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Abstract In the present study, a new transformation cri-

terion that includes the effect of tension–compression

asymmetry and texture-induced anisotropy is proposed and

combined with a thermodynamical model to describe the

thermomechanical behavior of polycrystalline shape

memory alloys. An altered Prager criterion has been

developed, introducing a general transformation of the axes

in the stress space. A convexity analysis of such criterion is

included along with an identification strategy aimed at

extracting the model parameters related to tension–com-

pression asymmetry and anisotropy. These are identified

from a numerical simulation of an SMA polycrystal, using

a self-consistent micromechanical model previously

developed by Patoor et al. (J Phys IV 6(C1):277–292,

1996) for several loading cases on isotropic, rolled, and

drawn textures. Transformation surfaces in the stress and

transformation strain spaces are obtained and compared

with those predicted by the micromechanical model. The

good agreement obtained between the macroscopic and the

microscopic polycrystalline simulations states that the

proposed criterion and transformation strain evolution

equation can capture phenomenologically the effects of

texture on anisotropy and asymmetry in SMAs.

Introduction

Shape memory alloys (SMAs) are metallic materials that

can recover significantly large inelastic strains. When

subjected to particular thermomechanical loadings, they

can recuperate from strains that would be permanent for

most common metals. The characteristic of large recover-

able strains is the result of the transformation between the

two key solid phases that the materials can adopt, austenite

and martensite. The difference between these two phases

lies on the architecture of the crystalline structure, which

varies between a cubic-like configuration in austenite and a

less-symmetric configuration in martensite. Forward

transformation is defined as the transition from austenitic to

martensitic phase, whereas the inverse procedure is defined

as reverse transformation. The phase transformation is the

result of either the change in temperature, if it varies

between critical values, or the development of appropriate

stress states within the material. In particular, applying a

mechanical loading/unloading cycle above the transition

temperatures results in the effect of superelasticity in

SMAs. During forward transformation, the transformation

starts at a critical, temperature-dependent stress. A strain

plateau is observed in the uniaxial stress–strain diagram,

before the start of the elastic section of martensite. In that

case, the large strain that occurs between the two elastic

sections on the stress–strain diagram corresponds to a

transformation strain which is fully recovered when stress

returns to zero.

Experimental characterization of the superelastic

behavior of SMAs has shown that the material exhibits a

tension–compression asymmetry [1, 2]. Indeed, the critical

stress for the onset of transformation is different between

tension and compression. A Mises-type criterion is thus not

able to accurately predict the transformation surface in the
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stress space at a given temperature. It has been shown,

using a micromechanical model, that the tension–com-

pression asymmetry is linked to the loss of symmetry

induced by the appearance of martensitic variants [3]. The

tension–compression asymmetry is observable not only on

the critical stress to trigger the martensitic transformation,

but also on the stress–temperature slopes of the phase

diagram and on the magnitude of transformation strains [4].

The behavior of processed SMAs also shows a strong

anisotropic behavior [5, 6]. Like other metals, the texture

of the material and the presence of internal stresses are

found to be responsible for such anisotropy. A microme-

chanical analysis has shown that the transformation of a

textured polycrystal is strongly anisotropic [7]. Recent

efforts have focused on the development of suitable criteria

to take into account the anisotropic behavior of precessed

SMAs. It is shown that the transformation surfaces could

be well predicted, but the evolution of transformation

strains should be investigated even further [8].

Nowadays, the design strategy for identifying the

parameters of anisotropy relies more and more on numer-

ical simulations using Finite Element Analysis (FEA). An

efficient analysis tool thus should be based on a macro-

scopic continuum model implemented in FEA software

that can integrate comprehensive transformation criteria

which describe the aforementioned effects. Predicting the

start and finish of the transformation procedure with as

much precision as possible is also of outmost importance,

since the strains produced during transformation are large

in scale and an inaccurate prediction can overthrow the

validity of a numerical simulation. The introduction of the

effect of processing conditions, i.e., anisotropic transfor-

mation behavior, is important as well, since most of the

SMA structures are made out of wires or plates. The effect

of drawn and rolled processing conditions has to be taken

properly into account to obtain an efficient, accurate design

tool.

Some established models make use of the Von Mises

criterion to define the constitutive behavior of SMAs [9–

13]. This choice is primarily motivated by the small

number of parameters to be identified and the specific use

of the structures to be designed (e.g., linear actuators).

Constitutive models that include tension–compression

asymmetry have been developed in the last 20 years [1, 14–

17]. They rely on a transformation criterion that depends

on the invariants of the stress tensor. Following the nor-

mality rule for the transformation strains, associativity to

such criterion is characterized by the invariance of trans-

formation power with respect to loading direction [18]. At

the point of saturation, an analytical expression of the

transformation strains can thus be expressed. This expres-

sion can therefore be utilized as a bound for evolution of

transformation strain [14]. The transformation surface in

the stress space can then be derived starting from these

physical bounds of the transformation strain. The criterion

introduced by Taillard et al. [7] is able to reproduce the

anisotropic transformation, but does not focus on the def-

inition of an evolution equation that could accurately pre-

dict the direction of transformation. As for the shape of the

transformation surface itself, it appears that quadratic ani-

sotropic yield criteria which are commonly used for a wide

variety of materials in numerical computations, such as

Hill [19] or its more general form, Tsai–Wu [20] do not fit

well the data obtained by experiments. In the mentioned

models [7, 18, 20], the particular pear shape of the Prager

equation introduced for SMAs by Patoor et al. [3] seems to

fit better the experimental observations.

In this work, an effort to produce a new suitable trans-

formation criterion for loading of SMAs under a constant

temperature is presented. The purpose is to introduce a

criterion that uses the components of the stress tensor and

is independent of the transformation strain tensor to form a

surface in the space of stresses which determines when

transformation in SMAs starts and how it evolves. This

criterion proves successful in expressing both asymmetry

and anisotropy and also captures multiple results that might

come either from experiments or from micromechanical

simulations. The second main purpose of the work is to

develop a formulation that can predict the evolution of

transformation strains for textured materials.

A micromechanical model has previously been devel-

oped based on the reference work of Patoor et al. [21]. The

input to the micromechanical model is crystallographic

orientation of the grains that form the SMA polycrystal.

The expected outcome from a polycrystal with random

orientation is isotropic yield surface and inelastic strain

evolution, whereas textured polycrystal would exhibit

anisotropy in transformation [22, 23]. By conducting the

micromechanics calculations of textured material and then

calibrating the proposed equations, the aim is to come up

with a consistent scheme which enables the direct con-

nection between the processing conditions and the macro-

scopic effect on anisotropy that can be implemented in

FEA packages for structural design.

The present paper is organized as follows: in the first

part of this study, the mathematical configuration of the

new criterion is presented. The convexity and the con-

nection of the formulation with other criteria are investi-

gated. In the second part, two ways of achieving the

transition to the space of strains are presented and dis-

cussed. The third part is dedicated to the evaluation of the

new criterion using results acquired from the microme-

chanical model and to a discussion about the capability of

the present development to capture texture effects.

In the terminology of this paper, experimental results

refer either to actual results from experiments, or to results



from simulations obtained through the micromechanical

model, or both. Furthermore, the following notations are

used:

a: representing a scalar.

a: representing a second- or fourth-order tensor.

a
0
: representing the deviatoric part of a second-

order tensor.

trðAÞ: the trace of a second-order tensor denoted A.

DetðAÞ: representing the determinant of a second-order

tensor or a matrix denoted A.

A : B: representing the double contraction product of

the tensor A to the tensor B.

New Transformation Criterion and Evolution
Equation for Transformation Strain

For the purpose of giving a context to the proposed

approach of modeling the particular aspect of anisotropy in

transformation, it is essential to describe beforehand the

general framework of thermodynamics in which this work

is developed.

Generally, the macroscopic behavior of SMAs is

approached by means of using suitable constitutive equa-

tions which involve state variables of the material [13].

Thermodynamic state variables are those that represent all

quantities that characterize a material body at a certain

state [24]. If they can be observed, they are called external

state variables, otherwise internal state variables [25].

Henceforth, the set of all the internal variables will be

denoted as V.

Those constitutive equations are derived through a

prescribed thermodynamic potential. This is a function that

characterizes a certain thermodynamic state of the body

and depends on the state variables. At every state, the

thermodynamic potential represents a quantity of energy

within the material system. Therefore, it evokes products of

the state variables with their thermodynamically conjugant

quantities, called the general thermodynamic forces

(GTFs). The set of all GTFs will be henceforth denoted as

A.

It is commonly shown that the transformation strain is

thermodynamically conjugant to stress, usually by imple-

menting the procedure first applied by Coleman and Noll

[26] under the conditions described by Lubliner [27]. All

the basic laws of continuum mechanics need to be vali-

dated through the implementation of the thermodynamic

potential, including the second law of thermodynamics,

usually expressed by the local form of the Clausius–Duhem

inequality [28].

SMAs are considered to behave in an elastic manner

when transformation does not occur and in a rate-

independent, non-linear manner only when transformation

occurs. For this reason, the existence of a thermoelastic

domain is commonly accepted [17]. It is a closed mathe-

matical hypersurface in the space of selected GTFs, for

which the set of GTFs at any given state may only position

the material within or on its bounds. In mathematical terms,

it is given by

UðAÞ 6 0 for all possible sets of A: ð1Þ

When the state of the material lies within the bounds of the

thermoelastic region, it behaves elastically and no dissi-

pation is produced. When the state of the material lies on

the bounds of the region, the rates _V of the internal state

variables produce dissipation that must comply with the

Clausius–Duhem inequality. As a result, the thermoelastic

domain is used as the sole criterion to determine whether

the material undergoes transformation or not. It is therefore

called a transformation criterion, and it is comparable to

the yield criterion of plasticity for the case of martensitic

transformation. It is found as

UðAÞ ¼ 0: ð2Þ

The principle of maximum dissipation has been imple-

mented in some successful models [12]. It assumes that the

transformation that the SMA undergoes is characterized by

maximum dissipation. This means that, out of all the

admissible sets of rates of the internal variables, the one

which leads to the maximum possible dissipation actually

occurs. Simo and Hughes [29] employed this principle for

the case of plasticity to demonstrate the convexity of the

yield criterion in stress-internal state variable space, the

normality and associativity of the internal variable evolution

rules, and the presence of Kuhn–Tucker loading conditions.

As a direct result of the implementation of the principle, the

evolution rule under transformation of all internal state

variables is determined by associativity as such:

_V ¼ _k
oU
oA

; _k[ 0: ð3Þ

Viewing the transformation strain et as an internal variable,

having established that the stress r is its GTF, it is con-

cluded that

_et ¼ _k
oU
or

: ð4Þ

Similarly, this time avoiding associativity, a transformation

potential ZðAÞ can be defined, from which _et is considered

to be derived:

_et ¼ _k
oZ

or
: ð5Þ

The notion of the dissipation potential for the case of

plasticity is well described in [28]. The difference between



(4) and (5) lies only in the selection of the dissipation

potential. In both these equations, the variable _k is called

the transformation multiplier, in equivalence with the

plastic multiplier, as found in plasticity.

In the following sections of the current work, it will be

examined if any of those conditions can hold true for the

case of a criterion which is anisotropic in the space of

stresses and for the case of a dissipation potential which is

isotropic, respectively. When this relation fails to capture

macroscopic observations, then a new evolution rule

should be proposed and the whole principle of maximum

dissipation does not hold [28].

Introduction of the Altered Prager Criterion

Patoor et al. [3] made use of the Prager equation to fit

isotropic asymmetric results obtained from their self-con-

sistent micromechanical model. The original form is

hðrÞ ¼
ffiffiffiffiffi

J2

p
1 þ b

J3

J
3=2
2

!1
2

� k ¼ 0; ð6Þ

where J2 and J3 denote the second and third invariant of the

deviatoric part of the stress tensor, respectively:

J2 ¼ 1

2
r

0

ijr
0

ij

and

J3 ¼ 1

3
r

0

ijr
0

jkr
0

ki;

using the Einstein summation for double indices.

In this form (6), b corresponds to the actual represen-

tation of asymmetry. If b=0, the Prager equation reduces to

the classical Von Mises criterion. The value k is the

maximum shear stress under pure shear loading, exactly

like Von Mises as well. The Prager equation is a valid yield

criterion that expresses a convex surface for a specific

range of b. Furthermore, it succeeds in expressing an iso-

choric plastic, or transformation in the case of SMAs,

evolution rule, since tr
oh

or

� �

¼ 0:

In this paper, the notion of the alteration of the axes of

the stress space is used, as in the work of Karafillis and

Boyce [30] to retain the shape of the original transforma-

tion surface, but at the same time include anisotropy. On

the other hand, the expression is extended to a more gen-

eral form using a power function. Thus

ÛrðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

J2ðr�Þ
p

1 þ b
J3ðr�Þ
J

3=2
2 ðr�Þ

" #1
n

� kr ¼ 0; ð7Þ

where n is a positive real number,

r� ¼ Rr : r� xr ; ð8Þ

Rr is a fourth-order dimensionless tensor which only

contains constants and xr is a second-order tensor with

dimensions of stress.

In that way, a new space of stresses r� is created, one

that represents a distortion of the space of real stresses and

is based on the nature of the tensor Rr, the description of

which is given below:

1. If the effects that Rr induces on the shear stresses are

ignored and a three-dimensional vector r consisting of

only the normal stresses is considered, then Rr reduces

to a matrix expressed as R with the following

properties:

(a) R is expressed as a product of three rotation

matrices:

R ¼ RzRxRp: ð9Þ

Each of these three matrices represents a simple

rotation of the space of normal stresses r11 �
r22 � r33 and can be formed out of a single

value representing the respective angle: Rz rep-

resents a rotation around the r33 axis by an angle

hz. Rx represents a rotation around the r11 axis

by an angle hx. Rp represents a rotation around

the r11 ¼ r22 ¼ r33 axis by an angle hp.
(b) The result of this expression makes R a rotation

matrix itself: it is orthogonal and DetðRÞ ¼ 1.

2. Extending R in order to achieve a transformation of the

six-dimensional space of stresses including the shears

results in the fourth-order Rr.

Instead of extending the notion of rotation to six dimen-

sions, the transformation of shears is expressed in a simpler

way, which is the homogeneous anisotropic scaling of the

respective axes: in the basic configuration (7), Ûr is

expressed by simple scaled functions of the shear stresses:

r�ij¼lijrij for i 6¼ j where lij ¼ lji [ 0: ð10Þ

The Einstein summation is not used here.

Eventually, Rr introduces the operation of distortion

rather than rotation. More details about the formulation of

Rr and its sub-components are found in Appendix 1.

On the other hand, xr represents a translation of the

origin of axes by the constant vector fro1;ro2; 0g. The

analytical expression of the six components of the trans-

formed stress space is finally as follows:

fr�11; r
�
22; r

�
33g

T ¼ RzRxRpfr11; r22; r33gT � fro1;ro2; 0g:
ð11Þ

It is worth noting that the operation



Rr : r

is not equivalent to a rotation of the system coordinates, as

in

r� ¼ RrRT � xr ;

except if R is the fourth-order identity tensor. However in

that case, the isotropic formulation is reached again. Since

the criterion aimed to be utilized depends only on the

invariants of the stress deviator, it would be useless to

change merely the coordinates, because the value of the

invariants would remain the same. The choice of intro-

ducing rotations around the r11 and r33 axes is purely

arbitrary. The case is the same for the choice of introducing

the translation of the axes along the direction of the r11 and

r22 axes. One could consider rotations and translations with

respect to any choice of axes, as long as they induce lin-

early independent transformations.

One important difference observed between the original

and the altered Prager surface is that b is not directly

connected to asymmetry. Since the altered Prager equation

(7) introduces 9 completely independent values

fhp; hx; hz; ro1; ro2; kr; l12;l23; l13g which in turn induce 9

independent transformations, it could capture up to 9 points

in the stress space for a choice of b in a wide range. The

parameter b is still the main component which controls the

shape of the surface.

Convexity Analysis and Connection with Other

Criteria

When attempting to conduct a convexity analysis, we begin

by considering convexity only in the r11 � r22 � r33

space. The shape of the surface in the space of normal

stresses is a rotation of the surface described by

Ûo
rðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi

J2ðrÞ
p

1 þ b
J3ðrÞ
J

3=2
2 ðrÞ

" #

1

n
� kr ¼ 0:

ð12Þ

Therefore, ÛrðrÞ ¼ 0 is convex as long as Ûo
rðrÞ ¼ 0 is

convex. This realization makes the convexity analysis

much simpler. Here, the convexity analysis is straightfor-

ward and utilizes simple theorems regarding convexity of

surfaces described by an equation of a form such as

Ûo
rðrÞ ¼ 0: the Hessian

H Ûo
r

� �

¼ r2 Ûo
r rð Þ

� �

is found in the r11 � r22 � r33 space. It is a 3 � 3 sym-

metric matrix. The convexity of the surface is guaranteed

when H is positive definite, that is when its three leading

principal minors are positive for all r11; r22; r33. The

procedure follows well-established methods described in

[31, 32]. This is a two-way deduction: if the surface is

convex, then H must be positive definite. The ending result

is a range of values that b can take. For whichever set of

fr11; r22; r33g; H is positive definite as long as b lies

within this range. Therefore, the following statement can

be made:

ðÛr and Ûo
r are convexÞ , bj j\ n

ffiffiffiffiffi

27
p

2ð9 � nÞ 6
ffiffiffiffiffi

27
p

2
for n\4:5:

ð13Þ

One conclusion of this is a profound effect for the original

isotropic Prager surface (6), since b is the physical repre-

sentation of asymmetry. Indeed, it can be written in the

following form: b ¼ c� 1

cþ 1

� �

a; where a ¼ 3
ffiffiffi

3
p

2
� 2:598

and c ¼ rcomp

rtrac

� �n

:

Here, rcomp and rtrac denote the stress level for the start

of transformation in unidirectional compression and ten-

sion, respectively. The limitation of b induces a limitation

of the ratio c as well, in order to ensure convexity:

c
1
n ¼ rcomp

rtrac
\

9

9 � 2n

� �1
n

.

This means that the isotropic Prager equation would fail

to describe the yield or transformation surface of a material

for which the scale of asymmetry exceeds this ratio.

This is not the case for the altered Prager criterion (7). It

is noted that b could be considered an optimization factor

and can take arbitrary values, and therefore it can always

lie within the range that ensures convexity.

As for expanding the convexity analysis to the six-di-

mensional space which also includes the shear stresses, it

proves to be a minor issue to resolve, since ÛrðrÞ is

expressed as a function of a polynomial which is the sum of

l2ijr
2
ij components when i 6¼ j. Therefore, convexity ensues.

One may also note how the proposed criterion can

reduce to simpler forms. Firstly, considering xr ¼ 0, Rr ¼
I (the fourth-order identity tensor), and n ¼ 2, the original

isotropic Prager equation is yielded. On the other hand, if

Rr still represents the said distortion of the stress space, but

considering n ! 1; it is shown that the equation is

equivalent to a specific case of the Tsai–Wu criterion:

indeed,
1

n
! 0 and the effect of J3 vanishes. Lastly, when

Rr ¼ I; xr ¼ 0; and n ! 1; the simple Von Mises crite-

rion is reached again.

Capturing Anisotropy

In the same manner that common anisotropic criteria such

as Hill and Tsai–Wu make use of multiple coefficients (6 in



the case of Hill’s criterion, up to 36 for Tsai–Wu), there is

a need to incorporate similar coefficients to simulate the

anisotropic behavior under transformation for SMAs as

well: on one hand, the asymmetric isotropic criterion of

Prager does not succeed in describing anisotropy. On the

other hand, even Tsai–Wu’s criterion, the most general

quadratic equation, does not capture the particular shape of

the transformation surface appearing for SMAs. The

manipulation of the parameters involved in the Tsai–Wu

equation cannot change the ellipsoidal shape of the

resulting surface, which is still away from experimental

observations. On the contrary, the expression (5) succeeds

in capturing nine experimental results from simple tension,

compression, and shear tests and can form a criterion which

can be used to describe the start of the forward transfor-

mation and its evolution. Six of those results must come

from data regarding tests purely in normal stresses, and the

remaining three must represent results in pure shear tests.

The coefficients involved in the new criterion are to be

considered material constants and calibrated through the

experimental results. Actual experiments would require

meticulous experimental techniques [33–35]. For the

analysis of the capability of the developed criteria to take

into account the specific feature of martensitic transfor-

mation in textured polycrystal, simulated experiments

through a micromechanical model are preferred. This

methodology has been proven accurate in capturing the

multiaxial behavior of SMAs [7]. When trying to calibrate

the proposed criterion to micromechanical results, two

independent systems of non-linear equations are generated:

1. A 6x6 system where the target values are

fhp; hx; hz; ro1; ro2; krg.

2. A 3x3 system where the target values are fl12;l23; l13g.

This system is further reduced to three independent

systems with one target value for each.

The value of b can still be considered independent.

Therefore, b can be treated as an optimization factor when

trying to fit even more experimental results. However, if an

abundance of data is available at hand that is more than 6

points available for the calibration of the surface in the

r11 � r22 � r33 space, then the coefficient b can be con-

sidered just another target value to be determined. This can

be achieved through an identification procedure that uses

optimization algorithms. The error between the resulting

surface and the set of data is eventually minimized.

Extending the concept of using an optimization proce-

dure, one could also consider another transformation rule

for the stress tensor, in the way of taking xr ¼ 0. That

results to a simpler expression of the distorted stress space,

one that does not include any translation of the origin of

axes. On the other hand, the nature of the expressions used

has a disadvantageous consequence: the mathematical

problem at hand is highly non-linear and so far it is

addressed using only numerical methods. The ending result

is a finite yet large set of real solutions that describe dif-

ferent surfaces which all capture the experimental data. The

optimal solution to choose from that set is a matter of best fit

with the rest of the experimental data. Rigorous optimiza-

tion techniques need to be implemented, such as the ones

used in works regarding parameter identification [36].

Evolution Equations of Transformation Strain

Several constitutive models make use of a scalar eteq called

the equivalent transformation strain [14, 37], which is a

function of et, to describe at which point the forward

transformation is found. In several models [7, 18, 38], eteq is

considered to be in direct relation with the martensitic

volume fraction (MVF) n:
The relation between the rates of stress and transfor-

mation strain is called the evolution equation of transfor-

mation strain, viewing the strain as the GTF of stress. The

most general form of this relation is identical to (5),

choosing a transformation potential ẐðrÞ. Following a

direct relation with n, a more specific equation is found:

_et ¼ _n
oZ

or
: ð14Þ

When ẐðrÞ is chosen to be the transformation surface, the

maximum dissipation principle is satisfied [17] and

_et ¼ _n
oU
or

: ð15Þ

In this work, it is examined how three particular evolution

rules for the transformation strain behave with comparison

to simulated experimental results. The first rule is consis-

tent with (15) and the second with (14). In addition to that,

a third evolution rule will be introduced, _etr, and the three

options given will be compared.

Firstly, we define

_etas ¼ _nH
oÛr

or
: ð16Þ

This formulation is consistent with the maximum dissipa-

tion principle and expresses the rule of associativity. By

comparing with (4) , it is concluded that the transformation

potential is indeed the transformation function. The rate of

et is directly linked to _n, which is a common practice in

various existing works [11, 12]. In a very recent model for

anisotropic SMA behavior [39], an interesting evolution

equation has been proposed, also based on the work of

Lagoudas and co-workers. The variable H is a scale factor

and expresses the magnitude of the rate at which et

increases. Usually, it is a function of stresses:



H ¼ Hmin; �r 6 �rcrit;
Hmin þ ðHsat � HminÞð1 � e�kð�r��rcritÞÞ; �r[ �rcrit;

�

as taken directly from [40]. In the latter, �r ¼
ffiffiffiffiffiffiffi

3J2

p
and

Hsat; Hmin; k; �rcrit are material parameters.

Secondly, we define

_etiso ¼ _nH
oÛo

r

or
ð17Þ

This formulation comes from the consideration of Ûo
r found

in (12) as the dissipation potential Z found in (5). The

derivatives
oÛo

r

or
and

oÛr

or
found in (17) and (16), respec-

tively, express a tensor which is normal to the respective

potentials. The first derivative is called Ko and it takes the

expression as follows:

KoðrÞ ¼
oÛo

rðrÞ
or

¼ 1 þ b
J3ðrÞ
J

3=2
2 ðrÞ

!1
n
�1

� r0

2
ffiffiffiffiffiffiffiffiffiffiffi

J2ðrÞ
p þ b

6nJ2
2ðrÞ

6J2ðrÞr0:r0 � 4J2
2ðrÞI

�

"

þð3n� 9ÞJ3ðrÞr0Þ
#

ð18Þ

where I is the identity second-order tensor. On the other

hand,

oÛr

or
¼ oÛo

rðr�Þ
or

¼ or�

or
:
oÛo

rðr�Þ
or�

ð19Þ

according to the chain rule for derivation.

According to (8), it is considered
or�

or
¼ Rr and in (19) it

is found that

oÛr

or
¼ Rr : Koðr�Þ: ð20Þ

It is noted that KoðrÞ is a deviatoric tensor, as expected

from deriving a scalar function of the invariants of the

stress deviator.

Finally, we define

_etr ¼ _nH re:Ko:r
T
e

� �

: ð21Þ

Here, a rotation of the normal Ko of _et2 is introduced, thus

rotating the whole tensor that comes from the expression

(17). This rotation comes from an angle ae lying on the

plane given by et11 þ et22 þ et33 ¼ 0 . As with Rp, the rota-

tion matrix re is given by

re ¼
cos ae þ ue ue � ve ue þ ve

ue þ ve cos ae þ ue ue � ve

ue � ve ue þ ve cos ae þ ue

0

@

1

A; ð22Þ

with ue ¼ cos ae

3
and ve ¼ sin ae

ffiffiffi

3
p : However, unlike hp which

is considered constant as found in Rp; the value of ae is a

function of Ko:

ae ¼ aeo þ 2

ffiffiffiffiffi

Fe

p

r

Exp �Fe ðx� xe
oÞ

2 þ ðceÞ2
� 	h i

sinh 2Feceðx� xe
oÞ


 �

:

ð23Þ

In the latter,

xðKo : B
e
oÞ ¼

arccosðKo : B
e
oÞ; Ko22 > 0;

2p� arccosðKo : B
e
oÞ; Ko22\0;

�

ð24Þ

where Ko22 is the second diagonal component of Ko.

The rest of the variables that appear other than Ko are

constants. The equation (23) introduces the rotation nec-

essary to capture the effect of anisotropy to _et: It is con-

sidered that aeo ¼ �hp, whereas Bo
e takes the following

form:

Bo
e ¼

2�1=2 0 0

0 0 0

0 0 �2�1=2

0

@

1

A:

The choice for the tensor of reference Bo
e as the origin for

measuring the angles is arbitrary. It represents the inter-

section of the et11 þ et22 þ et33 ¼ 0 with the plane et22 ¼ 0.

The criterion Ko22 > 0 found in (24) is a direct result of

this choice.

The variables ce; Fe; xe
o should be viewed as material

constants and calibrated according to experimental results.

The angles taken in mind for the rotation rule described by

(21) and (23) are demonstrated in the schematic represen-

tation of Fig. 1. The vectors represent the normal compo-

nents of the respective tensors and lie on the

et11 þ et22 þ et33 ¼ 0 plane.

Another remark for the evolution rule introduced in (21)

is that it is not given as a direct derivative of a dissipation

potential. A surface ẐðrÞ, for which every _etr is normal to,

exists but its exact form is unknown.

Numerical Simulations Based
on the Micromechanical Model

Brief Description of the Micromechanical Model

The numerical simulation of the constitutive response of

polycrystalline SMAs is based on a micromechanical

model developed by Patoor et al. [21], implementing the

self-consistent scale transition method [41]. It is a method

that has been proven robust and has been implemented in



other micromechanical models as well, e.g., in [42]. The

model describes the local thermomechanical behavior

inside a single grain from the crystallographic nature of the

martensitic transformation and eventually obtains the

overall, effective behavior of the polycrystal. At the local

(grain) scale, the thermomechanical constitutive model is

derived from a thermodynamical potential. The internal

variables are defined as the volume fraction of each of the

possible variants according to the crystallographic nature

of the crystal. The transformation strain is defined from the

Wechsler, Liebermannand Read theory, according to the

direction of the normal to the habit plane [43, 44]. The

evolution of the volume fraction of each of the variant

systems is defined from its associated thermodynamic force

[3]. A criterion for forward and reverse transformation is

thus defined, and an adaptive Newton–Raphson algorithm

is utilized to determine the volume fraction of each of the

variant system accordingly. This operation is conducted for

all the grains of the polycrystal at each time increment.

Inside a single grain, the martensitic transformation is

mainly based on the following assumptions: The lattice

vectors of austenite and martensite possess mutual orien-

tation relationships that depend on the crystallographic

nature of the alloy [45]. Martensitic transformation pro-

duces predominantly a shear strain along well-defined

planes, which is crystallographically reversible [46].

It is worth mentioning that the choice of this particular

micromechanical model was made because it has already

been used for the same purpose of assessing other macro-

scopic models [7]. Its value is furthermore proven by the

influence that it has on other micromechanical models [47].

The thermodynamics involved in the microscopic scale

have also influenced the formulation of macroscopic

models [14, 48] and their application to structural design

[49].

The data inputs to this model are the crystallographic

texture, the transformation temperatures, the material

coefficients identified from the state diagram of the SMA,

the normal of habit planes, and the transformation direc-

tions of the 24 variants. An interaction matrix which

defines at least two types of interaction (i.e., in the preset

case, weak and strong) between the formed martensite

variants in a grain is included, following [41]. All these

parameters are physical. They do not depend on the past of

the material, except for the crystallographic texture.

The crystallographic texture describing the different grain

orientations permits to take into account the multiaxial

behavior of the polycrystal related to the forming process

[50]. It is well known that the initial crystallographic texture

is an important parameter in the behavior of SMA [51, 52].

The use of the micromechanical model permits to follow the

microstructure evolution during loading [38].

Constitutive Equations of the Polycrystalline Model

Following these assumptions, the evolution equation for

the inelastic strain linked with the martensitic transforma-

tion ( _et) is written as follows:

_et ¼
X

k

_nke
t
k; ð25Þ

where nk is the volume fraction of the k-th variant system

and etk is the strain associated to such variant, according to

the WLR theory [44]:

etk ¼ gn�m: ð26Þ

The transformation strain associated to each variant is thus

obtained through the knowledge of the shear transforma-

tion magnitude g, the unit vector normal to the invariant

plane n, and the vector pointing in the direction of the

transformation m [38].

The evolution equation for the rate of martensite volume

fraction is linked to the thermodynamical force associated

to each variant system [3]. The interaction between variants

is taken into account through an interaction matrix which

differentiates two types of interactions (compatible and

incompatible) between the formed martensite variants in a

grain. The pair of compatible and incompatible variants are

found using the Hill interfacial operators according to

[43].The knowledge of the evolution of each volume frac-

tion of the variant systems allows the computation of the

average stress in the grain and the local tangent modulus,

according to an imposed increment of total strain. This local

increment of strain related to the r-th grain has to be com-

pliant to the macroscopic boundary conditions, which is

achieved using the incremental localization equation:

Fig. 1 The angles involved in the rotation of _etr



_er ¼ Ar
_E; ð27Þ

where _er is the rate of the local total strain tensor, _E is the

rate of the macroscopic total strain and Ar is the r-th

localization tensor. According to the self-consistent

scheme, the localization tensor is written as follows:

Ar ¼ I þ S �Mt Lt
r � �Lt

� �
 ��1
; ð28Þ

where S is the respective Eshelby tensor [53], evaluated

numerically based on the anisotropic effective modulus

description [54]. The model is supplied with the orientation

of each grain by means of Euler angles that can be obtained

experimentally, e.g., by Electron BackScatter Diffraction

(EBSD) technique. Every grain is therefore considered as

one phase of the continuum. The anisotropic features are

naturally induced by the texture of the provided grain set.

Knowing the volume fraction cr of each grain, the effective

stiffness �Lt (and its inverse, the effective compliance �Mt) is

computed from

�Lt ¼
X

r

crL
t
rAr: ð29Þ

Data for the Polycrystalline Model

The numerical simulations are computed using the

microstructural parameters of a Cu–Zn–Al alloy, taken

from [41]. These alloys show experimental results match-

ing the simulations carried out by this micromechanical

model. The transformation strain amplitude g is 0.23 for all

variants. The parameters of the interaction matrix are as

follows: 1 MPa describing the weak interaction and 260

MPa for the strong interaction. The elasticity is supposed to

be isotropic and the same in the two phases.

In the next two parts, the micromechanical model is

used for two purposes:

1. To acquire the necessary experimental results in order

to calibrate the criteria. The model provides with the

set of data used to calculate the target values of the

equation (7) for the stress surface and (21) for the

evolution of transformation strain.

2. To validate the shape and the accuracy of the

transformation surfaces. The number of results

acquired by the micromechanical model is higher than

needed for calibration. Therefore, the remaining data

can be used to evaluate how close the transformation

surfaces are to the additional predictions of the

micromechanical model.

All the results of that model are obtained after running

the simulations of loading of three polycrystal specimens

containing 1000 grains each in total. These polycrystals

are considered to correspond to an isotropic, rolled, or

drawn specimen, according to their texture. For the rolled

specimen, the rolling direction was set to be along the

axis 1–1. For the drawn specimen, the drawing direction

was also set along the axis 1–1. Pole figures of these

specimens can be found in Fig. 8 in Appendix 2. The

results presented hereafter correspond to simulations fol-

lowing eight proportional loading paths assuming plane

stress conditions with r33 ¼ r12 ¼ 0 in stress-controlled

loading. The loading paths are presented in Table 1. Four

of those are uniaxial and the remaining four are biaxial in

the directions of the 1–1 and 2–2 axes. In the biaxial

cases, the magnitudes of the stress components r11 and

r22 are kept equal.

Assessment of the Transformation Function
and Evolution Rules

Evaluation of the Proposed Transformation

Function

The first set of simulations represents proportional

loading of a non-treated polycrystal. The resulting surfaces

in the stress and the strain spaces were isotropic. Their

shape is found in Figs. 2 and 4. The results were similar to

those reported in [1] and [38].

Table 1 Loading paths for the

polycrystal specimens
Label of simulation Loading conditions Relative angle to 1–1 axis

1 Uniaxial tension in 1 0�

2 Biaxial tension in 1 and 2 45�

3 Uniaxial tension in 2 90�

4 Compression in 1—tension in 2 135�

5 Uniaxial compression in 1 180�

6 Biaxial compression in 1 and 2 225�

7 Uniaxial compression in 2 270�

8 Tension in 1—compression in 2 315�

The non-uniaxial cases represent equibiaxial conditions



The second set of simulations represents proportional

loading of the rolled specimen. The procedure of matching

the results of these simulations to fit the criterion described

by (7) gives the set of target values, presented in Table 2.

Two more anisotropic surfaces were calibrated for a dif-

ferent assumption of the value of the factor b, in order to

demonstrate the adaptability of the transformation

criterion.

The third set of simulations represents proportional

loading of the drawn specimen. Because of the higher level

of anisotropy, b was selected here to be a target value and

was calibrated at b=0.59.

Figures 2 and 4 show a comparison between all the

results of the simulations and the criterion in terms of

stresses obtained by (5), considering n = 2. Good agree-

ment is observed. Furthermore, it is shown in Fig. 3 that

using alternative values for b might result in better

surfaces, in the sense that they can capture better basic

material properties, which here are the uniaxial strengths.

Given an abundance of data, better calibration is induced

by treating b as another target value. To that respect, two

more loading paths are considered for the rolled specimen,

labeled 9 and 10 in Figs. 2 and 3. It appears that the

extreme in terms of convexity value b ¼ 0:74 is not as

accurate as the values b ¼ 0:65 and b ¼ 0:3.

The evolution of the transformation surface as a function

of n also presents a very interesting effect. The detail of the

transformation surfaces corresponding to two different

MVFs in Fig. 4b reveals that the sense of anisotropy may

switch between directions as forward transformation pro-

gresses. Indeed, it is clear in Fig. 5 that the stress which

corresponds to 1% MVF for uniaxial tension in the 1–1

direction is higher than the stress for uniaxial tension in the

2–2 direction; but this is not the case when n ¼ 10%: here,

the stress is higher for tension along 2–2. The resulting

surfaces accommodating these data are different in shape

and not just in size. The size effect would be captured by a

direct dependence of k on n, and this kind of evolution

would be recognized as isotropic hardening [28]. However,

in this case, more material parameters have changed

between the two MVFs to capture the changing sense of

anisotropy. Thus, an evolution of the material parameters is

deemed necessary to capture the resulting stress–MVF

curves. The proposed anisotropic surfaces in Fig. 4b are

calibrated separately according to data points for n ¼ 1%

Fig. 2 Evolution of transformation surface of rolled specimen for

(i)n ¼ 20% and (ii)n ¼ 60% and comparison with isotropic surface

Table 2 Calibrated material parameters for rolled specimen

Identified parameter Value

n 2

b 0.65

hp -0.0953

hx 0.0339

hz -0.0373

ro1 -15.17 MPa

ro2 -2.93 MPa

kr 91.60 MPa

Fig. 3 Comparison between two anisotropic surfaces for different

values of b for the rolled specimen for n ¼ 60%



and n ¼ 10% with different sets of ro1, ro2; and k. For the

range of n 2 ½5%; 70%	, simple linear functions of ro1,

ro2; and k could be considered that fit the evolution.

However, more complex functions describing the harden-

ing effect are needed for the implementation with a com-

prehensive thermodynamic model, such as the ones found

in [25].

The importance of calibrating these surfaces extends to

compensate for poor abilities to capture the compression–

compression strength in a real experiment because of

buckling.

Evaluation of Evolution

Equations for the transformation Strain

Using the evolution rules (16), (17), and (21), a large

number of results regarding transformation strains were

gathered. These results correspond to proportional loading

under various directions. For every value of n; each

evolution rule results in a respective locus on which the

components of et lie. In the space of normal transforma-

tion strains, the three loci are flat shapes, meaning that

they all lie on a plane. As demonstrated in Fig. 7, the loci

Fig. 4 Comparison between isotropic and anisotropic surfaces for the drawn specimen for n ¼ 1% (a) and evolution of transformation surface

for n ¼ 1% and n ¼ 10% (b)

Fig. 5 Stress–MVF diagram for uniaxial tension in directions 1–1 and 2–2



Siso and Sr for the normal to the isotropic surface and the

proposed evolution rules, respectively, coincide, whereas

the locus Sas corresponding to the associative evolution

equation lies on a different plane. The results for trans-

formation strain which corresponds to n ¼ 70% for the

rolled specimen are also superposed to evaluate the

accuracy of the flow rules. The loci Siso and Sr lie on the

plane et11 þ et22 þ et33 ¼ 0 : since _etiso has the same direction

as the deviator KoðrÞ; the resulting et2 must be deviatoric.

On the other hand, since _etr represents a rotation of _etiso
around the et11 ¼ et22 ¼ et33 axis, _etr is still a deviator and

the resulting etr is deviatoric as well. This means that the

evolution rules (17) and (21) do succeed in representing

transformation as an isochoric process, whereas (16) does

not.

Even though the resulting loci Siso and Sr are identical,

the respective evolution rules are not equivalent. While the

shape on which they lie is common, the same loading

direction corresponds to different positions on the shape. In

Fig. 6a, b, only the strains resulting from the proposed

criterion are accurate enough to be compared with data

points. The results presented are a projection of the points

shown in Fig. 7 on the et33 ¼ 0: For every point on the

surfaces corresponding to _etiso and _etr; it is et33 ¼ �et11 � et22:

The fact that the resulting loci coincide for _etiso and _etr is

a direct consequence of the rotation imposed on the

direction of _etiso. This operation simply rearranges the

points on the locus: every point is thus reassigned to dif-

ferent loading paths. This is clearly visible in Fig. 6a: all

the points calculated through the proposed evolution

equation still lie on the locus that results from the isotropic

prediction. Still, the configuration for _etr falls back to _etiso if

it is assumed that ae ¼ 0. Thus, it is shown that _etr is a

general inclusive form.

Fig. 6 Projection of the resulting transformation strains according to the proposed evolution law for the rolled (a) and the drawn specimen (b)

for n ¼ 70% on the plane eT11 � eT22

Fig. 7 3D map of the normal transformation strains for the rolled

specimen at n ¼ 70%:



A notable conclusion drawn from the results of the

micromechanics simulations is the strong effect of texture

on the anisotropy of transformation strains. The point 7 in

Fig. 6a corresponds to the response of the rolled specimen

under uniaxial compression in the transverse direction of

rolling (2–2 axis). Whereas an isotropic specimen would

show a positive strain in the lateral direction (1–1 axis),

this sample shows almost zero strain, and actually negative.

The transformation strains corresponding to this point are

as follows:

-1.86 % in the transverse direction;

-0.05 % in the rolling direction; and

1.89 % in the direction perpendicular to the rolling

plane.

On the contrary, the transformation strain values for ten-

sion in the transverse direction, respective to the loading

case 3, are as follows:

2.34 % in the direction of 90�;
-0.77 % in the rolling direction; and

-1.59 % in the direction perpendicular to rolling.

These results are consistent with the observation that in

copper-based alloys, martensitic transformation occurs

with a small volume change. The obtained transformation

strains are the result of the activated system of variants,

governed by the conjunction of the loading path with the

texture effect. A similar anisotropic behavior of transfor-

mation strains is apparent in Fig. 6b as well. The point 2

corresponds to the response of the drawn specimen under

equibiaxial tension. As opposed to the equal evolution of

transformation strains for an isotropic material, in this case

the material response favors the evolution of strains along

the drawing direction. It appears that the effect of texture is

much more prominent in the resulting transformation

strains of the material than in yield stresses. The proposed

evolution law seems to be able to approach the effect of

processing on the end material behavior under proportional

loading.

It is shown that the expression for _etr is more accurate to

capturing the transformation strain in comparison to _etiso:

For the case of the rolled specimen, the values for the

material parameters considered are shown in Table 3.

Conclusion

A new transformation criterion in terms of stresses and

strains suitable for accurately describing the transformation

of SMAs has been developed and implemented. The

mathematical expressions governing the criterion in terms

of stresses are studied with respect to convexity and cap-

turing random anisotropy in SMAs’ transformation. Fur-

thermore, an accurate evolution rule to govern the

evolution of transformation strain has been formulated. It is

a non-associated evolution rule which captures incom-

pressibility and still the anisotropy in strains. The equations

of the criterion and the evolution rule have been calibrated

for a copper-based textured SMA (Cu–Zn–Al), using the

results from simulations of proportional uniaxial and

biaxial plane stress loading states. These simulations were

achieved by utilizing the numerical results of a self-con-

sistent micromechanical model on three polycrystal con-

figurations: isotropic, rolled, and drawn. Further results of

the model have been used to assess and establish the

accuracy of the proposed anisotropic criterion and the

related non-associated evolution rule. A good agreement

has been obtained by comparing the micromechanical

simulations to results provided by the new formulated

macroscopic model that can be easily implemented in FE

codes. Accordingly, the effects of asymmetry and aniso-

tropy of SMAs’ behavior can be accounted for structural

design of SMA actuators.

A key capability of the procedure used in this work to

formulate and to calibrate the new transformation criterion

and evolution equation is to establish a link between the

processing conditions of a material and the final resulting

macroscopic anisotropy of the overall behavior. Knowing

the texture and the transformation parameters of an SMA

polycrystal as a result of processing and passing through

the micromechanical model, the macroscopic behavior is

simulated and then the anisotropic effect is captured

without the requirement of a large experimental database of

multiaxial loadings.

The use of this new criterion, combined with a ther-

modynamical model, could extend the design capabilities

of structures with highly textured SMAs. For such cases,

the simulation of non-proportional loadings will be

addressed in a future work.
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parameters for the evolution

equation (rolled specimen)

Identified parameter Value

aeo -0.0953

ce 0.0814

Fe 0.0339

xe
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Appendix 1: Transformation Rules of Stress Space

The rotation matrices Rz; Rx; Rp appearing in (11) are

found as such:

Rz ¼
cos hz � sin hz 0

sin hz cos hz 0

0 0 1

0

B

@

1

C

A

,

Rx ¼
1 0 0

0 cos hx � sin hx
0 sin hx cos hx

0

B

@

1

C

A

and

Rp ¼
cos hp þ u1 u1 � v1 u1 þ v1

u1 þ v1 cos hp þ u1 u1 � v1

u1 � v1 u1 þ v1 cos hp þ u1

0

@

1

A;

where u1 ¼ 1 � cos hp
3

and v1 ¼ sin hp
ffiffiffi

3
p :

The tensor Rr is found finally as

Rr ¼

R11 0 0

0 R21 0

0 0 R31

0

B

@

1

C

A

0 l12 0

0 0 0

0 0 0

0

B

@

1

C

A

0 0 l13

0 0 0

0 0 0

0

B

@

1

C

A

0 0 0

l12 0 0

0 0 0

0

B

@

1

C

A

R12 0 0

0 R22 0

0 0 R32

0

B

@

1

C

A

0 0 0

0 0 l23

0 0 0

0

B

@

1

C

A

0 0 0

0 0 0

l13 0 0

0

B

@

1

C

A

0 0 0

0 0 0

0 l23 0

0

B

@

1

C

A

R13 0 0

0 R23 0

0 0 R33

0

B

@

1

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where Rij are found in (9).

Appendix 2: Pole Figures for the Polycrystals

See Fig. 8.
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