Show simple item record

dc.contributor.author
 hal.structure.identifier
PIOTROWSKI, Boris
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorBAPTISTA, André
dc.contributor.author
 hal.structure.identifier
PATOOR, Etienne
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.authorBRAVETTI, Pierre
dc.contributor.authorEBERHARDT, André
dc.contributor.author
 hal.structure.identifier
LAHEURTE, Pascal
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2016
dc.date.issued2014
dc.date.submitted2015
dc.identifier.issn0928-4931
dc.identifier.urihttp://hdl.handle.net/10985/10097
dc.description.abstractAlthough mechanical stress is known as being a significant factor in bone remodeling, most implants are still made using materials that have a higher elastic stiffness than that of bones. Load transfer between the implant and the surrounding bones is much detrimental, and osteoporosis is often a consequence of such mechanical mismatch. The concept of mechanical biocompatibility has now been considered for more than a decade. However, it is limited by the choice of materials, mainly Ti-based alloys whose elastic properties are still too far from cortical bone. We have suggested using a bulk material in relation with the development of a new beta titanium-based alloy. Titanium is a much suitable biocompatible metal, and beta-titanium alloys such as metastable TiNb exhibit a very low apparent elastic modulus related to the presence of an orthorhombic martensite. The purpose of the present work has been to investigate the interaction that occurs between the dental implants and the cortical bone. 3D finite element models have been adopted to analyze the behaviour of the bone-implant system depending on the elastic properties of the implant, different types of implant geometry, friction force, and loading condition. The geometry of the bone has been adopted from a mandibular incisor and the surrounding bone. Occlusal static forces have been applied to the implants, and their effects on the bone-metal implant interface region have been assessed and compared with a cortical bone/ bone implant configuration. This work has shown that the low modulus implant induces a stress distribution closer to the actual physiological phenomenon, together with a better stress jump along the bone implant interface, regardless of the implant design.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectDental biomechanics
dc.subjectBeta titanium alloy
dc.subjectLow modulus implant
dc.subjectNumerical modeling
dc.subjectBone–implant interface
dc.titleInteraction of bone-dental implant with new ultra low modulus alloy using a numerical approach
ensam.embargo.terms1 Year
dc.identifier.doi10.1016/j.msec.2014.01.048
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Biomécanique
dc.subject.halSciences du vivant: ingénierie bio-médicale
ensam.audienceInternationale
ensam.page151-160
ensam.journalMaterials Science and Engineering: C
ensam.volume38
hal.identifierhal-01203048
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record