Show simple item record

dc.contributor.author
 hal.structure.identifier
FRANZ, Gérald
39101 Laboratoire des technologies innovantes - UR UPJV 3899 [LTI]
dc.contributor.authorBEN ZINEB, Tarak
dc.contributor.authorLEMOINE, Xavier
dc.contributor.authorBERVEILLER, Marcel
dc.contributor.author
 hal.structure.identifier
ABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2009
dc.date.submitted2015
dc.identifier.issn0921-5093
dc.identifier.urihttp://hdl.handle.net/10985/10186
dc.description.abstractSheet metal forming processes are commonly associated with strain-path changes in the material. Macroscopic softening/hardening transient effects can appear due to the plastic anisotropy induced by these deformation stages. Such characteristic effects can mainly be ascribed to the intragranular microstructure development and its evolution. It subsequently becomes necessary to accurately describe the dislocation patterning during monotonic and sequential loading paths in order to obtain a relevant constitutive model. In the present work, three types of local dislocation densities are taken to represent the spatially heterogeneous distributions of dislocations inside the grain. The resulting large strain single crystal constitutive law, based on crystal plasticity, is incorporated into a self-consistent scale-transition scheme. With the help of a rate-independent regularization technique, this new extended multiscale model is able to calculate plastic slip activity for each grain, and it can also characterize the evolution of the dislocation microstructure. We show that our model successfully reproduces several mechanisms of intragranular substructure development that have been observed in TEM micrographs in the context of various loading conditions. Our approach is also capable of quantitatively predicting the macroscopic behavior of both single-phase and dual-phase polycrystalline steels in the context of changing strain paths.
dc.description.sponsorshipArcelorMittal & CNRS
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectChanging strain paths
dc.subjectCrystal plasticity
dc.subjectDislocations
dc.subjectIntragranular substructure
dc.subjectMicromechanical model
dc.subjectStress-strain behavior
dc.titleRole of intragranular microstructure development in the macroscopic behavior of multiphase steels in the context of changing strain paths
dc.identifier.doi10.1016/j.msea.2009.03.074
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences de l'ingénieur: Micro et nanotechnologies/Microélectronique
ensam.audienceInternationale
ensam.page300-311
ensam.journalMaterials Science and Engineering: A
ensam.volume517
ensam.issue1-2
hal.identifierhal-01205904
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record