On Algebraic Approach for MSD Parametric Estimation

Dépôt DSpace/Manakin

Afficher la notice abrégée

dc.contributor.author OUESLATI, Marouene
ensam.hal.laboratories
  104752 Inria Lille - Nord Europe
dc.contributor.author THIERY, Stéphane
ensam.hal.laboratories
  104752 Inria Lille - Nord Europe
dc.contributor.author GIBARU, Olivier
ensam.hal.laboratories
  104752 Inria Lille - Nord Europe
dc.contributor.author BEAREE, Richard
ensam.hal.laboratories
dc.contributor.author MORARU, George
ensam.hal.laboratories
dc.date.accessioned 2015-09-23T10:04:01Z
dc.date.available 2015-09-23T10:04:01Z
dc.date.issued 2011-09-12
dc.date.submitted 2015-09-23T10:02:20Z
dc.identifier.isbn 978-88-903724-7-6
dc.identifier.uri http://hdl.handle.net/10985/10131
dc.description.abstract This article address the identification problem of the natural frequency and the damping ratio of a second order continuous system where the input is a sinusoidal signal. An algebra based approach for identifying parameters of a Mass Spring Damper (MSD) system is proposed and compared to the Kalman-Bucy filter. The proposed estimator uses the algebraic parametric method in the frequency domain yielding exact formula, when placed in the time domain to identify the unknown parameters. We focus on finding the optimal sinusoidal exciting trajectory which allow to minimize the variance of the identification algorithms. We show that the variance of the estimators issued from the algebraic identification method introduced by Fliess and Sira-Ramirez is less sensitive to the input frequency than the ones obtained by the classical recursive Kalman-Bucy filter. Unlike conventional estimation approach, where the knowledge of the statistical properties of the noise is required, algebraic method is deterministic and non-asymptotic. We show that we don't need to know the variance of the noise so as to perform these algebraic estimators. Moreover, as they are non-asymptotic, we give numerical results where we show that they can be used directly for online estimations without any special setting. en
dc.language.iso en
dc.publisher IMAACA
dc.rights Post-print
dc.subject Parameter estimation; Recursive algorithm; Kalman-Bucy algorithm; Forgetting factor; Algebraic approach; Laplace transform; Operational calculus; Leibniz formula; Integral rules; Filtering en
dc.title On Algebraic Approach for MSD Parametric Estimation en
ensam.hal.id hal-01203529 *
ensam.hal.status accept *
dc.typdoc Communications avec actes
dc.localisation Centre de Aix en Provence
dc.localisation Centre de Lille
dc.subject.hal Sciences de l'ingénieur: Automatique / Robotique
ensam.workflow.submissionConsumer updateMetadata *
ensam.audience Internationale
ensam.conference.title 5th International Conference on Integrated Modeling and Analysis in Applied Control and Automation conference, IMAACA 2011
ensam.conference.date 2011-09-12
ensam.country Italie
ensam.title.proceeding 5th International Conference on Integrated Modeling and Analysis in Applied Control and Automation conference, IMAACA 2011
ensam.page 83-91
ensam.city Rome

Fichier(s) constituant cette publication

 

Cette publication figure dans le(les) laboratoire(s) suivant(s)

Afficher la notice abrégée

Recherche


Nombre de documents dans SAM

  • 2782 documents

Lettre Diffuser la Science

Mon compte

Rapport d'activité

Aide