Show simple item record

dc.contributor.authorSCHMITT, M.
dc.contributor.authorALLENA, Rachele
dc.contributor.authorSCHOUMAN, T.
dc.contributor.authorFRASCA, S.
dc.contributor.authorCOLLOMBET, J.M.
dc.contributor.authorHOLY, X.
dc.contributor.author
 hal.structure.identifier
ROUCH, Philippe
99538 Laboratoire de biomécanique [LBM]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn1025-5842
dc.identifier.urihttp://hdl.handle.net/10985/10095
dc.description.abstractIn this study, we develop a two-dimensional finite element model, which is derived from an animal experiment and allows simulating osteogenesis within a porous titanium scaffold implanted in ewe's hemi-mandible during 12 weeks. The cell activity is described through diffusion equations and regulated by the stress state of the structure. We compare our model to (i) histological observations and (ii) experimental data obtained from a mechanical test done on sacrificed animal. We show that our mechano-biological approach provides consistent numerical results and constitutes a useful tool to predict osteogenesis pattern.
dc.language.isoen
dc.publisherTaylor & Francis
dc.rightsPost-print
dc.titleDiffusion model to describe osteogenesis within a porous titanium scaffold.
ensam.embargo.terms3 Months
dc.identifier.doi10.1080/10255842.2014.998207
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Biomécanique
ensam.audienceInternationale
ensam.page1-9
ensam.journalComputer Methods in Biomechanics and Biomedical Engineering
ensam.volume9
hal.statusunsent
dc.identifier.eissn1476-8259


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record