Show simple item record

dc.contributor.author
 hal.structure.identifier
DAL, Morgan
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorMONTEIRO, Eric
dc.contributor.authorLORONG, Philippe
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2015
dc.date.submitted2015
dc.identifier.urihttp://hdl.handle.net/10985/10174
dc.description.abstractNumerical methods to solve problems involving discontinuities (jumps, kinks or singularities) on moving internal boundaries have received much attention over the last decade. Among them, the most suitable is probably the extended finite element method (XFEM) in tandem with the level-set technique due to its ability to take into account these discontinuities without matching meshes [1]. The present contribution aims to elaborate a numerical approach to model interfacial discontinu- ities within a meshless context. This approach couples the constrained natural element method (C-NEM) [2] and the level-set technique. In the former, the natural neighbours interpolation, based on a Voronoi diagram, is locally enriched through the partition of unity concept. This enrichment is built from level-set functions that represent and track implicitly discontinuities inside the domain [3]. Like in XFEM, key features of the proposed approach is (i) to determine the intersection between Voronoi cells and discontinuities and (ii) to integrate numerically the weak form over cells containing discontinuities. After testing the proposed method on classical benchmarks, both accuracy and efficiency are examined on the two phase Stefan problem that deals with heat flow involving a solid-liquid phase boundary on which a jump condition must be satisfied [4]. [1] Chessa J., Smolinski P. and Belytschko T. The extended finite element method (XFEM) for solidification problems. Int. J. Numer. Meth. Engng 53:1959–1977 (2002). [2] Yvonnet J., Chinesta F., Lorong P. and Ryckelynck D. The constrained natural element method (C-NEM) for treating thermal models involving moving interfaces. Int. J. Therm. Sci. 44:559–569 (2005). [3] LiuJ.T.,GuS.T.,MonteiroE.andHeQ.C.Aversatileinterfacemodelforthermalconduc- tion phenomena and its numerical implementation by XFEM. Comp. Mech. 53:825–843 (2014). [4] Carslaw H.S. and Jaeger J.C. Conduction of Heat in Solids. 2th Edition, Clarendon Press, (1959).
dc.language.isoen
dc.rightsPre-print
dc.subjectConstrained Natural Element Method
dc.subjectLevel-set
dc.subjectMoving interface
dc.subjectStefan problem
dc.titleSolving Stefan problem through C-NEM and level-set approach
dc.typdocCommunication sans acte
dc.localisationCentre de Paris
dc.subject.halInformatique: Modélisation et simulation
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences de l'ingénieur: Mécanique: Thermique
ensam.conference.titleX–DMS 2015, eXtended Discretization MethodS
ensam.conference.date2015-09-09
ensam.countryItalie
ensam.cityFerrara
hal.identifierhal-01205570
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record