signal-to-noise ratio before estimating the heat source distri-
butions. The reduced basis is generated by proper orthogo-
nal decomposition (POD) of physically-admissible thermal
fields. These fields are solutions of ideal diffusion problems
related to a set of putative heat sources. preprocessing is
applied to different direct methods (finite differences, spec-
tral solution, local least-squares fitting) already used in the
past. The gain of this preprocessing is determined using
a numerical penalizing benchmark test. The methods are
finally compared using data extracted from a dynamic cyclic
test on a pure copper specimen.
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151 Boulevard de l’Hôpital, 75013 Paris, France
e-mail: nicolas.ranc@ensam.eu
URL: http://pimm.paris.ensam.fr/en/user/9

A. Blanche · A. Chrysochoos
LMGC, UMR CNRS 5508, CC 048, Université Montpellier 2,
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Introduction

Temperature variations induced by the deformation of solid
materials come from heat sources of different natures.
Sources related to energy dissipation can be distinguished
from those induced by strong thermo-mechanical couplings.
Dissipation reflects the irreversibility of the deformation
process while coupling sources indicate the strong inter-
dependence of thermal, mechanical and microstructural
states. It should be noted that temperature variations depend
on the intensity and distribution of heat sources within the
material but also on the heat diffusion parameter and the
heat exchange conditions with the surroundings. These tem-
perature variations are thus not completely intrinsic to the
material behavior. It is therefore of interest to develop image
processing methods able to assess heat sources using surface
temperature measurements generated by an infrared cam-
era. To obtain quantitatively reliable thermal fields is not
easy and the advent of infrared focal plane array (IRFPA)
cameras, which are certainly faster and more sensitive than
cameras equipped with a single liquid nitrogen cooled
detector and a scanning system, has not simplified the sit-
uation from a metrological standpoint. The main reason
is that the response of matrix elements to a uniform ther-
mal scene is currently not uniform. We will not discuss
these complicated of IR metrology issues here and inter-
ested readers are referred to recent works on this topic [2,
9, 26]. However, it should be noted that an IR camera is
not directly a measuring device and any quantitative use of
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thermal data requires some precautions. Depending on the
intended application and the studied material, it is crucial
to:

– Check the thermal stability of the thermographic sys-
tem;

– Calibrate the complete measurement chain, with the
camera and optics being thermally stable. A pixel cali-
bration is highly recommended;

– Know the emissivity of the studied material surface;
– Determine the spatial resolution of the camera in the

optical conditions of use;
– Check the frame rate and number of recorded images.

The link between the temperature and the heat source
fields is provided by the heat diffusion equation:

ρCαṪ − div
(
k

−−→
grad T

)
= d1 + sthm + re, (1)

where ρ denotes the mass density, Cα the specific heat
at constant mechanical and micro-structural state vari-
ables, T the absolute temperature, k the heat conduc-
tion tensor, d1 the intrinsic dissipation, sthm the thermo-
mechanical coupling sources, and re the possible vol-
ume external heat rate supply. The left hand member of
equation (1) consists of partial derivatives of the tem-
perature weighted by thermophysical parameters charac-
terizing the material. The quality of the heat source
assessments thus depends on the accuracy of the tem-
perature measurements but also on the knowledge of the
thermophysical parameters. Substantial effort is currently
focused on developing thermal methods to estimate these
thermophysical parameter fields using inverse methods
[16, 17].

So far, the following strong hypotheses have been put for-
ward with respect to computing heat sources during infrared
image processing:

– Mass density and specific heat are material constants,
independent of the thermodynamic state.

– The heat conduction tensor remains constant and
isotropic during the test (kij = kδij ).

– The external heat rate supply re due to heat exchange by
radiation is time-independent, so the equilibrium tem-
perature field T0 verifies −k�T0 = re. It is then con-
venient to consider the temperature variation ϑ defined
by ϑ = T − T0.

These hypotheses are relevant for many situations, but
are inadequate when strong anisotropy pre-exists or devel-
ops during strain and when strain and/or damage localiza-
tion occurs. Alternative hypotheses should be proposed to
deal with such situations and ensure reliable calorimetric
analysis of the mechanical behavior.

When taking these latter hypotheses into account, the
heat equation can be rewritten in the following compact
form:

ρCαϑ̇ − k�ϑ = s, (2)

where s stands for the overall heat source.
Even in its simplest form, the heat equation (equation (2))

cannot be directly used for estimating heat losses and
sources. In fact, cameras only provide information on the
specimen surface, which is insufficient to estimate 3D dis-
tribution sources without any supplementary information.
New concessions are required.

For uniaxial tests performed on thin flat samples, a first
possibility is to work with a diffusion equation integrated
over the specimen cross-section [14]. The specimen gage
length is denoted by L. With ϑ(x, t) now denoting the
mean temperature variation at time t over the cross section
S(x), and x being the longitudinal coordinate, the 1D heat
diffusion equation can be formulated as:

ρCα

(
∂ϑ

∂t
+ ϑ

τ 1D
th (x)

)
− k

(
S′

S

∂ϑ

∂x
+ ∂2ϑ

∂x2

)
= s(x, t), (3)

where s(x, t) is the longitudinal distribution of the mean
heat source per cross section S, with S′ stands for dS

dx
, and

τ 1D
th (x) being a time constant characterizing heat losses per-

pendicular to the specimen axis through the cross-section
boundary δS [14]. This latter is defined by:

τ 1D
th (x) = ρCαS(x)

2h(e + 	(x))
= ρCαe 	(x)

2h(e + 	(x))
, (4)

where h is a heat exchange coefficient between the speci-
men and the surrounding air, e is the constant thickness of
the sample and 	(x) is its variable width. The plate speci-
men geometry presented in Fig. 1 is classically used [1] for
ultrasonic high cycle fatigue tests.

When dividing equation (3) by ρCα , the heat diffusion
coefficient D = k

ρCα
appears in the equation and the source

term s
ρCα

is expressed in ◦C.s−1. This allows us to define,
for each type of source, an equivalent heating or cooling
speed in adiabatic conditions. This facilitates comparison of
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Fig. 1 Specimen geometrical characteristics



different types of source, or of sources of the same type in
different materials.

For practical use of equation (3), the mean width-wise
temperature variation, measured at the specimen surface,
must remain close to the mean temperature over the cross-
section S. This assumption is even more relevant when the
sources are regularly distributed over S and the Biot number
Bi = h	c

k
is small compared to the unit. In the Biot number

expression, the characteristic length 	c is commonly defined
as the volume of the body divided by the surface area and
is thus equal to e	

2(e+	)
in the case of an ultrasonic fatigue

plate specimen. A Biot number of 10−4 can therefore be
calculated in our case.

The smoothing (regularizing) effect of heat diffusion
is beneficial when it derives sources from thermal mea-
surements performed at the specimen surface. To briefly
illustrate this effect qualitatively, we considered a simple
1D steady-state diffusion model, τ 1D

th (x) representing the
time constant characterizing heat losses in the plane perpen-
dicular to direction Ox (Fig. 2). Although the sources are
randomly distributed, the results show that the temperature
profile is, comparatively, very regular.

In this euristic example, the chosen thermophysical and
geometrical constants were: ρ = 7800 kg.m−3, Cα =
450 J.kg−1.K−1, k = 60 W.m−1.K−1, L = 0.1 m, τ 1D

th =
50 s . The overall curvature of the temperature profile is
imposed by the Fourier boundary conditions of the form
∂ϑ
∂x

± λϑ = 0 , with λ = 10 m−1, reflecting linear heat
losses.

It is thus understandable that the reverse temperature to
source path is particularly unstable, especially when the
thermal data becomes discrete and noisy. To illustrate this,
the previous model can be used in the simple case where
the temperature profile is reduced to ϑa(x) = ϑ0 cos(ω0x),
with ω0 being the eigenpulsation associated with the first

eigenfunction of the partial derivative operator − ∂2

∂x2 (see
details in the “spectral method” section ). Under the bound-
ary conditions, ω0 tan (ω0L/2)) = λ, ω0 ∈]0, π

2 [.

Fig. 2 Regularizing effect of heat diffusion

In Fig. 3(a), analytical, noisy and filtered thermal pro-
files were shifted (shift = 0.1 ◦C) in order to facilitate the
comparison. We chose white noise, consistent with experi-
mental observations [4], but with a peak-to-peak amplitude
of about 0.1 ◦C, i.e. twofold greater than those often experi-
mentally obtained with current IRFPA cameras in laboratory
conditions. Here the signal was fitted using Gaussian con-
volutive filtering. This method was introduced by Nayroles
et al. [24] and the boundary effects were discussed by
Chrysochoos and Louche in 2000 [10]. In Fig. 3(b), the pro-
file of the analytically computed sources and that derived
using a finite difference (FD) approximation of the diffu-
sion operator using thermal data without noise were plotted.
The two curves are almost indistinguishable. The scatter
plot represents the estimated sources obtained by finite dif-
ferences when using the filtered data. The sources computed
with the noisy thermal data were not plotted in Fig. 3(b),
since the noise on the sources was too great (16 ◦ C.s−1).
Note that even after (low-pass) convolutive filtering, the
finite difference method is not very satisfactory. That is
why other methods have been proposed. In the past, trun-
cated spectral solutions (SPS) of the heat equation were
used [8] as well as local least-squares (LSQ) analytical
approximations [5].

In what follows, we show that truncated projection of
temperature profiles on an orthonormal numerical base,
obtained using a proper orthogonal decomposition (POD)
of diffusion problem solutions, helps improve the compu-
tation of heat sources regardless of the method used (FD,
SPS, LSQ). A set of putative heat sources, that are in prac-
tice simulated sources, denoted

(
s(r)

)
r=1,...,M

, is introduced
to define ideal diffusion problems. These sources are pos-
sible contributions to experimental heat sources. The solu-
tions to ideal problems are termed physically-admissible
thermal fields and are denoted (ϑ(r))r=1,...,M . ϑ(r) fulfill
equation (3) with s = s(r). They span a subspace whose
reduced basis is generated using the POD method.

The POD method is based on statistical data analy-
sis [20–22]. Karhunen-Loève Decomposition (KLD) is an
other name of the POD method. In [3, 19, 23], the POD
method was used in turbulence to extract the salient features
of velocity fields. As shown in [12, 25], this method can be
applied to the thermal inverse problem without solving any
numerical simulation. However, in many previous studies,
the POD method has been used to reduce the computa-
tional complexity of numerical simulations. Note that POD
reduced bases can also handle partial data, as they appear in
many experimental measurements. In case of missing data,
data reconstructions can be achieved by various methods,
e.g. gappy POD [6, 15, 30], POD-EIM [18], DEIM [7] or
hyper-reduction [27, 28].

A theoritical analysis of noise reduction provided by
POD in thermal measurements can be found in [13]. In



Fig. 3 Heat source assessments
(b) using thermal data (a)

that paper, the POD method is applied to experimental data
only. Here, the decomposition we propose to generate the
POD basis, does not involve decomposition of experimental
data but rather decomposition of solutions related to chosen
diffusion problems. These diffusion problems, mathemati-
cally defined by equation (3), are assumed to represent the
physics we expect to observe. The reduced basis is related
to physically admissible thermal fields

(
ϑ(r)

)
r=1,...,M

, not
to experimental data. We do not perform a statistical analy-
sis of the experimental data, contrary to what Del Barrio et
al. propose in [13] using the POD.

The reduced basis representation of the temperature field
reads:

ϑ(x, t) =
N∑

k=1

ak(t)ϕk(x), (5)

where (ϕk)k=1,...,N are the proper orthogonal modes
(POMs) of the POD reduced basis. They are solutions of the
following equation [23]:

ϕk = arg max
ψ

∑M
r=1

∫ tf
0

(∫
�

ϑ(r)(x, t) ψ(x) d�
)2

dt∫
�

ψ2(x) d�
, (6)

where � is the spatial domain and [0, tf ] is the time interval.
This equation means that functions ψ(x) which maximize
their projection on throughout the calculated temperature
fields ϑ(r) for every time in [0, tf ] are searched.

There are many solutions to this maximum problem.
POMs are ordered such that:

σ 2
k =

∑M
r=1

∫ tf
0

(∫
�

ϑ(r)(x, t)ϕk(x) d�
)2

dt∫
�

ϕ2
k (x) d�

, (7)

σ 2
k ≥ σ 2

k+1. (8)

Here σ 2
k is the positive eigenvalue related to the POM ϕk .

The following orthogonality property is fulfilled:
∫

�

ϕk(x) ϕp(x) d� = δkp, (9)

where δkp is Kroneker’s delta symbol. Extensive details on
the properties of this approximation can be found in [13].

Energy, according to signal theory, denoted by E can be
introduced as follows:

E =
M∑

r=1

∫ tf

0

∫

�

ϑ(r)(x, t) ϑ(r)(x, t) d� dt. (10)

It can be proven that:

E =
∞∑

k=1

σ 2
k . (11)

As N increases, the approximation error decreases, and∑N
k=1 σ 2

k tends to the energy E .
The construction of the POD basis will be detailed in the

first part of this paper. Then, in the second part, a benchmark
test with a particular heat source distribution and evolution
will be defined, while in the last part the various methods
to identify the heat source will be presented and the results
compared.

Application of POD Preprocessing to Thermal Data

In the current study, discrete sets of physically admissible
thermal fields were analyzed using singular value decompo-
sition (SVD), which is a discrete implementation of POD.
As a set of putative heat sources

(
s(r)

)
r=1,...,M

, we consider
time-constant point sources in space. These point sources
are designed to be observable by IR cameras, while having
the smallest spatial support. This support is related to each
IR element. Therefore M = n, where n denotes the number
of IR elements. The discrete values of ϑ(r)(xi, tp) are stored
in a matrix denoted �. Let us consider the case of a puta-
tive heat source

(
s(r)

)
, where θ(r) denotes the matrix of the

discrete values of (ϑ(r)(xi, tp))i=1,...,n; p=1,...,m, such that:

θ
(r)
pi = ϑ(r)

(
xi, tp

)
, i = 1, . . . , n, p = 1, . . . , m. (12)

Using the SVD, θ(r) can be decomposed as:

θ(r) = U�V T , (13)

where U and V are orthonormal matrices (m×n and n×m,
respectively), and � is a diagonal matrix. The columns of



the orthogonal matrix V are the computed POMs, denoted
by vk . The diagonal matrix � is termed the singular matrix
whose elements (along the diagonal) are non-negative num-
bers, called singular values, arranged in decreasing order
(see Fig. 4(a)).

Each of these singular values corresponds to a single
basis function v, and represents the level of ’energy’ of the
associated mode. In Fig. 4(b), the first four modes are plot-
ted. The matrices U and � can be multiplied to form matrix
Q and equation (5) can be re-written as:

θ(r) = QV T =
n∑

k=1

qkv
T
k , (14)

where qk and vk are column matrices that are, respectively,
the discrete representation of the functions ak(t) and ϕk(x)

of the continuous temperature field.
The singular values can be used to derive a lower order

model by establishing a reduced order matrix, �red , that
contains the first N (N ≤ n) singular values with the rest
of the diagonal entries set at zero. The model order N can
be set to capture the desired percentage of total ’energy’ in
the system. In our case, this operation will eliminate much
of the thermal white noise that is assumed to mainly be
associated with the multiple modes of low ’energy’.

The matrix � was considered to construct the reduced
basis related to the physically admissible thermal fields.
This involves all discrete thermal responses associated with
the point sources mentioned above, such that:

�T =
[
θ(1)T , θ(2)T , . . . , θ (n)T

]
(15)

Each elementary thermal dataset θ(r) is the discrete solu-
tion of the following diffusion problem already defined in
equation (3):
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρC

(
∂ϑ(r)

∂t
+ ϑ(r)

τ 1D
th (x)

)
− k

(
S′

S

∂ϑ(r)

∂x
+ ∂2ϑ(r)

∂x2

)
= s0δ(x − xr ),

ϑ(r)
(−L

2 , t
) = ϑ(r)

(
L
2 , t

) = 0

ϑ(r)(x, 0) = 0

(16)

where s0 is an arbitrary positive constant, δ(x) the
Dirac distribution, and xr = −L

2 + r�x with �x =
L

n+1 and 1 ≤ r ≤ n the localization of the point
source.

To compute the POMs vk , we considered the matrix
�̂ = ��T to reduce the size of the thermal data to be pro-
cessed. SVD corresponds to the eigenvalue decomposition
(EVD) for this type of symmetric matrix.

Note that the basis of vk is computed once and for all
for a given form of diffusion problem. Another advantage is
that the prior determination of the order N can be fixed for
a given signal-to-noise ratio. Once N is defined, the projec-
tion of the thermal data derived from the tests is limited to
the first N orthogonal modes.

Benchmark Test

A baseline test was set up to estimate the gain offered
by the preprocessing of thermal data by POD and com-
pare the reliability of the different heat source compu-
tations. Penalizing conditions were systematically cho-
sen to also check the robustness of the heat source
assessment.

Regarding the spatiotemporal distribution of sources, a
highly heterogeneous field was defined with respect to
space that quite slowly varies with respect to time. The
analytical expression of sref (x, t) reads:

sref (x, t) = s0

(
1

2
− x

L

)
e− 6|x|

L

(
1 − e

− t
t0

) ∣∣∣∣sin

(
2π

(
2x

L
+ t

t1

))∣∣∣∣ ,
(17)

where L is the sample gage length with −L
2 � x � L

2 . Con-
stants appearing in the reference source are s0 = 29 ◦C.s−1,
t0 = 5 s, t1 = 5 × 103 s. Sources are always positive and
two moving source peaks can be seen in Fig. 5(a) and (c).
Progressive saturation of the heat source intensity was also
planned.

Fig. 4 Results of SVD
decomposition (a) Example of a
normalized distribution of
singular values �k√

E
(b) Example

of the first proper orthogonal
modes
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Fig. 5 Benchmark test: (a)
space-time distribution of heat
sources, (b) corresponding
temperature distribution (c) heat
sources and (d) temperature
profiles at times tj = 8, 12, 16s;
these captures are shown by
dashed lines in the color
mapping (a-b)
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Non-homogeneous dissymmetric Dirichlet boundary
conditions were also chosen in order to take possible warm-
ing of the specimen by the grips of the testing machine into
account:

ϑref (−L/2, t) = ϑ−
0

(
1 − e

− t

t
−
0

)
and

ϑref (+L/2, t) = ϑ+
0

(
1 − e

− t

t
+
0

)
, (18)

with ϑ−
0 = 3◦C, t−0 = 2.5 s, ϑ+

0 = 2◦C, t+0 = 2 s.
Now regarding the material characteristics, we chose the

thermophysical constants of pure copper (ρ = 8920 kg.

m−3, C = 385 J.kg−1.K−1, k = 360 W.m−1.K−1). Pure
copper has a high diffusivity coefficient (D = k

ρC
≈

10−4 m2.s−1, i.e. dozens of times greater than that of
many conventional materials). The diffusion strongly reg-
ularizes the temperature fields, even for very heteroge-
neous source distributions, thus complicating the inverse
heat source assessment. Figure 5(b) and (d) show the
evolution of the temperature profile ϑref associated with
sref . The lack of heat source around x = 0 is, for
instance, hard to imagine by looking solely at the thermal
response.

A last penalizing parameter considered here was the
signal-to-noise ratio (SNR). At first approximation, this is
white noise with a uniform distribution. The sensitivity of
IR cameras is characterized by the noise-equivalent temper-
ature difference (NETD) measured in milliKelvins (mK).

R&D cameras generally have an NETD of about 20 mK at
a temperature of 25◦C for an aperture time of one millisec-
ond. A noise with a three standard deviations of 50 mK was
chosen to further check the robustness of the heat source
computations. Note that in the case of 1D heat source anal-
ysis, thermal data have to be widthwise averaged (reflecting
the mean temperature over the cross-section) to construct
the thermo-profile time course. In the case of Gaussian
white noise, the noise range decreases with the square root
of the number of data considered in the averaging opera-
tion. For space resolutions of the IR camera images such
that at least 9 pixels are considered to construct the profiles,
50 mK should correspond to a noise with a three standard
deviations of about 150 mK .

Heat Source Computation

In the introduction, we stressed that the 3D heat diffu-
sion equation (equation (1)) makes a direct link between
thermal and calorimetric aspects of deformation mecha-
nisms. From a mathematical standpoint, the determination
of heat sources when the surface (i.e. boundary) tempera-
ture distribution is a so-called inverse problem that is very
difficult, often impossible, to solve because of the regu-
larizing (smoothing) effects of the heat diffusion and the
lack of prior information on the heat source distribution.
Our first goal was thus to get a simplified heat equation
adapted to thin flat specimens, so as to be able to compute



1D distributions of heat sources using surface thermal field
measurements (equation (3)). We therefore considered an
averaged diffusion equation over the sample cross-section
“to convert” surface temperatures into mean heat sources.
It is thus a ’direct’ computation of heat sources that will be
considered hereafter.

Note that different heat source calculation methods have
been developed over time. It was not until the end of the
1970s that infrared techniques were used to obtain quanti-
tative results in civil applications. Regarding experimental
investigations on the mechanics of materials using digitized
infrared data, we ought to mention what is, to our knowl-
edge, the first designed and used homemade analog-digital
converter of video signals from IR cameras [24].

At this time, because of the slowness of the first digiti-
zation systems of mono-detector cameras used in the 1990s
(typically two digitized images per second), spectral solu-
tions (SPS) of the heat equation were used to estimate heat
sources [8]. The main advantages of the spectral method
is the knowledge of the eigen-functions of the Laplacian
operator – typically sine and cosine functions for paral-
lelepipedic specimens – which allows assessment of the
conduction heat losses without markedly amplifying the
noise (use of truncated solutions to limit noise effects).
Fourier’s techniques have also been used [10], but they
are essentially limited to spatial filtering in the image pro-
cessing. Convolutive filtering using the discrete Fourier
transform were especially used.

The main drawbacks of these techniques were:

– A previous periodic expansion of thermal images,
preferable before any heat source computation. This
expansion naturally requires a lot of memory space and
is time consuming. It is however necessary to avoid
supplementary frequencies resulting from the automatic
periodization induced by the discrete Fourier transform.

– The impossibility of reducing all noise effects, with
thermal noise being centered white noise with a uni-
form power spectrum. We used a low-pass Gaussian
filter, which is a smooth filter even when twice derived
(Laplacian computation).

Fitting techniques were more recently developed with
IRFPA cameras. Local least-squares approximation of tem-
perature fields using different sets of approximation func-
tions was used: a set of space-time polynomials for
monotonous loading [11], trigonometric in time and poly-
nomial functions in space for monochromatic fatigue tests
[4]. The optimized sizes of the space-time approxima-
tion domain naturally have to be adjusted according to
the heterogeneity of the sought heat source distribution
and of the signal-to-noise ratio. In what follows, three of
these different methods are reused and their results com-
pared after preprocessing of thermal data using POD. Heat

source assessments obtained with a simplistic finite dif-
ference method were compared to those obtained using a
quasi-analytically spectral solution (global approximation)
and those stemming from local least-squares approximation
(local approximation) of the thermal data.

The three methods start from the same diffusion
equation:

s(x, t)

ρC
= ∂ϑ

∂t
+ ϑ

τ 1D
th (x)

− D
S′(x)

S(x)

∂ϑ

∂x
− D

∂2ϑ

∂x2
. (19)

Finite Differences

The principle of this first method is to estimate the right-
hand side of equation (19) directly using thermal data. Finite
difference approximations of the different partial derivative
operators can be done. When respectively letting �t and
�x denote the time and space discretization steps, respec-
tively, θ

j
i the temperature variation ϑ(xi, tj ), the volume

heat source s
j
i can be rewritten as:

s
j
i

ρC
= θ

j
i − θ

j−1
i

�t
+ θ

j
i + θ

j−1
i

2τ 1D
th (xi)

− D
S′(xi)

S(xi)

θ
j

i+1 − θ
j

i−1

2�x

−D
θ

j

i+1 − 2θ
j
i + θ

j

i−1

�x2
. (20)

Note that a forward Euler scheme with respect to time was
used in equation (20). We also could have used a back-
ward scheme or any other scheme (e.g. θ method). The first
order derivative with respect to space is computed using a
second order finite difference scheme consistent with the
second order derivative that must also be approximated.
This method is particularly easy to program and gives rapid
heat sources estimates. It is, however, very sensitive to ther-
mal noise, with the Laplacian term being a powerful noise
amplifier.

Spectral Solution

The second method uses the spectral solution ϑsp of the
diffusion problem associated with the following partial
derivative problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
∂ϑ

∂t
+ ϑ

τ 1D
th (x)

)
− D

(
S′(x)

S(x)

∂ϑ

∂x
+ ∂2ϑ

∂x2

)
= s(t, x)

ρC

ϑ(−L
2 , t) = ϑ−(t) and ϑ(+L

2 , t) = ϑ+(t)

ϑ(x, 0) = 0

(21)

The two boundary conditions ϑ− and ϑ+ represent an
interpolation of experimental measurements of the temper-
ature in −L

2 and in L
2 . The heat diffusion problem is indeed

linear with respect to the temperature. Consequently, it is
possible to use a superposition principle. We consider that



the experimental temperature profile ϑ(x, t) is the result of
two contributions ϑsp(x, t) and ϑlf (x, t).

On the one hand, the temperature variation ϑsp is the
spectral solution of the diffusion problem that takes the heat
source distribution into account:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ϑsp

∂t
− D

∂2ϑsp

∂x2
= s(x, t)

ρC

ϑsp

(−L
2 , t

) = ϑsp

(+L
2 , t

) = 0

ϑsp(x, 0) = 0

(22)

Here, the heat sources s(x, t) are naturally unknown. To
compute the solution ϑsp homogenous Dirichlet boundary
conditions were chosen. In this situation, the sets of eigen-
functions of the Laplacian operator are (cos((2k + 1)πx/L)

and sin(2kπx/L), k ∈ N) and ϑsp can be resolved as
follows:

ϑsp(x, t) =
∞∑

k=0

(
ak(t) cos

(
(2k + 1)π

L
x

)
+ bk(t) sin

(
2kπ

L
x

))
,

(23)

where ak and bk are constants which depend only on time.
On the other hand, the construction of ϑlf is sometimes

called the “lifting” of ϑ and is given by the equations:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ϑlf

∂t
− D

∂2ϑlf

∂x2
= − ϑ

τ 1D
+ D

S′(x)

S(x)

∂ϑ

∂x
= slf (x, t)

ρC

θlf (−L
2 , t) = ϑ−(t) and ϑlf (t,+L

2 ) = ϑ+(t)

ϑlf (x, 0) = 0

(24)
The temperature variation ϑlf takes into account

– the influence of the non-linear terms with respect to x.
These terms are grouped on the right hand member of
the diffusion equation (equation (24)) defining a vir-
tual heat source slf . This source is estimated through ϑ

measurements,
– the influence of the thermal boundary conditions. Even

if the boundary conditions, with a deeper physical
meaning, could be defined (e.g. linear heat losses under
Fourier’s conditions), unsteady Dirichlet conditions
were considered, and identified from the experimental
measurements ϑ+ and ϑ− at the specimen extremities.

The goal of the spectral method is to obtain an estimate
of ϑsp = ϑ − ϑlf from the thermal data ϑ and to use its
almost analytical expression to derive the sources s(x, t)

from equation (22). The “lifting” temperature variation ϑlf

is estimated through a direct resolution of equation (24)
while accounting for the virtual heat source slf (x, t).

Local Least-Squares Fitting

The local fitting function ϑf it of the temperature charts is
chosen in the same way as in [5]:
ϑf it (x, t) = P1(x)t + P2(x) + P3(x) cos (2πfLt) + P4(x) sin (2πfLt) (25)

where the trigonometric time functions may describe the
periodic part of the thermoelastic effects (during cyclic
tests), while the linear time function takes transient
effects due to heat losses, dissipative heating and possi-
ble drifts in the equilibrium temperature into account. In
equation (25), fL stands for the loading frequency. The
functions Pi(x), i = 1, . . . , 4, are 2nd order polynomials
in x. These polynomials enabled us to account for possible
spatial heterogeneity in the source patterns. This standard
technique applied to the fatigue of steels was fully described
in [4]. The main advantages of this method are the robust-
ness with respect to thermal noise and the possibility of sep-
arately computing the thermoelastic source amplitude and
the mean dissipation per cycle by using under-sampled ther-
mosignals during monochromatic fatigue tests. Naturally
for nonmonochromatic cyclic tests, the local approxima-
tion function of the temperature ϑf it (x, t) can be limited to
ϑf it (x, t) = P1(x)t + P2(x). The local analytical expres-
sion of the temperature is then identified in order to compute
the different partial derivatives involved in the heat equa-
tion. They are then averaged over the approximation zone
(Fig. 6) and combined to assess the different calorimetric
information.

POD Preprocessing

As with the spectral method, the temperature ϑ is split into
two components ϑPOD and ϑlf , i.e. a new lifting temper-
ature which is slightly different from that used with the
spectral method. The ’lifting’ temperature ϑlf is the solution
of the thermal problem without heat sources:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
∂ϑlf

∂t
+ ϑlf

τ 1D
th (x)

)
− D

(
S′(x)

S(x)

∂ϑlf

∂x
+ ∂2ϑlf

∂x2

)
= 0

ϑlf (−L
2 , t) = ϑ−(t) and ϑlf (+L

2 , t) = ϑ+(t)

ϑlf (x, 0) = 0

(26)

Fig. 6 Size parameters of the approximation zone: 2Nx +1 and 2Nt +
1 are the numbers of pixels and frames involved in the least-squares
fitting, respectively



Fig. 7 Heat source assessments
derived from θref using the
three methods: (a, b) FD, (c, d)
SPS, (e, f) LSQ. In (b, d, f), sref
are indicated using dotted lines
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The temperature ϑPOD is then be written as ϑPOD =
ϑ − ϑlf and can be approximated by:

ϑPOD(x, t) =
N∑

k=1

(∫ L/2

−L/2

(
ϑ

(
x′, t

) − ϑlf

(
x′, t

))
ϕk

(
x′) dx′

)
ϕk(x).

(27)

Thanks to the linearity of the heat diffusion problem,
ϑPOD is the approximated solution of the continuous diffu-
sion problem:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∂ϑPOD

∂t
+ ϑPOD

τ 1D
th (x)

)
− D

(
S′(x)

S(x)

∂ϑPOD

∂x
+ ∂2ϑPOD

∂x2

)
= s(x, t)

ρC

ϑPOD

(− L
2 , t

) = ϑlf

(+ L
2 , t

) = 0
ϑPOD(x, 0) = 0

(28)

When using this preprocessing procedure, the approxi-
mation error ϑ − ϑPOD − ϑlf is expected to be related
to the measurement noise. If this error is more than the
measurement noise, the set of putative heat sources has to
be extended in order to expand the subspace spanned by
the POMs (ϕk)k=1,...M . To get rid of missing putative heat
sources, a point source in space is introduced for each IR
element.

In practice, the temperature difference ϑPOD is derived
from the thermal data and from the computed lifting tem-
perature. The difference is projected onto the POM basis to
considerably reduce the measurement noise. The tempera-

Table 1 Heat source
assessments using θref

Method Mean (x 10−3 ◦Cs−1) std (x 10−3 ◦Cs−1) Parameter CPU time (s)

DF 38 22 – 0.35

SPS 0.3 13 Nef = 200 447.6

LSQ 0.3 15 Nx = 1 Nt = 1 6.3



Fig. 8 Heat source assessments
derived from noisy data θref

using the 2 methods: (a, b) SPS,
(c, d) LSQ
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ture field ϑPOD can be used to estimate the different partial
differential operators of equation (28) and to assess the heat
sources.

Comparative Analysis

This section presents the different heat source assessments
obtained with the three different data processing meth-
ods. Computations with θref (without noise) were first
performed to check the consistency (convergence) of the
numerical schemes. Then a random noise with a peak-
to-peak of about 100mK was superimposed to test the
robustness of the methods with respect to noise. In a
third step, a POD of the thermal data was carried out
before the heat source computations. Only the projection
of the noisy temperature on the first POMs was retained.

This operation eliminates a large part of the noise with-
out degrading the low frequency thermosignal components.
Once the noise was reduced, the different data process-
ing results were once again compared with the reference
test. Finally, the methods were applied to a thermal dataset
extracted from a dynamic fatigue test on pure copper
specimens.

Heat Source Assessments Using θref

Figure 7 shows the heat source distributions derived from
the reference temperature dataset. Following the presenta-
tion mode adopted for the benchmark test, a contour plot of
sources is systematically shown (left) and three profiles are
plotted (right) at three different times (ti = 8, 12, 16s) for
each method. To check the efficiency of the methods, ref-
erence sources sref (ti , x) (dotted lines) were superimposed,

Table 2 Heat source
assessments using noisy
thermal data

Method Mean std Parameter CPU time

(x 10−3 ◦C/s) (x 10−3 ◦C/s) (s)

FD – – – –

SPS −11 726 Nef = 10 37.95

LSQ 21 429 Nx = 15 Nt = 15 5.37

POD+FD 1 750 Nm = 10 0.52 + 0.33

POD+SPS −12 734 Nm = 15 Nef = 10 0.61 + 11.64

POD+LSQ −9 383 Nm = 15 Nx = 10 Nt = 10 0.61 + 5.34



with full lines representing the computed profiles derived
from the thermal data.

Qualitatively, the reconstructed sources closely matched
the reference. Their profiles are quasi-undistinguishable.

To quantify the differences between the computed and
reference sources, Table 1 shows the mean and standard
deviation of these differences. The table naturally specifies
the parameter chosen for this comparison. No adjustable
parameter was envisaged for the finite difference method.
Conversely, the number Nef of eigenfunctions chosen to
define the truncated spectral solution, as well as the number
of pixels and frames (2Nx + 1) × (2Nt + 1), involved in
defining the local least-squares approximation are indicated.
As the thermal data were noiseless, a large number of eigen-
functions could be chosen (Nef = 200). In the same way,
the approximation zone defined to locally fit the thermal
data can also be maximally reduced (3 pixels and 3 frames).

The mean value of sref over the test is about 2.18 ◦C.s−1.
This can be compared to the mean discard and standard

deviations of the differences in order to confirm the consis-
tency of the computational of heat source methods.

CPU times are also indicated. The timing naturally
depends on the computer characteristics, programming lan-
guage, size of thermal dataset to process, etc. Here, only
a comparison of these times is really informative. For
instance, the spectral method is particularly time consum-
ing. This slowness is due to the fine projection of the
thermal data onto the numerous eigenfunctions. For high
eigenpulsation, the thermosignal must be interpolated to
ensure a quantitatively correct projection, with the scalar
product corresponding to a quadrature operation.

Heat Source Assessments Using Noisy Thermal Data

As already underlined, the experimental results always have
random noise. To check the robustness of the previous meth-
ods, white noise with a uniform distribution, whose peak-
to-peak amplitude of 0.1 ◦C was superimposed on θref .

Fig. 9 Heat source assessment
with preprocessed thermal data:
(a, b) POD + FD method, (c, d)
POD + SPS method, (e, f) POD
+ LSQ method
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Direct Assessment

Figure 8 only shows the results obtained with SPS and LSQ
methods. The DF method gave too noisy estimates of heat
sources that were not plotted. As indicated in the example of
Fig. 3(b), the 2nd order derivative of noisy data considerably
amplifies the noise.

Both methods gave satisfactory results. The high heat
sources were clearly localized. However, more specifically,
little wavelets can be seen in Fig. 8(a) and (b). They are
due to the time derivation of the spectral solution using sim-
ple finite differences. A more efficient way could have been
considered here but would have lengthened the already very
long processing time. In Fig. 8(c) and (d) the local LSQ fit-
ting of thermal data gave better results. A small residue of
noise effects can however be observed on the source pro-
files (Fig. 8(b)) From a more quantitative standpoint, Table 1
indicates the means and standard deviation of the differ-
ences between the reference and computed heat sources. No
results were obtained through the FD method. We observed
that the mean error value remained low, contrary to the
standard deviations, which were 30-fold greater than those
obtained with the reference thermal data.

Use of POD before Heat Source Assessment

Before assessing heat sources, it could be interesting to
project the thermal data onto the first POMs in order to

reduce the noise amplitude. As indicated in Table 2, we used
about 10 to 15 modes.

The first result to mention is certainly the fact that the
sources could be calculated with the FD method (Fig. 9(a)
and (b)). Note that the method gave very noisy results with
a convolution filter (Fig. 3(b)). Regarding the SPS method,
the quality of the results is similar to that obtained without
preprocessing (Fig. 9(c) and (d)). However, the gain in ther-
mosignal regularity allows a more rapid convergence of the
projections whose timing is 3-fold lower for the same num-
ber of eigenfunctions (Table 2). Finally, regarding the LSQ
method, POD slightly improves the standard deviation with
respect to the differences between reference and calculated
sources (Fig. 9(e) and (f)). The main advantage of POD
preprocessing is certainly that it reduces the approximation
zone. With the chosen fitting parameters, the size of this
approximation zone is 2-fold smaller. As the size of the fit-
ting zone decreases, the fitting function will more precisely
describe the local temperature variations and therefore its
space and time derivatives, and in turn the local heat sources.

Comparative Analysis of Assessment Methods
on Experimental Thermal Data

The chosen experimental data were extracted from a
dynamic fatigue test conducted on a pure copper specimen.
The specimen shape and its geometrical characteristics are

Fig. 10 Heat source
assessments: (a, b) SPS method,
(c, d) LSQ method; the profiles
in (b, d) are captured at times
t = 10, 25, 40s
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indicated in Fig. 1. The loading frequency was about 20
kHz. For this frequency level, the maximum frame rate of
the current IRFPA camera is too low to capture the thermoe-
lastic effects. Only the mean dissipative sources per cycle
can be estimated [29].

Direct Assessment of Heat Sources

As previously described, the heat sources were first com-
puted without preprocessing of the thermal data using POD.
The presentation of results is the same as previously. The
results obtained when directly using the FD method were
not plotted because of their excessive noise. The other
results are shown in Fig. 10(a) and (b) for the SPS method
and in Fig. 10(c) and (d) for the LSQ method. Both meth-
ods indicate a main heat source concentration in the center
of the specimen. A second small bump can be seen on the

left part of the specimen. Slight displacement of these max-
ima was observed throughout the test with the two methods.
The main bump moved left while the small bump moved
right. Regarding the shape of the high dissipation localiza-
tion zone, the peak obtained with the SPS method is higher
and narrower than that computed with the LSQ method.
This crushing of gradients is a classical disadvantage of
smoothing techniques. To limit this effect, the fitting zone
must be reduced if possible, taking into account of the
signal-to-noise ratio.

Heat Source Assessments with Preprocessed Data

In Fig. 11, the last results were obtained after projection
of the thermal data onto only the first ten POMs. With
such a preprocessed signal, the three methods gave sim-
ilar results. The shapes of the high dissipation zone are

Fig. 11 Heat source
assessments with preprocessed
data, (a, b) POD + FD method,
(c, d) POD + SPS method, POD
+ LSQ method; capture times of
profiles t = 10, 25, 40s

time (s)

po
si

tio
n 

(m
m

)

POD (N
m

=10) + FD

0 20 40

−10

0

10
0

1

2

3

4

5

−10 0 10
0

1

2

3

4

x (mm)

s/
ρC

 (
°C

/s
)

POD (N
m

=10) + FD

time (s)

po
si

tio
n 

(m
m

)

POD (N
m

=10) + SPS (N
ef

=10)

0 20 40

−10

0

10
0

1

2

3

4

5

−10 0 10
0

1

2

3

4

x (mm)

s/
ρC

 (
°C

/s
)

POD (N
m

=10) + SPS (N
ef

=10)

time (s)

po
si

tio
n 

(m
m

)

POD (N
m

=10) + LSQ (Nx=5 Nt=5)

10 20 30 40

−10

−5

0

5

10
0

1

2

3

4

5

−10 −5 0 5 10
0

1

2

3

4

x (mm)

s/
ρC

 (
°C

/s
)

POD (N
m

=10) + LSQ (Nx=5 Nt=5)

(a) (b)

(c) (d)

(e) (f)



very close to each other, even those obtained with the LSQ
method. Between the processing of Fig. 11(c), (d) (e) and
(f), the fitting zone was 13-fold smaller. As already under-
lined, this decrease in the fitting zone, allowed by the noise
reduction, limits the crushing effects. Finally, the displace-
ments of the maximal dissipation zones can also be clearly
observed throughout the 106 cycles.

Concluding Comments

In this paper, the main goal was to show that the use of a
truncated POD of thermal data improves heat source assess-
ments. A 1D benchmark test was thus proposed. Penalizing
conditions were systematically chosen to check the robust-
ness of the computational methods. Three methods were
tested:

– the first one is based on finite difference estimates
of partial derivatives involved in the heat diffusion
equation;

– the second uses knowledge of the spectral solution of
the diffusion problem;

– the third locally fits the thermal data and the fitting
function, determined in the least-squares sense, and is
used to estimate heat sources via the heat equation.

The general advantages of POD preprocessing are as fol-
lows:

– POMs can be computed once the diffusion problem is
defined,

– the number of POMs to be considered in the prepro-
cessing of thermal data can also be determined, once the
thermal noise characteristics are known,

– the CPU times necessary to project the thermal data
are almost negligible compared with those necessary to
compute the heat sources.

Now regarding the specific advantages of POD preprocess-
ing according to each heat source computational method:

– the most remarkable result is certainly that POD allows
the operator to ’save’ the FD method with noisy ther-
mal data. The noise reduction obtained by truncating
the POD solution is better than convolutive filtering or
least-squares fitting,

– noise reduction by POD allows us to consider a greater
number of eigenfunctions which can be useful when
heterogeneous heat source fields develop,

– noise reduction by POD limits the fitting zone and
therefore the crushing of thermal gradients.

Considering the data processing, very similar results were
obtained with the three methods. In the case of dynamic
fatigue testing on pure copper specimens, the heterogeneous

source distributions were almost identical. The peak inten-
sity of dissipation and its displacement during the test were
achieved by three methods. Here the POD method was used
to translate the thermal model, which is assumed to explain
the experimental data, into a reduced basis of admissible
fields on which the data are projected before any interpre-
tation. Regarding the prospects of this work, improvements
in the preprocessing are still likely possible. Indeed, the
source computations, using FD and SPS induced ripples
that were observed in the time direction. This was certainly
due to the fact that the projection of thermal data was on
the POMs space (idem for the SPS solution). Would it be
possible to reduce these ripples by making a new POD
considering the time POMs. Finally, an extension of the pre-
processing to 2D diffusion problems is under way. In the 1D
example of fatigue, we have seen that the heat source pro-
files were heterogeneous. This was quite logical here given
the shape of the sample. However, heterogeneous fields
also appeared for samples whose gage part had a constant
cross-section. It is therefore crucial to extend this prepro-
cessing method to 2D thermal fields. Indeed, knowledge of
the localization effects is essential to differentiate material
effects from structural effects and then to model and identify
the constitutive equations of the materials.
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