Show simple item record

dc.contributor.authorLESTER, Brian
dc.contributor.authorBAXEVANIS, Theocaris
dc.contributor.author
 hal.structure.identifier
CHEMISKY, Yves
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorLAGOUDAS, Dimitris
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn0001-5970
dc.identifier.urihttp://hdl.handle.net/10985/10009
dc.description.abstractFollowing their discovery in the early 60's, there has been a continuous quest for ways to take advantage of the extraordinary properties of shape memory alloys (SMAs). These intermetallic alloys can be extremely compliant while retaining the strength of metals and can convert thermal energy to mechanical work. The unique properties of SMAs result from a reversible difussionless solid-to-solid phase transformation from austenite to martensite. The integration of SMAs into composite structures has resulted in many benefits, which include actuation, vibration control, damping, sensing, and self-healing. However, despite substantial research in this area, a comparable adoption of SMA composites by industry has not yet been realized. This discrepancy between academic research and commercial interest is largely associated with the material complexity that includes strong thermomechanical coupling, large inelastic deformations, and variable thermoelastic properties. Nonetheless, as SMAs are becoming increasingly accepted in engineering applications, a similar trend for SMA composites is expected in aerospace, automotive, and energy conversion and storage related applications. In an effort to aid in this endeavor, a comprehensive overview of advances with regard to SMA composites and devices utilizing them is pursued in this paper. Emphasis is placed on identifying the characteristic responses and properties of these material systems as well as on comparing the various modeling methodologies for describing their response. Furthermore, the paper concludes with a discussion of future research efforts that may have the greatest impact on promoting the development of SMA composites and their implementation in multifunctional structures.
dc.language.isoen
dc.publisherSpringer Verlag
dc.rightsPost-print
dc.subjectSMAs
dc.subjectSMA composites
dc.subjectMaterial systems
dc.titleReview and Perspectives: Shape Memory Alloy Composite Systems
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
ensam.audienceInternationale
ensam.page60p.
ensam.journalActa Mechanica
hal.identifierhal-01199415
hal.version1
hal.statusaccept
dc.identifier.eissn1619-6937


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record