Show simple item record

dc.contributor.author
 hal.structure.identifier
ABED-MERAIM, Farid
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorPEERLINGS, Ron
dc.contributor.authorGEERS, Marc G.D.
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2014
dc.date.submitted2015
dc.identifier.issn1758-8251
dc.identifier.urihttp://www.worldscientific.com/doi/abs/10.1142/S1758825114500641
dc.identifier.urihttp://hdl.handle.net/10985/10023
dc.description.abstractThe present contribution deals with the prediction of diffuse necking in the context of forming and stretching of metal sheets. For this purpose, two approaches are investigated, namely bifurcation and the maximum force principle, with a systematic comparison of their respective ability to predict necking. While the bifurcation approach is of quite general applicability, some restrictions are shown for the application of maximum force conditions. Although the predictions of the two approaches are identical for particular loading paths and constitutive models, they are generally different, which is even the case for elasticity, confirming the distinct nature of the two concepts. Closed-form expressions of the critical stress and strain states are derived for both criteria in elasto-plasticity and rigid-plasticity for a variety of hardening models. The resulting useful formulas in rigidplasticity are shown to also accurately represent the elasto-plastic critical states for small ratios of the hardening modulus with respect to Young's modulus. Finally, the well-known expression of Swift's diffuse necking criterion, whose foundations are attributed in the literature to the maximum force principle, is shown here to originate from the bifurcation approach instead, providing a sound justification for it.
dc.language.isoen
dc.publisherWorld Scientific Publishing
dc.rightsPost-print
dc.subjectBifurcation
dc.subjectDiffuse and localized necking
dc.subjectFormability
dc.subjectForming limits
dc.subjectMaximum force principle
dc.subjectStretched metal sheets
dc.titleBifurcation analysis versus maximum force criteria in formability limit assessment of stretched metal sheets
ensam.embargo.terms3 Months
dc.identifier.doi10.1142/S1758825114500641
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
ensam.audienceInternationale
ensam.page27 p.
ensam.journalInternational Journal of Applied Mechanics
ensam.volume6
ensam.issue6
hal.identifierhal-01199864
hal.version1
hal.statusaccept
dc.identifier.eissn1758-826X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record