SAM
http://sam.ensam.eu:80
SAM captures, stores, indexes, preserves, and distributes digital research material.Thu, 12 Jul 2018 19:25:08 GMT2018-07-12T19:25:08ZA new design paradigm for the analysis and optimisation of composite structures
http://hdl.handle.net/10985/9923
MONTEMURRO, Marco
A new design paradigm for the analysis and optimisation of composite structures
Sat, 01 Aug 2015 00:00:00 GMThttp://hdl.handle.net/10985/99232015-08-01T00:00:00ZMONTEMURRO, MarcoA new design paradigm for the analysis and optimisation of composite structuresA multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy
http://hdl.handle.net/10985/8493
CATAPANO, Anita; MONTEMURRO, Marco
Composite Structures
This work deals with the problem of the optimum design of a sandwich panel. The design strategy that we propose is a numerical optimisation procedure that does not make any simplifying assumption to obtain a true global optimum configuration of the system. To face the design of the sandwich structure at both meso and macro scales, we use a two-level optimisation strategy: at the first level we determine the optimal geometry of the unit cell of the core together with the material and geometric parameters of the laminated skins, while at the second level we determine the optimal skins lay-up giving the geometrical and material parameters issued from the first level. The two-level strategy relies both on the use of the polar formalism for the description of the anisotropic behaviour of the laminates and on the use of a genetic algorithm as optimisation tool to perform the solution search. To prove its effectiveness, we apply our strategy to the least-weight design of a sandwich plate, satisfying several constraints: on the first buckling load, on the positive-definiteness of the stiffness tensor of the core, on the ratio between skins and core thickness and on the admissible moduli for the laminated skins.
Fri, 01 Aug 2014 00:00:00 GMThttp://hdl.handle.net/10985/84932014-08-01T00:00:00ZCATAPANO, AnitaMONTEMURRO, MarcoThis work deals with the problem of the optimum design of a sandwich panel. The design strategy that we propose is a numerical optimisation procedure that does not make any simplifying assumption to obtain a true global optimum configuration of the system. To face the design of the sandwich structure at both meso and macro scales, we use a two-level optimisation strategy: at the first level we determine the optimal geometry of the unit cell of the core together with the material and geometric parameters of the laminated skins, while at the second level we determine the optimal skins lay-up giving the geometrical and material parameters issued from the first level. The two-level strategy relies both on the use of the polar formalism for the description of the anisotropic behaviour of the laminates and on the use of a genetic algorithm as optimisation tool to perform the solution search. To prove its effectiveness, we apply our strategy to the least-weight design of a sandwich plate, satisfying several constraints: on the first buckling load, on the positive-definiteness of the stiffness tensor of the core, on the ratio between skins and core thickness and on the admissible moduli for the laminated skins.Optimal design of sandwich plates with honeycomb core
http://hdl.handle.net/10985/8504
CATAPANO, Anita; MONTEMURRO, Marco
This work deals with the problem of the optimum design of a sandwich structure composed of two laminated skins and a honeycomb core. The goal is to propose a numerical optimisation procedure that does not make any simplifying hypothesis in order to obtain a true global optimal solution for the considered problem. In order to face the design of the sandwich structure at both meso and macro scales, we use a two-level optimisation strategy. At the first level, we determine the optimum geometry of the unit cell together with the material and geometric parameters of the laminated skins, while at the second level we determine the optimal skins lay-up giving the geometrical and material parameters issued from the first level. We will illustrate the application of our strategy to the least-weight design of a sandwich plate submitted to several constraints: on the first buckling load, on the positive-definiteness of the stiffness tensor of the core, on the ratio between skins and core thickness and on the admissible moduli for the laminated skins.
Thu, 19 Jun 2014 00:00:00 GMThttp://hdl.handle.net/10985/85042014-06-19T00:00:00ZCATAPANO, AnitaMONTEMURRO, MarcoThis work deals with the problem of the optimum design of a sandwich structure composed of two laminated skins and a honeycomb core. The goal is to propose a numerical optimisation procedure that does not make any simplifying hypothesis in order to obtain a true global optimal solution for the considered problem. In order to face the design of the sandwich structure at both meso and macro scales, we use a two-level optimisation strategy. At the first level, we determine the optimum geometry of the unit cell together with the material and geometric parameters of the laminated skins, while at the second level we determine the optimal skins lay-up giving the geometrical and material parameters issued from the first level. We will illustrate the application of our strategy to the least-weight design of a sandwich plate submitted to several constraints: on the first buckling load, on the positive-definiteness of the stiffness tensor of the core, on the ratio between skins and core thickness and on the admissible moduli for the laminated skins.A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties
http://hdl.handle.net/10985/8498
CATAPANO, Anita; MONTEMURRO, Marco
Composite Structures
This work deals with the problem of the optimum design of a sandwich panel. The design process is based on a general two-level optimisation strategy involving different scales: the meso-scale for both the unit cell of the core and the constitutive layer of the laminated skins and the macro-scale for the whole panel. Concerning the meso-scale of the honeycomb core, an appropriate model of the unit cell able to properly provide its effective elastic properties (to be used at the macro-scale) must be conceived. To this purpose, in this first paper, we present the numerical homogenisation technique as well as the related finite element model of the unit cell which makes use of solid elements instead of the usual shell ones. A numerical study to determine the effective properties of the honeycomb along with a comparison with existing models and a sensitive analysis in terms of the geometric parameters of the unit cell have been conducted. Numerical results show that shell-based models are no longer adapted to evaluate the core properties, mostly in the context of an optimisation procedure where the parameters of the unit cell can get values that go beyond the limits imposed by a 2D model.
Fri, 01 Aug 2014 00:00:00 GMThttp://hdl.handle.net/10985/84982014-08-01T00:00:00ZCATAPANO, AnitaMONTEMURRO, MarcoThis work deals with the problem of the optimum design of a sandwich panel. The design process is based on a general two-level optimisation strategy involving different scales: the meso-scale for both the unit cell of the core and the constitutive layer of the laminated skins and the macro-scale for the whole panel. Concerning the meso-scale of the honeycomb core, an appropriate model of the unit cell able to properly provide its effective elastic properties (to be used at the macro-scale) must be conceived. To this purpose, in this first paper, we present the numerical homogenisation technique as well as the related finite element model of the unit cell which makes use of solid elements instead of the usual shell ones. A numerical study to determine the effective properties of the honeycomb along with a comparison with existing models and a sensitive analysis in terms of the geometric parameters of the unit cell have been conducted. Numerical results show that shell-based models are no longer adapted to evaluate the core properties, mostly in the context of an optimisation procedure where the parameters of the unit cell can get values that go beyond the limits imposed by a 2D model.Simultaneous shape and material optimization of sandwich panels with honeycomb core for additive manufacturing
http://hdl.handle.net/10985/9922
MONTEMURRO, Marco; CATAPANO, Anita; DOROSZEWSKI, Dominique
This works deals with the problem of the optimum design of a sandwich plate composed of CFRP faces and Al honeycomb core. The proposed design strategy is a multi-scale numerical optimization procedure that does not make use of any simplifying assumption to find a global optimum configuration of the system. The goal of such a procedure consists in simultaneously optimizing the shape of the unit cell of the honeycomb core (meso-scale) and the geometrical as well as the material parameters of the CFRP laminated skins (meso and macro scales). To prove its effectiveness, the multi-scale optimization strategy is applied to the problem of the least-weight design of a sandwich panel subject to constraints of different nature: on the positive-definiteness of the stiffness tensor of the core, on the admissible material properties of the laminated faces, on the local buckling load of the unit cell of the core, on the global buckling load of the panel and geometrical as well as manufacturability constraints linked to the fabrication process of the honeycomb core.
Mon, 01 Jun 2015 00:00:00 GMThttp://hdl.handle.net/10985/99222015-06-01T00:00:00ZMONTEMURRO, MarcoCATAPANO, AnitaDOROSZEWSKI, DominiqueThis works deals with the problem of the optimum design of a sandwich plate composed of CFRP faces and Al honeycomb core. The proposed design strategy is a multi-scale numerical optimization procedure that does not make use of any simplifying assumption to find a global optimum configuration of the system. The goal of such a procedure consists in simultaneously optimizing the shape of the unit cell of the honeycomb core (meso-scale) and the geometrical as well as the material parameters of the CFRP laminated skins (meso and macro scales). To prove its effectiveness, the multi-scale optimization strategy is applied to the problem of the least-weight design of a sandwich panel subject to constraints of different nature: on the positive-definiteness of the stiffness tensor of the core, on the admissible material properties of the laminated faces, on the local buckling load of the unit cell of the core, on the global buckling load of the panel and geometrical as well as manufacturability constraints linked to the fabrication process of the honeycomb core.Architecture and materials selection in multi-materials design
http://hdl.handle.net/10985/8514
BARACCHINI, Paul; GUILLEBAUD, Claire; KROMM, François-Xavier; CATAPANO, Anita; MONTEMURRO, Marco; WARGNIER, Hervé
The design process involving both the architecture and the materials represents an hard task mainly due to the high number of potential configurations, thus requiring firstly the development of new and more rigorous approaches but also the development of new tools. To this purpose, we present in this work a new strategy for the design of architectured materials. Such a strategy relies on one hand on the construction of some databases for the selection of both geometrical patterns and materials, and on the other hand on the use of well-known analytical models to describe the physical behaviour of the multi-material. In order to prove its effectiveness, we apply our strategy to the problem of the least-weight design of a multilayer plate that has to meet thermal, electrical and mechanical requirements. Moreover, we use a genetic algorithm, as a numerical tool, to perform the solution search for our problem. Numerical results show that we can obtain optimum configurations characterised by a weight saving up to 59% keeping the same (or even superior) thermal, electrical and stiffness properties than those of a monolithic reference plate.
Mon, 23 Jun 2014 00:00:00 GMThttp://hdl.handle.net/10985/85142014-06-23T00:00:00ZBARACCHINI, PaulGUILLEBAUD, ClaireKROMM, François-XavierCATAPANO, AnitaMONTEMURRO, MarcoWARGNIER, HervéThe design process involving both the architecture and the materials represents an hard task mainly due to the high number of potential configurations, thus requiring firstly the development of new and more rigorous approaches but also the development of new tools. To this purpose, we present in this work a new strategy for the design of architectured materials. Such a strategy relies on one hand on the construction of some databases for the selection of both geometrical patterns and materials, and on the other hand on the use of well-known analytical models to describe the physical behaviour of the multi-material. In order to prove its effectiveness, we apply our strategy to the problem of the least-weight design of a multilayer plate that has to meet thermal, electrical and mechanical requirements. Moreover, we use a genetic algorithm, as a numerical tool, to perform the solution search for our problem. Numerical results show that we can obtain optimum configurations characterised by a weight saving up to 59% keeping the same (or even superior) thermal, electrical and stiffness properties than those of a monolithic reference plate.On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates
http://hdl.handle.net/10985/11438
MONTEMURRO, Marco; CATAPANO, Anita
Composite Structures
In this work a multi-scale two-level (MS2L) optimisation strategy for optimising VAT composites is presented. In the framework of the MS2L methodology, the design problem is split and solved into two steps. At the first step the goal is to determine the optimum distribution of the laminate stiffness properties over the structure (macroscopic scale), while the second step aims at retrieving the optimum fibres-path in each layer meeting all the requirements provided by the problem at hand (mesoscopic scale). The MS2L strategy has been improved in order to integrate all types of requirements (mechanical, manufacturability, geometric, etc.) within the first-level problem.The proposed approach relies on: a) the polar formalism for describing the behaviour of the VAT laminate, b) the iso-geometric surfaces for describing the spatial variation of both the laminate stiffness properties (macro-scale) and the layers fibres-path (meso-scale) and c) an hybrid optimisation tool (genetic and gradient-based algorithms) to perform the solution search. The effectiveness of the MS2L strategy is proven through a numerical example on the maximisation of the first buckling factor of a VAT plate subject to both mechanical and manufacturability constraints.
Wed, 01 Feb 2017 00:00:00 GMThttp://hdl.handle.net/10985/114382017-02-01T00:00:00ZMONTEMURRO, MarcoCATAPANO, AnitaIn this work a multi-scale two-level (MS2L) optimisation strategy for optimising VAT composites is presented. In the framework of the MS2L methodology, the design problem is split and solved into two steps. At the first step the goal is to determine the optimum distribution of the laminate stiffness properties over the structure (macroscopic scale), while the second step aims at retrieving the optimum fibres-path in each layer meeting all the requirements provided by the problem at hand (mesoscopic scale). The MS2L strategy has been improved in order to integrate all types of requirements (mechanical, manufacturability, geometric, etc.) within the first-level problem.The proposed approach relies on: a) the polar formalism for describing the behaviour of the VAT laminate, b) the iso-geometric surfaces for describing the spatial variation of both the laminate stiffness properties (macro-scale) and the layers fibres-path (meso-scale) and c) an hybrid optimisation tool (genetic and gradient-based algorithms) to perform the solution search. The effectiveness of the MS2L strategy is proven through a numerical example on the maximisation of the first buckling factor of a VAT plate subject to both mechanical and manufacturability constraints.A general multi-scale design strategy for the optimisation of variable stiffness composites
http://hdl.handle.net/10985/11437
MONTEMURRO, Marco; CATAPANO, Anita
The present paper focuses on the development of a multi-scale design strategy for the optimisation of variable angle stiffness laminates. The main goal consists in proving that it is possible to design structures having complex shapes made of variable stiffness composites by taking into account, from the early stages of the design process, the constraints linked to the manufacturing process.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/114372016-01-01T00:00:00ZMONTEMURRO, MarcoCATAPANO, AnitaThe present paper focuses on the development of a multi-scale design strategy for the optimisation of variable angle stiffness laminates. The main goal consists in proving that it is possible to design structures having complex shapes made of variable stiffness composites by taking into account, from the early stages of the design process, the constraints linked to the manufacturing process.Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study
http://hdl.handle.net/10985/11386
PANETTIERI, Enrico; FANTERIA, Daniele; MONTEMURRO, Marco; FROUSTEY, Catherine
Composites Part B: Engineering
Low-velocity impacts (LVI) on composite laminates pose significant safety issues since they are able to generate extended damage within the structure, mostly delaminations and matrix cracking, while being hardly detectable in visual inspections. The role of LVI tests at the coupon level is to evaluate quantities that can be useful both in the design process, such as the delamination threshold load, and in dealing with safety issues, that is correlating the internal damage with the indentation depth. This paper aims at providing a benchmark of LVIs on quasi-isotropic carbon/epoxy laminates; 2 laminates are tested, 16 and 24 plies and a total of 8 impact energies have been selected ranging from very low energy impacts up to around 30 J. Delamination threshold loads, shape and extension of délaminations as well as post-impact 3D measurements of the impacted surface have been carried out in order to characterize the behavior of the considered material system in LVIs.
The analysis of test results relevant to the lowest energies pointed out that large contact force fluctuations, typically associated to delamination onset, occurred but ultrasonic scans did not reveal any significant internal damage. Due to these unexpected results, such tests were further investigated through a detailed FE model. The results of this investigation highlights the detrimental effects of the dissipative mechanisms of the impactor. A combined numericale-experimental approach is thus proposed to evaluate the effective impact energies.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/113862016-01-01T00:00:00ZPANETTIERI, EnricoFANTERIA, DanieleMONTEMURRO, MarcoFROUSTEY, CatherineLow-velocity impacts (LVI) on composite laminates pose significant safety issues since they are able to generate extended damage within the structure, mostly delaminations and matrix cracking, while being hardly detectable in visual inspections. The role of LVI tests at the coupon level is to evaluate quantities that can be useful both in the design process, such as the delamination threshold load, and in dealing with safety issues, that is correlating the internal damage with the indentation depth. This paper aims at providing a benchmark of LVIs on quasi-isotropic carbon/epoxy laminates; 2 laminates are tested, 16 and 24 plies and a total of 8 impact energies have been selected ranging from very low energy impacts up to around 30 J. Delamination threshold loads, shape and extension of délaminations as well as post-impact 3D measurements of the impacted surface have been carried out in order to characterize the behavior of the considered material system in LVIs.
The analysis of test results relevant to the lowest energies pointed out that large contact force fluctuations, typically associated to delamination onset, occurred but ultrasonic scans did not reveal any significant internal damage. Due to these unexpected results, such tests were further investigated through a detailed FE model. The results of this investigation highlights the detrimental effects of the dissipative mechanisms of the impactor. A combined numericale-experimental approach is thus proposed to evaluate the effective impact energies.A new paradigm for the optimum design of variable angle tow laminates
http://hdl.handle.net/10985/11387
MONTEMURRO, Marco; CATAPANO, Anita
In this work the authors propose a new paradigm for the optimum design of variable angle tow (VAT) composites.
They propose a generalisation of a multi-scale two-level (MS2L) optimisation strategy already employed to solve optimisation problems of anisotropic structures characterised by a constant stiffness distribution. In the framework of the MS2L methodology, the design problem is split into two sub-problems. At the first step of the strategy the goal is to determine the optimum distribution of the laminate stiffness properties over the structure, while the second step aims at retrieving the optimum fibres-path in each layer meeting all the requirements provided by the problem at hand. The MS2L strategy relies on: a) the polar formalism for describing the behaviour of the VAT laminate, b) the iso-geometric surfaces for describing the spatial variation of the stiffness properties and c) an hybrid optimisation tool (genetic and gradient-based algorithms) to perform the solution search. The effectiveness of the MS2L strategy is proven through a numerical example on the maximisation of the first buckling factor of a VAT plate subject to both mechanical and manufacturability constraints.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/113872016-01-01T00:00:00ZMONTEMURRO, MarcoCATAPANO, AnitaIn this work the authors propose a new paradigm for the optimum design of variable angle tow (VAT) composites.
They propose a generalisation of a multi-scale two-level (MS2L) optimisation strategy already employed to solve optimisation problems of anisotropic structures characterised by a constant stiffness distribution. In the framework of the MS2L methodology, the design problem is split into two sub-problems. At the first step of the strategy the goal is to determine the optimum distribution of the laminate stiffness properties over the structure, while the second step aims at retrieving the optimum fibres-path in each layer meeting all the requirements provided by the problem at hand. The MS2L strategy relies on: a) the polar formalism for describing the behaviour of the VAT laminate, b) the iso-geometric surfaces for describing the spatial variation of the stiffness properties and c) an hybrid optimisation tool (genetic and gradient-based algorithms) to perform the solution search. The effectiveness of the MS2L strategy is proven through a numerical example on the maximisation of the first buckling factor of a VAT plate subject to both mechanical and manufacturability constraints.