Show simple item record

dc.contributor.authorCHINESTA, Francisco
dc.contributor.author
 hal.structure.identifier
AMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.author
 hal.structure.identifier
CUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
dc.contributor.author
 hal.structure.identifier
ABISSET-CHAVANNE, Emmanuelle
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]
dc.date.accessioned2015
dc.date.available2015
dc.date.issued2015
dc.date.submitted2015
dc.identifier.issn1815-2406
dc.identifier.urihttp://hdl.handle.net/10985/10237
dc.description.abstractThe fine description of complex fluids can be carried out by describing the evolution of each individual constituent (e.g. each particle, each macromolecule, etc.). This procedure, despite its conceptual simplicity, involves many numerical issues, the most challenging one being that related to the computing time required to update the system configuration by describing all the interactions between the different individuals. Coarse grained approaches allow alleviating the just referred issue: the system is described by a distribution function providing the fraction of entities that at certain time and position have a particular conformation. Thus, mesoscale models involve many different coordinates, standard space and time, and different conformational coordinates whose number and nature depend on the particular system considered. Balance equation describing the evolution of such distribution function consists of an advection-diffusion partial differential equation defined in a high dimensional space. Standard mesh-based discretization techniques fail at solving high-dimensional models because of the curse of dimensionality. Recently the authors proposed an alternative route based on the use of separated representations. However, until now these approaches were unable to address the case of advection dominated models due to stabilization issues. In this paper this issue is revisited and efficient procedures for stabilizing the advection operators involved in the Boltzmann and Fokker-Planck equation within the PGD framework are proposed.
dc.description.sponsorshipAuthors acknowledge the support of Spanish and Frenchministries through grants CICYTDPI2011-27778-C02-01/02 and ANR COSINUS 2010 SIMDREAM. F. Chinesta also acknowledge the Institut Universitaire de France – IUF.
dc.language.isoen
dc.publisherGlobal Science Press
dc.rightsPost-print
dc.subjectBoltzmann equation
dc.subjectFokker-Planck equation
dc.subjectproper gene
dc.subjectmultidimensional models
dc.subjectconvective stabilization
dc.titleEfficient Stabilization of Advection Terms Involved in Separated Representations of Boltzmann and Fokker-Planck Equations
dc.identifier.doi10.4208/cicp.2014.m326
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Angers
dc.subject.halInformatique: Ingénierie assistée par ordinateur
ensam.audienceInternationale
ensam.page975-1006
ensam.journalCommunications in Computational Physics
ensam.volume17
ensam.issue4
hal.identifierhal-01206757
hal.version1
hal.statusaccept


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record