Show simple item record

dc.contributor.author
 hal.structure.identifier
COMBESCURE, Alain
31214 Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] [LaMCoS]
dc.contributor.author
 hal.structure.identifier
ABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2009
dc.date.submitted2015
dc.identifier.issn0029-5981
dc.identifier.urihttp://hdl.handle.net/10985/10204
dc.description.abstractIn this paper, the earlier formulation of the SHB8PS finite element is revised in order to eliminate some persistent membrane and shear locking phenomena. This new formulation consists of a solid-shell element based on a purely three-dimensional approach. More specifically, the element has eight nodes, with displacements as the only degrees of freedom, as well as an arbitrary number of integration points, with a minimum number of two, distributed along the 'thickness' direction. The resulting derivation, which is computationally efficient, can then be used for the modeling of thin structures, while providing an accurate description of the various through-thickness phenomena. A reduced integration scheme is used to prevent some locking phenomena and to achieve an attractive, low-cost formulation. The spurious zero-energy modes due to this in-plane one-point quadrature are efficiently controlled using a physical stabilization procedure, whereas the strain components corresponding to locking modes are eliminated with a projection technique following the assumed strain method. In addition to the extended and detailed formulation presented in this paper, particular attention has been focused on providing full justification regarding the identification of hourglass modes in relation to rank deficiencies. Moreover, an attempt has been made to provide a sound foundation to the derivation of the co-rotational coordinate frame, on which the calculations of the stabilization stiffness matrix and internal load vector are based. Finally to assess the effectiveness and performance of this new formulation, a set of popular benchmark problems is investigated, involving geometric non-linear analyses as well as elastic-plastic stability issues.
dc.language.isoen
dc.publisherWiley
dc.rightsPost-print
dc.subjectAssumed strain method
dc.subjectElastic-plastic stability
dc.subjectHourglass
dc.subjectOrthogonal projection
dc.subjectHB8PS solid-shell
dc.subjectShear and membrane locking
dc.titleAn improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis
dc.identifier.doi10.1002/nme.2676
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Génie des procédés
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Génie mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences de l'ingénieur: Mécanique: Vibrations
ensam.audienceInternationale
ensam.page1640-1686
ensam.journalInternational Journal for Numerical Methods in Engineering
ensam.volume80
ensam.issue13
hal.identifierhal-01206312
hal.version1
hal.statusaccept
dc.identifier.eissn1097-0207


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record